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Abstract

Customarily, the relationship between knowledge and truth seems
to be settled: Only truths can be known, therefore knowledge entails
truth. This so-called truth condition is the most seldom contested
principle about knowledge and is therefore also reflected in most
epistemic logics, classical or intuitionistic: The principle K A ⊃ A (read
as “if A is known, it is true”) is endorsed, while A ⊃ K A is rejected as
it seems unreasonable to conclude that an agent has knowledge of a
proposition just because it is true.

In their seminal paper “Intuitionistic epistemic logic”, Artemov
and Protopopescu (2016) propose that a truly intuitionistic account
of knowledge should endorse A ⊃ K A (read as “if A is proven it is
known”), relying on the constructive reading of truth as provability.
Nevertheless, this does not amount to rejecting the usual truth condi-
tion (K A ⊃ A) completely, as other classically but not intuitionistically,
equivalent alternatives (e.g. K A ⊃ ¬¬A) to the classical truth condition
can be adopted.

While there is flourishing literature on IEL, so far no attempts have
been made to analyze results about IEL in a constructive setting. Elab-
orating on the classical completeness proof, we present a constructive
proof of strong quasi-completeness for IEL, which we have mecha-
nized in the Coq proof assistant. The proof utilizes slightly modified
semantics, this comes at the cost that soundness is not constructive.
Our second result is a constructive decidability proof using a proof
search in a cut-free sequent calculus. We generalize our method of
proving cut-elimination and decidability to the classical modal logic K.
We believe that this method of mechanizing cut-elimination proofs is
applicable to an even larger class of modal logics. With the decidability
result we obtain a constructive proof of completeness for IEL and IEL−.

Lastly, we discuss two well-known epistemic paradoxes and their
connection to IEL. Here we focus on the Church-Fitch paradox of
knowability (Fitch, 1963) and Florio’s and Murzi’s paradox of idealiza-
tion (Florio & Murzi, 2009) .
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1
Introduction

In this thesis, we consider two modal logics and investigate results
about them in a constructive mechanized setting. Modal logics can
accommodate reasoning about different modes of truth. For example,
plain predicate logic is not well suited to reason about alethic (e.g.
necessity, possibility) or deontic (e.g. obligatoriness, permissibility)
modalities. This is mainly due to such modifiers opening intentional
contexts while predicate logic is extensional. Another possible view
is that modal logic is about studying non-truth functional operators.
From a formal perspective, modal logics add operators to a non-modal
logic which can then be used to represent the non truth-functional
modality.

One special kind of modal logics are epistemic (deriving from the
greek epistēmē meaning knowledge) logics, logics which can be used
to reason about knowledge. Thus the modal operator is interpreted
as an individual’s or collective’s knowledge and is often represented
by a K. For example if A is a proposition asserting that all bachelors
are unmarried, K A represents the proposition that an agent knows
that all bachelors are unmarried. Similarly KK A represents higher-
order knowledge. It is obvious that knowledge modalities are not
truth-functional - otherwise one would either have to know all true
statements or be ignorant of all true statements. In this thesis, we
investigate two logics proposed by Artemov and Protopopescu (2016).
They introduce the logics IEL (intuitionistic epistemic logic), the logic
of intuitionistic knowledge, and IEL−, the logic of intuitionistic belief,
to model an intuitionistic account of knowledge. The next chapter
serves as a more detailed but informal introduction into their epistemic
logic, while the formal investigation begins with Chapter 4.

Lastly, we try to establish these results in a constructive and mecha-
nized setting. In a constructive setting not all classically valid laws are
valid; at the heart is the rejection of the law of excluded middle. This
principle ∀A. A∨¬A is rejected, since for accepting it the constructivist
would need to have an omniscient procedure which generates a proof
of either A or ¬A for arbitrary statements A. Note that of course re-
jecting the law of excluded middle does not amount to rejecting every
instance of it.

We work in a mechanized setting, this basically means that all of
the proofs presented in this thesis have been checked by an interactive
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theorem prover such as the Coq proof assistant we’re working with.
A mechanized proof is in some sense stricter than a non-mechanized
proof, since proofs normally only need to have enough level of detail to
convince an interested mathematician of the correctness. For example
the completeness proof for IEL is given as a two-page appendix to
Artemov and Protopopescu’s paper but we need about 600 lines of
code to formalize this proof.

Mechanization has allowed to find mistakes in (published) math-
ematical proofs. For example when Tews (2013) formalized a proof
of cut-elimination for the class of co-algebraic logics in Coq, he found
slight mistakes or gaps in the reasoning of the paper by Pattinson and
Schröder (2010). Reasoning in a proof assistant based on constructive
logic like Coq also allows for a fine-grained analysis how strong classi-
cal axioms (if they are needed) need to be. In this chapter we present
the outline and our main contributions.

1.1 Outline

From a high-level perspective this thesis consists of two parts: One
informal part (Chapters 2, 7) discussing the philosophical motivation
for IEL and two related epistemic paradoxes. The remaining chapters
(namely chapters 3, 4, 5, 6) provide a formal investigation into the logic
and are framed in-between the two non-mechanized chapters. The
parts are independent so a reader interested in the technical results
may want to skim or skip Chapter 2.

The second chapter of this thesis is concerned with an introduction
to IEL and IEL−. Here we introduce the philosophical motivation
behind IEL and introduce their Kripke-style semantics in an informal
way.

The third chapter lists some preliminaries and quickly introduces
the constructive meta-theory the proofs are formalized in.

The fourth chapter, is the start of our formal investigations into IEL.
After introducing the syntax of IEL, we formally introduce models.
We then discuss a classical completeness proof, elaborating on the one
given by Artemov and Protopopescu (2016).

The fifth chapter presents a modified version of the completeness
proof which was given in the preceding chapter. The construction
utilizes a slightly modified forcing relation which allows us to prove
strong quasi-completeness and (presupposing decidability) complete-
ness constructively. This comes at the price that soundness cannot be
proven without relying on the constructively invalid law of excluded
middle.

Chapter 6 concludes our formal investigation into IEL. We prove,
basing on previous work by Dang (2015), Krupski and Yatmanov
(2016), and Smolka and Brown (2012), the decidability of IEL. We ob-
tain this by implementing a proof search in a cut-free sequent calculus
for IEL, which has been proven equivalent to the natural deduction
system using a cut-elimination proof, and proving the algorithms’
correctness.
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The penultimate chapter further develops the philosophical investi-
gation into IEL. We first present the Church-Fitch paradox and after-
wards discuss Artemov and Protopescu’s solution to it, which is based
on using IEL as the underlying logic. Secondly, we investigate in how
far an intuitionistic conception of knowledge is threatened by Florio
and Murzi’s paradox of idealization. If their argument is forceful, it
commits intuitionists to the existence of an unverifiable truth, which
would in some sense refute IEL’s co-reflection principle. Furthermore
we discuss arguments against IEL principles, for example by Percival
(1990).

In the concluding chapter we discuss related and further work.
That chapter also includes an overview of the accompanying Coq
development.

1.2 Contributions

To summarize, our technical contributions include mechanizations of

• a cut-elimination proof for the intuitionistic modal logics IEL and
IEL− and the classical modal logic K in the Coq proof assistant,

• a decidability proof for IEL and IEL− and the classical modal logic
K,

• a mechanization of the well-known classical completeness proof (i.e.
T ⊩ A → T ⊢ A) using the law of excluded middle,

• a quasi strong-completeness proof for IEL and IEL− (i.e. T ⊩′ A →
¬¬T ⊢ A), and

• a proof of completeness for IEL and IEL− (i.e. Γ ⊩′ A → Γ ⊢ A) and
some consequences.

Our non-technical contributions include an introduction into IEL
and its principles and a discussion of two epistemic paradoxes and
their relationship to IEL.

Most results in this thesis have been formalized in the Coq proof
assistant. Such results have been linked with its respective counterpart
in the formalization and clicking on the theorems title will open the
formalization. Formalized theorems are recognizable by a visual cue.

The accompanying coq development and documentation can be
found on this bachelor projects’ webpage.1 1 http://www.ps.uni-saarland.de/

~hagemeier/bachelor.php

http://www.ps.uni-saarland.de/~hagemeier/bachelor.php
http://www.ps.uni-saarland.de/~hagemeier/bachelor.php


2
A Primer on Intuitionistic Epistemic Logic

In most theories of knowledge the relationship between truth and
knowledge is simple: What is known is true, but just because some-
thing is true it does not need to be known. For example, the truth
component is explicitly mentioned in the well-known tripartite anal-
ysis of knowledge as justified, true belief. This is also reflected in
most epistemic logics, i.e. logics with a knowledge modality K, which
take K A ⊃ A to be a defining principle, expressing the facticity of
knowledge. However, Artemov and Protopopescu (2016) propose that
a faithful account of knowledge understood intuitionistically reverses
this relationship. Accordingly Artemov and Protopopescu’s intuition-
istic epistemic logic (IEL) validates not the reflection, but the so-called
co-reflection1 axiom A ⊃ K A. In this chapter, we will first motivate 1 In the context of Fitch’s paradox (Fitch,

1963) this principle is also known as
strong verificationism (this naming was
introduced in Williamson (2000)).

this logic, then discuss consequences concerning the notion of proof
that arise from adopting the co-reflection principle and lastly give an
informal introduction to IELs Kripke-semantics. We will discuss how
knowledge is analyzed in Kripke models and how this interacts with
the interpretation of Kripke-models as modelling information states of
an idealized reasoner or mathematician.

2.1 Intuitionistic Epistemic Logic

Intuitionism views mathematics as a web of constructive proof pat-
terns and matching definitions of objects (van Benthem, 2009). Let us
emphasize two consequences of this view: Intuitionists assign a differ-
ent meaning to the logical constants than classical mathematicians. For
classical mathematicians, the meaning of a logical constant is given by
a truth table, while intuitionists identify them with their contribution
to the proof conditions of sentences. The logical constants are infused
with a proof-theoretic spirit, summed up in the Brouwer-Heyting-
Kolmogorov (BHK) interpretation (van Benthem, 2009). For example,
a proof of A ∧ B is a pair containing a proof of A and a proof of B, and
a proof of an implication A ⊃ B is a construction transforming proofs
of A into proofs of B. Another difference is that proofs are mental
constructions and a proposition is only seen as true once a proof has
been constructed. Thus truth is identified with provability.

Artemov and Protopopescu (2016) claim that an intuitionist con-
ception of knowledge is verification-based. That is, an intuitionist can



INTUITIONSITIC EPISTEMIC LOGIC IN COQ 11

know a proposition whenever she is certain (can verify) that the propo-
sition has been constructively proven. However she does not need
to have actually constructed the proof, she only needs to be certain
that a constructive proof exists.2 We will call such a piece of verifiable 2 We will deal with the question if the

proof must exist or if possibility of proof
suffices later.

evidence that a constructive proof exists a certificate.
Theoretically speaking there are numerous possible relationships

between proofs and certificates. Artemov and Protopopescu argue
that every proof is a certificate but that there are non-proof certificates
(i.e. they are in a strict subset relation). That means that from any
constructive proof we need to be able to obtain a certificate and that
there are other methods of obtaining certificates. If there were no
other sources of certificates besides constructive proofs, knowledge
and truth would coincide. We will consider examples of non-proof
verifications shortly, but let us first argue why every (intuitionistic)
proof is a certificate: It is a defining property of a proof, that it can be
checked, and of course, the proof itself establishes that a proof exists.
Since proofs are used to convince readers of the truth of a statement, if
the reader cannot verify the proof, it has no value. Formally Artemov
and Protopopescu adopt the following axioms for their intuitionistic
epistemic logic (IEL):

Definition 2.1 The axioms of IEL are those of intuitionistic propositional
calculus and

• A ⊃ K A (co-reflection)

• K (A ⊃ B) ⊃ K A ⊃ KB (distribution)

• K A ⊃ ¬¬A (intuitionistic reflection).

While distribution is a standard and accepted axiom,3 the other axioms 3 Of course, distribution is controversial
too, e.g. it gives rise to logical omni-
science (see Rapaport & Vardi, 1988).

look strange from a classical perspective. The intuitionistic reflection
principle can be seen to express the idea that the certificates need not
yield constructive proofs but guarantee the existence of a (classical)
proof. Read intuitionistically, it guarantees that no proof of ¬A exists,
when A is known. Using the well-known double-negation transla-
tion for propositional logic (known as Glivenko’s theorem, (Glivenko,
1929)) it sandwiches intuitionistic knowledge between intuitionistic
and classical truth. The logic without the intuitionistic reflection axiom
is called IEL−, the logic of intuitionistic belief.

Is the proposed strict-subset relationship between certificates and
proofs reflected in the logic? One might have the idea that K can be
defined in terms of classical truth. This would equate IEL with the logic
HDN ◻ from Došen (1984), which proves K A↔ ¬¬A. However, this
would (by Glivenkos theorem) imply, that every theorem of classical
logic is known. However, Artemov and Protopopescu argue that
¬¬A ⊃ K A should not be endorsed in an epistemic logic of knowledge,
since then the agent would know p ∨ ¬p for any proposition since
p ∨ ¬p is a classical tautology and thus ¬¬(p ∨ ¬p) is a theorem of
intuitionistic propositional logic (by Glivenko’s theorem). Fortunately,
the logics are proven to be different (Artemov & Protopopescu, 2016),
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therefore intuitionistic knowledge and double negated truth do not
coincide.4 4 It is possible to show that ¬¬(p∨¬p) ⊃

K p ∨¬p is not admissible by construct-
ing a countermodel, that is a model
in which ¬¬(p ∨ ¬p) is satisfied but
K (p ∨¬p) is not.

We will now return to the existence of non-proof verifications as
this ties in well with the co-reflection principle. If all verifications
were proofs, it would make no sense to only allow the (intuitionisti-
cally) weaker inference to ¬¬A from K A. So, how is the co-reflection
principle motivated?

We give two examples (from Artemov and Protopopescu (2016))
for certificates obtainable from other sources than constructive proofs.
As a first example, we outline how knowledge can be obtained from
zero-knowledge proofs.

Consider a sudoku puzzle and two players Alice and Bob. Bob
knows a solution and wants to convince Alice of that fact without
revealing the solution. Using a zero-knowledge protocol,5 Alice can 5 such protocols exists, for instance see

Gradwohl et al. (2009)verify that Bob is in possession of a solution, this allows her to prove
K (∃x. S(x)) (we use the unary predicate S(x) to denote that x is a
solution of the sudoku puzzle). Thus she would have obtained a
solution to the puzzle, in contrast to the idea that the solution shall
not be reconstructable from a zero-knowledge protocol. Note, that
the crucial part here is not, that Bob obtained a solution (and thus too
has a proof of ∃x.S(x)) but only that Alice is sure that a constructive
proof exists. Assume for example, there was a computer program
that could tell if a sudoku is solvable without revealing the solution
or constructing one itself, even if Alice were to run this program on
the sudoku and the program would attest to Alice that the sudoku is
solvable, without revealing the solution, she could assert K (∃x. S(x))
(this is of course assuming the computer program can be verified and
there are no hardware-errors).

There are variants of this example, e.g. knowledge from classified
sources or knowledge from authority (Artemov & Protopopescu, 2016).
For example, most mathematicians claim to know Fermat’s Last Theo-
rem and can even use it in proofs (this can be seen as an instance of
the distribution axiom) but can probably not present a proof when
asked to produce one. While these examples make the intuitionistic
reflection principle plausible, the co-reflection principle still looks puz-
zling. Read classically it states omniscience (e.g. the agent knows
every truth) and seems to flip the (classical) relationship between truth
and knowledge: Everything true is known and knowledge does not
yield (constructive) truth.

But under an intuitionistic reading, it seems more plausible, as
expressed by Bell and Hart (1979):6 6 However Bell and Hart seem to find

this line of argument unsatisfying, since
we surely have good inductive grounds for
believing that there are truths as yet un-
known.

Read the proof; thereby you come to know that the sentence is true.
Reflecting on your recent learning, you recognize that the sentence is
now known by you; this shows that the truth is known.

One possible objections against this could be that a reasoner could
come to possess a proof which super-seeds her intellectual capacities.
In this case she could read the proof but obtain no knowledge, since
she does not understand the proof. However I do not believe that this
is a valid criticism. The scheme A ⊃ K A read intuitionistically only
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expresses that once an agent has come to recognize a (constructive)
proof of A, she immediately knows that A is true. A does not become
known as soon as she is presented with a proof but only as soon as she
has realized that what she has just read is a proof of A.

However the main issue here is what is meant by proof, the argument
crucially depends on the proof being available to the agent. We will
elaborate on this in Section 2.2.

One interesting result concerning this understanding of knowledge
is its similarity to type inhabitation (also known as truncated types
or squash types) in constructive type theory (the similarity is noted
by Artemov and Protopopescu). The inhabitance type ∥A∥ of a type
A only captures that A has an inhabitant, but the inhabitant cannot
be extracted from it. In this sense, it is quite similar to certificates,
which guarantee that a proof exists but offer no way of obtaining
the proof. Interestingly, in Coq’s Type Theory, we can interpret K

as inhabitedness and the IEL axioms hold in this interpretation. In
particular, from ∥A∥ it is possible to obtain a proof of ¬¬A.

There are actually multiple equivalent intuitionistic alternatives to
the classical truth condition. The following theorems are all equivalent
in the presence of co-reflection and can serve as the intuitionistic truth
condition on knowledge:

• ¬(A ∧¬K A)

• ¬K�

• ¬A ⊃ ¬K A

• ¬¬(K A ⊃ A)

Especially the fourth formulation makes it obvious that intuitionis-
tic reflection is nothing else than the double-negated classical truth-
condition on knowledge.

2.2 Notion of proof

The crucial question is what exactly constitutes an intuitionistic proof.
In this section, we will analyze different conceptions of intuitionistic
proofs and check if those are compatible with the IEL axioms.

The issue we focus on here is if proofs are types or tokens. We
will consider Williamson’s (1988) idea to model proofs as types and
his argument against the validity of co-reflection in his intuitionistic
epistemic logic. Then we will discuss some difficulties from identifying
truth with having constructed a proof token. Most of the arguments
presented in this section can also be found in Murzi (2010), however
regarding the proof as types proposal I come to a different conclusion.
While Murzi concludes that committing to co-reflection necessitates
rejecting the “proofs as types”-proposal, I believe that by using a
broader interpretation of proof-token similarity this proposal can work
well with the co-reflection principle.
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Proofs as types Williamson defines K A to hold if there exists a time t
s.t. A has been proven at t. His idea is to define proof types in terms
of structural identity of proof tokens. He introduces proof types as
an ontologically neutral (Williamson, 1988) concept: Two proof tokens
are of the same proof-type if and only if they have the same structure
and conclusion, but may occur at different times (we shall denote
similarity of proof tokens by ∼). Proof types under this conception are
nothing more than proof tokens grouped together by similarity (like
equivalence classes). For example, two structurally identical proofs of
the Pythagorean theorem carried out at different times would count
as different proof tokens of the same type, while two proofs of the
Pythagorean theorem with a different structure would count both as
different proof types and tokens. There is no such thing as a general
proof type of the Pythagorean theorem (Murzi, 2010) , unless all proofs
of the Pythagorean theorem were identical in structure.

Talk of proof types can always be reduced to talk of similar proof
tokens. This also applies to the BHK-semantics, as can be seen by con-
sidering the case of implication. The usual explanation is that a proof
of A → B is a function (in the sense of a procedure or construction)
transforming proofs of A into proofs of B. So if proofs are types, a func-
tion mapping proof types to proof types, how can this be reduced to
proof tokens? Williamson (1988) suggests interpreting the conditional
as a unitype function between proof tokens that is a function which
preserves similarity of tokens i.e. if π and ρ are similar, so are f (π)
and f (ρ). So formally, a function f between proof tokens is unitype iff

∀πρ. π ∼ ρ Ô⇒ f (π) ∼ f (ρ).

So if co-reflection were valid, there would have to be a unitype
function mapping proof tokens of A to proof tokens of K A. His argu-
ment against the co-reflection principle is now that no such function
f can exist. To see this, consider a proposition p which is currently
undecided. That is, no proof of p but also no proof of ¬p has yet been
constructed. However since co-reflection is valid, the function must
exist. Now Williamson’s trick is to take two similar hypothetical proof
tokens of p, π1 and π2 where π1 is constructed on a Monday and π2

is constructed on a Tuesday (for them to be similar they only need to
have the same proof structure).

Williamson now claims that f (π1) ≁ f (π2), since they were proved
on different days and the day of the proof is an essential part of the
proof of K A, by the definition of the semantics for K.

The notion of hypothetical proof tokens might seem strange (and
maybe even unnecessary) at first. If the functions mapping proof-
tokens from A to K A would only need to operate on real proof tokens,
it would be possible to map every proof token of A (even those con-
structed at different times) to the same proof token of K A (namely the
one which was constructed first), thus the function would be unitype
since for all proofs π, π2 of A, f (π) = f (π2) would hold and thus
f (π) ∼ f (π2). But if the proposition has not been decided (i.e. there is
no proof of A nor one of ¬A) this strategy is not possible.
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An objection by Martino and Usberti (1994) is that the function
need not operate on hypothetical but only on real proof tokens, since
hypothetical proof tokens do not exist. However, as Murzi (2010)
points out, intuitionists routinely assert conditionals without knowing
whether the antecedent is true. Consider proving ¬p, which means
proving p → �. If the function which proves this, would only need to
work on real proof tokens, it would need to only map real proof tokens
of p to real proof tokens of �. So if ¬p holds, the function has nothing
to map, since there are no proof tokens of � there can not be any of p.
Operating on hypothetical proof tokens is in some sense also reflected
in natural deduction and other calculi: When proving a conditional
Γ ⊢ s ⊃ t, after applying the introduction rule for implication, one
has to prove s, Γ ⊢ t, but here too, we work with the hypothetical
assumption that s is true regardless if we have actually obtained or
even can obtain a proof of s.

However the more troubling argument (which phrased slightly dif-
ferently can be found in van Atten (2018), Artemov and Protopopescu
(2016) and Usberti (2016)) is that there seems to be no clear motivation
why similarity of proof-tokens needs to be defined in such a restricted
way. One possible way out is not to mandate that the time at which a
proposition was proven plays any role in the proof structure of K A.
That is, by using an interpretation of K that does not include a temporal
component, just like in IEL, the objection no longer works.

A similar strategy is to broaden the notion of similarity. If proof
tokens are defined to be similar if they have the same conclusion, that
is, the internals of the proof are of no concern (as in the Curry-Howard
isomorphism), there seems to be no reason why there cannot be a
unitype function mapping proof-tokens of A to proof-tokens of K A.

A second possible criticism of Williamson’s approach has to do with
proof types of statements for which no proof has been produced (yet)
or for which no proof token might ever be constructed. For example
there could be statements which are too long to ever be verified. If
proof types are nothing else than tokens grouped by similarity this
proof type might not exist, since no proof token of it will ever be
constructed. One possible solution here would be to commit to a
platonic realm of (hypothetical) proof tokens, however this destroys
the idea, that proof types are ontologically neutral and nothing more
than (existing) proof tokens grouped by similarity. As Murzi (2010)
points out, it might be objected that the notion of a platonist proof is
an inherently realist one. For example Dummett (1982, p. 90) notes
this:

A platonist will admit that, for a given statement, there may be neither
a proof nor a disproof of it to be found; but there is no intelligible
anti-realist notion of truth for mathematical statements under which a
statement is true only if there is a proof of it, but may be true because
such a proof exists, even though we do not know it, shall never know it,
and have no effective means of discovering it.

Dummets main argument now is that if we commit to an objective
(platonic) realm of proofs, there is no reason to not commit to a parallel
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conception of mathematical objects or a platonist conception of natural
numbers.

Cozzo remarks that a platonic realm of proofs is “very different
from a realistically conceived transcendent reality consisting of ob-
jects which are conceptually completely independent of our cognitive
practices.” (Cozzo, 1994, p. 75). Since the realist will still assert that
statements without a proof can be true, while the platonistic intuition-
ist is only committed to the existence of a realm of proofs which she can
recognize (the proofs are not independent from our cognitive practices)
understanding. For example, we know the assertibility conditions of
Goldbach’s conjecture, thus even a platonic realm of proofs (or proof
tokens) is in someway linked with our understanding.

A similar stance for example can be found in the Coq community
(or more broadly the interactive theorem proving community with
constructive background). Here only constructing a proof token (e.g.
a coq script which will correspond to a term proving the proposition)
is seen as evidence that one has proven the statement – but many
members would see a statement as true regardless if the proof has
been constructed. So while truth is identified with the type having
a member, only constructing and having access to a token can make
us aware of this. In this sense it seems as if Coq users are tacitly
committed to the existence of a platonic realm of proofs (which is still
more graspable than a platonic realm of ungraspable truths).

In summary while under Williamson’s notion of similarity the co-
reflection principle is faced with problems, a more general notion of
proof type seems to validate the co-reflection principle, but seems to
presuppose the existence of a platonic realm of proofs. If one does
not assume a platonic realm of proofs, there seem to be issues with
statements for which no proof token will ever be constructed.

Proofs as tokens If truth is identified with the actual possession of
a proof token, there are other counterintuitive consequences, since
this leads to truth having a temporal component. Consider a valid
inference from a set of sentences Γ to a conclusion p. Assume that
a proof token for each sentence in Γ but not for p exists. If validity
requires preservation of truth, the inference would be wrong, so it
would turn correct as soon as a proof token of p had been found.
Another well-known problem is with past-tensed decidable statements
for which all evidence has been lost.

Of course, platonist or timeless conceptions of truth are in theory
available to the intuitionist - intuitionism isn’t per se committed to
identifying truth with the actual (or possible) construction of a proof.
However such conceptions of proof seem not to enjoy co-reflection,
since just from the abstract existence of proof, it is impossible to say
anything about the construction of a proof of K A. Before a proof of
A can be transformed into a proof of K A it needs to be constructed at
least once by an actual agent.

Another distinction which can be made is if truth is viewed in
an actualist or possibilist fashion, i.e. if it suffices if the proof were
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constructible or if it actually needs to be constructed. IEL seems not to
be committed to either of these, co-reflection is certainly compatible
with an actualist view. Even on a possibilist view, if it was possible
to construct a proof of A it would be possible to construct a proof
of K A, thus in principle both notions are possible. For a broader
discussion on actualist or possibilist notions of truth we refer the
reader to Raatikainen (2004).

2.3 Models

This section will not give a formal introduction into the models used
for IEL but instead try to convey an intuition, how (intuitionistic)
knowledge fits into Kripke-model theoretic terms. Kripke models
have applications in intuitionistic as well as classical logic. In classical
logics Kripke models are used to model intensional operators such as
necessity, possibility or knowledge.

We will first introduce how knowledge is interpreted in terms of
Kripke models. Kripke models consist of a set of possible worlds
and interpret truth of formulas relative to a world w. For this they
additionally have an accessibility relation on the worlds (which might
be subject to some constraints) and a valuation function assigning
truth values to atomic sentences at specific worlds. In the classical
case for example A ⊃ B is forced at world w a model M, in formulas
M, w ⊩ A ⊃ B if either ¬A or B is forced at w in M.

The common approach to modeling knowledge using Kripke mod-
els is to use the indistinguishability interpretation of knowledge (Rendsvig
& Symons, 2019). Consider an agent walking the sunny streets of San
Francisco who knows nothing about the weather in London.7 There- 7 This example is taken from Fagin et al.

(2004).fore, she only considers worlds possible where it is sunny in San
Francisco, but she would consider both worlds possible where it is
sunny or where it is raining in London (more precisely, she considers
any weather in London possible). On the other hand she has no knowl-
edge about the weather in London. Thus she considers both situations
possible where it is raining in London and situations where it is sunny
in London. Therefore she neither knows that it is sunny nor that it is
raining in London.

This motivates defining in terms of possible worlds: An agent
knows a proposition if it holds in all worlds she considers possible.
Thus she knows something, if all worlds she considers possible are
indistinguishable with respect to the proposition in question. If she
had some means to exclude the possibility that it is raining in London
(for example by listening to a weather broadcast), she would know
that it is not raining in London.

In an intuitionistic setting, the possible worlds are often thought
to represent possible states of information of an ideal reasoner.8 This 8 This exposition is based on similar ex-

positions in (Artemov & Protopopescu,
2016; van Dalen, 1986).

ideal reasoner also called creating subject by Brouwer constructs all
mathematical objects and statement. In any situation there are multiple
possible ways the ideal reasoner could extend her knowledge. All of
these are different states in the model. The partial ordering of these
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states represents the evolutionary process of the information states,
which are only increasing (there is no revision of beliefs or truths for
an ideal reasoner, she can only construct new objects and thus learn
new truths) (Proietti, 2012). We denote this partial order by ≤ and call
it cognition relation.

Artemov and Protopopescu (2016) suggest to incorporate K into
this picture by including an additional epistemic access relation. In
IEL the successor states which are relevant for the K-modality can be
thought of as an audit set, a set of worlds in which verifications can
occur. Hence knowledge (and belief in IEL−) are modeled as truth in
any audit world. There are two additional conditions placed on the
relationship between the audit sets and cognition relation.

Firstly, the audit sets are monotone with respect to the cognition
relation. Thus if v ≤ w (w is cognitively-accessible from v), then w’s
audit set needs to be fully contained in v’s. This corresponds to the
Kripkean ideology that as the ideal reasoner creates more object he
can only become more confident and “things become more certain in
the process of discovery” (Artemov & Protopopescu, 2016) .

Secondly, any epistemic successor must also be a cognitive successor.
This condition corresponds to the idea that if it is possible to do a
verification in a specific state, it is a possible scenario.

These conditions lead to validity of the co-reflection principle. For
IEL, there is an additional condition, which blocks K� from being
semantically entailed at any world. In chapter 4 we will present a
mechanized soundness and (classical) strong completeness proof for
these models.



3
Technical Preliminaries

The ambient metatheory we use in this thesis is the Calculus of Induc-
tive Constructions (Coquand & Huet, 1988; Paulin-Mohring, 1993),
which is the foundation of the Coq Proof Assistant (The Coq Devel-
opment Team, 2020). The calculus of inductive constructions dis-
tinguishes two kinds of universes. One impredicative universe P

of propositions and an infinite hierarchy of predicative universes
T0 ⊆ T1 ⊆ . . .. We usually drop the index of the type level and just use
T to refer to the universe of types. With some notable exceptions, it is
not possible to eliminate from propositions into types. For example
it is not possible to extract a witness from a proof of an existential
statement.

Readers who are only familiar with set theoretic notations shall not
be discouraged: most parts of the lemma statements and proofs, in
the level of detail presented in the thesis, can probably also be read as
if we were working in a constructive metatheory based on set-theory.
However the differences are of course apparent in the mechanization.

3.1 Numbers

Types are introduced by inductive definitions. For example the type of
natural numbers can be defined in the following way:

N ∶ T ∶= 0 ∣ S n (n ∶ N)

This definition establishes that elements of the type N , i.e. natural
numbers, are constructed from 0 and the successor function S ∶ N→N.
For example, the number 4 is represented as S S S S 0.

Addition and subtraction are defined by (well-founded) recursion,
the definitions are:

0+ x = x S(x) − S(y) = x − y

Sx + y = S(x + y) z − y = z

We will use n + 1 as notation for S(n).1 Similarly we write n − k for the 1 Strictly speaking, the terms S n and
n + 1 are not structurally equal, since ad-
dition + ∶ N → N → N is typically de-
fined by recursion on the first argument.

truncating subtraction (i.e. 2− 3 = 0).
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3.2 Lists

Lists play an essential role in our development, since we will use those
to represent finite sets of formulas. Lists over a type T are either the
empty list [] or the concatenation of any list L of type T with an element
t of type T, denoted by t ∶∶ L. In the context of derivation systems (e.g.
natural deduction systems or sequent calculi) we will also use the
common notation L, t.2 We define membership ∈∶ T → L(T) → P. The 2 In those contexts the order of the ele-

ments will not matter.length of a list is denoted by ∥A∥. Two lists are sublists of each other,
denoted by A ⊆ B, if and only if ∀x. x ∈ A → x ∈ B. We define two
notions of equality on lists, set equivalence and multiset equivalence,
which is the same as two lists being permutations of each other.

Definition 3.1 Two lists are equivalent, denoted by A ≡ B if and only if
every element of A is contained in B and vice versa.

A ≡ B ∶⇔ A ⊆ B ∧ B ⊆ A

With A ≡P B we will denote that two lists are permutations of each
other. Formally permutations over lists of type A are defined using
an inductive predicate ≡P∶ L(A) → L(A) → P, with the following
constructors:

[] ≡P []
L1 ≡P L2

x ∶∶ L1 ≡P x ∶∶ L2

L1 ≡P L2

x ∶∶ y ∶∶ L1 ≡P y ∶∶ x ∶∶ L2

L1 ≡P L2 L2 ≡P L3

L1 ≡P L3

The first constructor establishes that empty lists are permutations
of one another. The second allows to append a single argument to
any established permutation. The third allows to swap the first two
arguments and the fourth expresses transitivity of the permutation
relation. Permutations are

3.3 Sets and Decidability

While sets are not primitive to type theory, sets can be represented
as predicates, i.e. functions taking an element of a type yielding a
proposition. For example, the set of numbers divisble by 4 can be
represented by a predicate P ∶ N → P, which is defined by P n ∶=
∃n. 4 ∗ m = n. We will use the usual mathematical notation x ∈ P
instead of P x. Last let us introduce the notion of decidability of a
predicate. Consider any predicate P ∶ T1 → . . . → Tn → P. We call it
decidable if we can construct a function f ∶ T1 → . . . → Tn → B, such that
∀t1 ∶ T1 . . . ,∀tn ∶ Tn. p t1 . . . tn = true↔ P t1 . . . tn.



4
Syntax and Semantics of IEL

In the last chapter concepts like possible world semantics and the
syntax of IEL where only informally introduced. In this chapter we
will formally introduce the syntax and semantics of IEL and present
the classical strong completeness proof for IEL (as given in Artemov &
Protopopescu, 2016). The presented proof is an extension of the well-
known Henkin-style (Henkin, 1949) (strong) completeness proof using
a canonical model construction for intuitionistic logic with Kripke
semantics.

4.1 Syntax

We start by defining the type of formulas.

Definition 4.1 (Syntax of Intuitionistic propositional logic) The for-
mulas of IEL are the elements of the following inductive data type:

A, B ∶ F ∶= pi ∣ � ∣ A ∨ B ∣ A ∧ B ∣ A ⊃ B ∣ K A (i ∈ N)

As earlier, we will use the ⊃ symbol to denote the (material) condi-
tional.

We define the size of a formula using a straightforward inductive
definition.

Definition 4.2 (Formula size) The function size ∶ F → N is recur-
sively defined by

size(A ○ B) ∶= size(A) + size(B) + 1

size(K A) ∶= size(A) + 1

size(�) ∶= 0

size(pi) ∶= 0

In the above definition ○ is used as a placeholder for any binary operator.

We will later prove statements by induction on the size of formulas.
We will in some proofs need to enumerate all the formulas, for this

we have to show that F is countable that is there exists a function
d ∶ N→ F which is surjective.

Lemma 4.3 The type F is countable.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.forms.html#form
https://www.ps.uni-saarland.de/~hagemeier/website/iel.forms.html#size
https://www.ps.uni-saarland.de/~hagemeier/website/iel.forms.html#countableForm
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Proof. This fact can be established by standard techniques, e.g. inject-
ing into any countable type. We prove this fact by injecting into a
general tree type.

We will denote the i-th formula of the enumeration by Fi. Next we will
look at a formal proof calculus for IEL (and of course IEL−).

4.2 Natural Deduction

We will use a natural deduction system, which is easily derived from
the Hilbert system introduced in Artemov and Protopopescu (2016).
Natural Deduction formulations for IEL are also presented in Krupski
and Yatmanov (2016) or Rogozin (2021). Natural deduction (originally
developed by Gentzen (1935b) and Jaśkowski (1934)) formalizes the
idea to draw a single inference from a set of assumptions, so formally
the provability relation relates sets of assumptions with a conclusion.1 1 Natural deduction is called natural

since in comparison with axiomatic sys-
tems common at the time of its invention
it more closely resembles the natural /
pretheoretically accepted style of reason-
ing (Pelletier & Hazen, 2012).

However there is the issue of how to represent the set of assump-
tions in a proof assistant. In mathematical reasoning we are used to
reasoning with infinite sets of assumptions, this would motivate defin-
ing the contexts as predicates T ∶ F → P, with the implicit convention
that A ∈ T if and only if T A holds.

However dealing with finite contexts, which can be represented as
lists of formulas, is easier in the proof assistant. We choose the best of
both worlds: We define the entailment predicate ⊢ on lists of formulas,
that is ⊢∶ L(F) → F → P and reduce reasoning about (possibly) infi-
nite contexts to deduction in finite sublists. This reduction does not
change the set of formulas derivable from infinite contexts, since any
derivation must be of a finite length and can therefore also only use a
finite number of assumptions. We call finite sets of formulas contexts
and (possibly) infinite sets of formulas theories.

Definition 4.4 (Natural Deduction for IEL and IEL−) We define nat-
ural deduction for IEL as a predicate ⊢∶ L(F) → F → P.

A ∈ Γ

Γ ⊢ A
A

Γ ⊢ �
Γ ⊢ A

E

Γ, A ⊢ B

Γ ⊢ A ⊃ B
II

Γ ⊢ A Γ ⊢ A ⊃ B

Γ ⊢ B
IE

Γ ⊢ A

Γ ⊢ A ∨ B
DIL

Γ ⊢ B

Γ ⊢ A ∨ B
DIR

Γ, A ⊢ C Γ, B ⊢ C Γ ⊢ A ∨ B

Γ ⊢ C
DE

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
CI

Γ ⊢ A ∧ B

Γ ⊢ A
CEL

Γ ⊢ A ∧ B

Γ ⊢ B
CER

Γ ⊢ K (A ⊃ B)
Γ ⊢ K A ⊃ KB

KIMP
Γ ⊢ A

Γ ⊢ K A
COREFL

Γ ⊢ K A

Γ ⊢ ¬¬A
IREFL

A natural deduction system for IEL− is obtained from the IEL system
by removing the intuitionistic reflection rule (IREFL). Note, that the

https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#nd
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natural deduction system for IEL is an extension of the natural deduc-
tion system for intuitionistic propositional logic by the rules for the
K-operator (distribution, co-reflection and intuitionistic reflection).

Definition 4.5 (Entailment in theories) Let T ∶ F → P be a (possi-
bly) infinite context. We define derivability by

T ⊢ A ∶ ⇐⇒ ∃LL(F).L ⊆ T ∧ L ⊢ A

That is, an infinite context T derives A if there exists a list L which only
contains elements from T s.t. L ⊢ A. We implicitly use lists as theories
in the above notation. We will adopt the following conventions: We
will use uppercase greek letters e.g. Γ, ∆ to denote finite contexts (e.g.
lists of formulas) and calligraphic uppercase letters e.g. T to denote
possibly infinite contexts (theories) in the predicate-representation.

We can now proceed to show some structural properties of the
natural deduction calculus.

Lemma 4.6 (Theory weakening) If T1 ⊢ A and T1 ⊆ T2 then T2 ⊢ A.

Proof. Assume T1 ⊢ A, therefore there is a list Γ ⊆ T1 s.t. Γ ⊢ A. We can
now use the same Γ to instantiate the existential allowing us to prove
T2 ⊢ A.

Proving weakening for contexts needs an induction.

Lemma 4.7 (Weakening) If Γ ⊢ A and Γ ⊆ Ω then Ω ⊢ A.

Proof. Induction on the derivation Γ ⊢ A with Ω quantified.

Once we have proven weakening for the list-based natural deduc-
tion, we are able to show all the natural deduction rules admissible
for theories. For this, we need weakening, since we need to concate-
nate lists in cases where more than 1 premise is used in the natural
deduction rules.

An important property (that is elementary in natural deduction
calculi) is the deduction theorem (and it’s reverse).

Lemma 4.8 (Implication agreement) A,T ⊢ B if and only if T ⊢
A ⊃ B.

Proof. The left to right direction is just implication introduction. The
other direction is proven using implication elimination and weaken-
ing.

Truth conditions As mentioned in Chapter 2 there are multiple equiva-
lent intuitionistic truth-conditions. We do not verify here that the logics
resulting in adding each to the natural deduction system for IEL− are
the same, but only verify that we can derive the other (intuitionistic)
truth conditions when adopting K A ⊃ ¬¬A.

Lemma 4.9 In IEL, ¬K�.

Lemma 4.10 In IEL for every A, ¬(K A ∧¬A).

Lemma 4.11 In IEL for every A, ¬A ⊃ ¬K A.

Lemma 4.12 In IEL for every A, ¬¬(K A ⊃ A).

https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#ndT
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#ndtW
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#ndW
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#ImpAgree
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#IELKBot
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#IELTruthB
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#IELTruthC
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#IELTruthD
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4.3 Kripke Models

We will now introduce the semantics of IEL in a formal manner. As
discussed in the last chapter, we will use possible world semantics,
namely Kripke models to represent the semantics. We start by defining
Kripke models for IEL and IEL−.

Definition 4.13 A Kripke model for IEL− is a quadruple (W ,V ,≤,≤K

) consisting of

• a type of worldsW ,

• a valuation function V ∶ W →N → P which maps worlds and proposi-
tional variables to propositions,

• a cognition relation ≤∶ W →W → P, which can be any preorder onW ,

• a verification relation ≤K.

Additionally models have to fulfill the following constraints on the relations:

1. the valuation is monotone w.r.t ≤ i.e. if w ∈ W is an arbitrary world and
V(w, i) holds V(w′, i) must hold at any ≤-successor w′

2. the verification relation is contained in the cognition relation, i.e. w ≤K u
implies u ≤ v for every u, w ∈ W .

3. ≤ ○ ≤K ⊆ ≤K, that is if u ≤ v and v ≤K w then u ≤K w for every
u, v, w ∈ W .

In IEL models additionally there cannot be any blind worlds2 , formally 2 Blind worlds in this context are worlds
without any ≤K-successor∀w.∃u.w ≤K u.

The condition that no world in an IEL-model has an empty set of
≤K–successors will guarantee that K� will not be forced at any world.
Next we define the forcing relation ⊩ for semantic entailment. We use
the common notationM, w ⊩ A to denote that the formula A is forced
in a modelM at a world w. We sometimes leave the model implicit.

Definition 4.14 (Kripke forcing relation) Let M ∶= (W ,V ,≤,≤K)
be an IEL (or IEL-) model. We define the forcing relation by induction on the
formula:

M, w ⊩ pi ∶⇔ V(w, i)
M, w ⊩ A ∧ B ∶⇔M, w ⊩ A ∧M, w ⊩ B

M, w ⊩ A ⊃ B ∶⇔ ∀w′.w ≤ w′ →M, w ⊩ A →M, w ⊩ B

M, w ⊩ A ∨ B ∶⇔M, w ⊩ A ∨M, w ⊩ B

M, w ⊩ K A ∶⇔ ∀w′, w ≤K w′ →M, w ⊩ A

Definition 4.15 (Forcing with theories) Let T be a theory. We write
T ⊩ A to express that in any model and world where every formula of T is a
semantic consequence, A is too.

T ⊩ A ∶⇔ ∀M∀w.(∀B ∈ Γ.M⊩w B) ⇒M⊩w A

By identifying contexts with theories, we can use the same notation for
contexts.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#KripkeModel
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#evalK
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#entails
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Of course we now want to relate the deduction and the semantics. The
usual way to do this, is to prove both soundness and completeness.
Soundness establishes that any derivable formula is valid in all models
and completeness establishes the converse: if a formula is valid in all
models, it can be derived. We start by proving soundness. Inorder
to prove this we first need to show the monotonicity of forcing with
respect to the cognition relation.

Lemma 4.16 (Monotonicity of Kripke forcing) For every w and u,
w ⊩ A and w ≤ u imply u ⊩ A.

Proof. Straightforward induction on the formula.

With monotonicity we can establish soundness.

Lemma 4.17 (Soundness) Γ ⊢ A Ô⇒ Γ ⊩ A

Proof. The proof is by induction on Γ ⊢ A.

Case ndA: Assume Γ ⊢ A was derived using the assumption rule, thus
A ∈ Γ. We have to show Γ ⊩ A. So let w be an arbitrary world in
a modelM where every formula of Γ is a semantic consequence.
ThusM, w ⊩ A, since A ∈ Γ.

Case ndII: Assume Γ ⊢ A1 ⊃ A2 was derived using the implication
introduction rule. So let w be an arbitrary world in a model M
where every formula of Γ is a semantic consequence. We need to
show M, w ⊩ A1 ⊃ A2. Therefore let w′ be any ≤-successor of w
withM, w′ ⊩ A1. We need to showM, w′ ⊩ A2, for this we apply
the inductive hypothesis and need to show that every formula in
Γ, A1 is a semantic consequence at w′. For A1 this is our assumption,
for any formula in Γ we can use monotonicity and our assumption
that every formula of Γ is a semantic consequence at w.

Case CoRefl: Assume Γ ⊢ K A was derived using the co-reflection rule,
therefore we have Γ ⊧ A by the inductive hypothesis. We need to
show that A is a semantic consequence at any ≤K–successor. This
holds by monotonicity, since every ≤K-successor is a ≤-successor
too.

Note, that proving soundness for contexts will can be used to establish
soundness for theories.

Lemma 4.18 (Soundness for theories) T ⊢ A Ô⇒ T ⊩ A

Proof. Assume T ⊢ A. By definition of entailment in theories, there is
a context Γ s.t. Γ ⊢ A and Γ ⊆ T . By soundness for contexts, any model
in which all members of Γ are forced, forces A too. Since any model
forcing T must force Γ we are done.

4.4 Classical Completeness

In this section we will elaborate the classical strong completeness proof
for IEL and IEL- which uses a canonical model construction. Since the

https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#eval_monotone
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#ndSoundIELCtx
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#ndSoundIEL
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proof is classical, we use the law of excluded middle

∀pP.p ∨¬p (LEM)

multiple times, as it for reasoning classically e.g. it allows for proofs
by contradiction.3 3 ∀pP.¬¬p ⊃ p is equivalent to LEM.

4.4.1 Lindenbaum Extension

We will show that any set of formulas T (in the abstract possibly
infinite sense) can be extended into a set of formulas enjoying desirable
properties. We can then use those sets as worlds in the canonical model.
Let us first define the properties formally.

Definition 4.19 (Theory Properties) Let T be a theory. We call T

• prime, if for any A ∨ B ∈ T , either A ∈ T or B ∈ T

• deductively-closed, if any derivable formula is already contained i.e.
T ⊢ A Ô⇒ A ∈ T

• consistent if T ⊬ �

A theory with all three above properties is called saturated.

We can now state the Lindenbaum lemma.

Lemma 4.20 (Lindenbaum) Let T be a theory and A a formula such that
T ⊬ A. Then there is a saturated theory T ′ extending T and T ′ ⊬ A.

Proof. We will only sketch the proof here, a full formal proof of a
similar lemma will be given in the chapter on the constructive strong
quasi-completeness (Chapter 5) proof. The basic idea is to greedily ex-
tend the context T by any formula which does not cause the extension
to derive A. For this, we can use the enumeration of the formulas (e.g.
of the type F ) F1, F2, . . . ,. We construct a chain of theories T0,T1, . . . , by
setting

Tn ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T n = 0

Tn, Fn if Tn, Fn ⊬ A

Tn otherwise

Note, that while this looks like a classical definition (and arguably is
one), it can be represented as

Tn+1 ∶= λF.F ∈ Tn ∨ (Tn, Fn ⊬ A ∧ F = Fn)

without having to do an explicit case analysis using LEM (thus the
definition is constructive). We claim, that T∞ ∶= ⋃n∈N Tn is a theory
which has the desired properties.4 A crucial property of this chain 4 This union is represented as λx.∃n.Tn x.

is, that any derivation from the full union T∞ can be lowered to a
single level, to put it formally T∞ ⊢ B ⇐⇒ ∃n.Tn ⊢ B. By induction
it is possible to show that ∀i.Ti ⊬ A. This also implies consistency.
Both the theory and primeness property can be proven by deriving
a contradiction. To establish primeness we need to use LEM. So let
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B ∨C ∈ T∞. By LEM T∞ ⊢ B ∨ T∞ ⊬ B and T∞ ⊢ C ∨ T∞ ⊬ C. Doing a
case analysis, the cases where either B or C can be derived are easy
(using the theory property of T∞). If T∞ ⊬ B and T∞ ⊬ C it is possible
to show T∞ ⊢ B ⊃ A and T∞ ⊢ C ⊃ A. Now by disjunction elimination
T∞ ⊢ A holds which allows us to derive a contradiction.

4.4.2 Canonical Model

We can now prove completeness employing a canonical model con-
struction (as presented in Artemov & Protopopescu, 2016) . Canonical
models of a logic L are models which refute any non-theorem of a
logic. This can be used to prove the contrapositive of completeness
(and thus classically prove completeness) i.e. ⊬ A Ô⇒⊮ A, since the
canonical model and the respective world where the non-theorem A is
refuted are enough to show that A is not a semantic consequence in
every model and every world.

The worlds in the canonical model will be built from saturated
theories. An important property is the truth lemma: Membership in
the saturated theories which are worlds in the canonical model and
semantic entailment agree.

Let us first define the canonical model. In this section we will abuse
notation and use greek letters for theories too.

Definition 4.21 (Canonical Model) The canonical model for IEL is
defined asMC = (WC,VC,≺,≺K) with

• the type of all saturated theoriesWC,

• Γ ≺ Ω ∶⇔ Γ ⊆ Ω

• Γ ≺K Ω ∶⇔ ΓK ⊆ Ω, here ΓK denotes the downward K-projection i.e.
ΓK ∶= {A ∣ K A ∈ Γ}.

• the valuation relation defined by V(pi, Γ) ∶= pi ∈ Γ.

In a similar fashion the canonical modelM−

C = (W−

C ,V−C ≺−,≺−K) for IEL−

can be defined. W−

C is the type of all saturated IEL− theories.

The main difference between the canonical model for IEL and IEL− is
that the underlying notion of theories changes, since the ND-system is
different. For example ¬K� is a theorem at any canonical IEL world,
but there is a world in the canonical model for IEL− where it will not be
a semantic consequence. Let us now show, that the constructed models
satisfy all the constraints on models. For proving that the canonical
model for IEL is a model we need an additional lemma, which we call
the modal shift lemma.

Lemma 4.22 (Modal Shift Lemma) ΓK ⊢ A Ô⇒ Γ ⊢ K A.

Proof. Assume ΓK ⊢ A thus there are assumptions A1, . . . , Am s.t.
{A1, . . . , An} ⊢ A. By K-necessitation and some modal reasoning
K A1 ∧ K A2 ∧ ⋅ ⋅ ⋅ ∧ K Am ⊢ K�. Since K A1, . . . ,K Am ∈ Γ, we obtain
Γ ⊢ K A.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#canonical
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Lemma 4.23 The canonical models are models for IEL, IEL−.

Proof. We only prove the IEL-version, since it is a generalization of
the IEL− version. It is trivial to see that ≺ is a preorder (it inherits this
property due to the fact that ⊆ is a preorder). Let us now check that
Γ ≺K Ω Ô⇒ Γ ≺ Ω. So assume Γ1 ⊆ Ω and let A ∈ Γ be arbitrary. Since
the worlds in the canonical model are deductively-closed and A ⊃ K A
is valid in both IEL− and IEL, K A ∈ Γ. From the assumption Γ ≺K Ω
we now obtain A ∈ Ω.

Secondly, we need to check that Γ
(i)
≺ Ω

(ii)
≺K Θ implies that Γ ≺K Ω.

So let K A ∈ Γ be arbitrary, by (i) we know K A ∈ Ω and by (ii) we
obtain A ∈ Θ, thus Γ ≺K Θ.

Last we need to check, that in the canonical model for IEL no worlds
are without a ≤K-successor. We claim that ΓK can be Lindenbaum-
extended to a consistent prime theory, thus every world has a K-
successor in the canonical IEL-model. For this we only need to show,
that at any world Γ it is the case that ΓK ⊬ �. Since Γ is a consistent IEL
world, Γ ⊬ K� (this is one of the possible intuitionistic truth conditions,
Lemma 4.9) , now by the modal shift lemma, ΓK ⊬ � thus we can use
the Lindenbaum lemma to extend it to a world in the model, which
obviously is a ≺K-successor.

We can now prove the truth lemma, establishing the connection be-
tween membership in saturated theories and forcing in the respective
worlds of the canonical model, again we only prove the IEL-version,
but the proof for IEL− is the same.

Lemma 4.24 (Truth lemma) For any world Γ ∈ WC and formula A

Γ ⊩ A ⇐⇒ A ∈ Γ.

Proof. The proof is by induction on A. We only prove selected cases
here.

Case pi: Assume Γ ⊩ pi by definition of ⊩ this is the case if and only if
V(w, i). But that is the case if and only if pi ∈ Γ.

Case K A: For the only-if direction assume K A ∈ Γ, thus for any Ω
with Γ ≺K Ω we have A ∈ Ω. Applying the inductive hypothesis
yields Ω ⊩ A. Since this is true for any ≺K-successor we have
proven Γ ⊩ K A. For the other direction, assume (by contraposition)
K A ∉ Γ but Γ ⊢ K A. By the modal shift lemma ΓK ⊬ A ,thus by the
Lindenbaum lemma, it can be extended to a saturated theory (thus
a world in the model) which does not derive A. But this world is a
≺K-successor to Γ but does not force A - a contradiction.

Case A ∨ B: Assume Γ ⊩ A ∨ B, thus Γ ⊩ A ∨ Γ ⊩ B (by the definition
of ⊩). Applying the inductive hypothesis we obtain Γ ⊢ A ∨ Γ ⊢ B.
Now by using disjunction introduction and the fact that Γ is a theory,
A ∨ B ∈ Γ can be proven.

For the converse assume A ∨ B ∈ Γ. Since Γ is prime either A ∈ Γ or
B ∈ Γ. Assume w.l.o.g. A ∈ Γ, by the inductive hypothesis Γ ⊩ A but
that suffices to prove Γ ⊩ A ∨ B.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#canonicalIEL
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#truth_lemma
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Theorem 4.25 (Strong completeness) T ⊩ A Ô⇒ T ⊢ A

Proof. We prove the contraposition. Therefore assume T ⊬ A. By
the Lindenbaum lemma the theory T can be extended to a saturated
theory T ′ s.t. T ′ ⊬ A. But now by the truth lemmaMC,T ′ ⊮ A - a
contradiction.

The presented strong completeness proof used classical principles at
multiple steps, namely once in the Lindenbaum lemma, multiple times
in the truth lemma (contraposition was used) and one-top contrapo-
sition. In the next chapter we will show how some of these can be
weakened.

4.5 Further Results

In the following section we take a look at some selected results which
use the results we just proved. While the reflection rule is not derivable
in IEL (and if it was derivable, it would collapse knowledge and truth),
we can show it admissible. Apart from the reduction between IEL and
IEL− derivability, all of these results have already been presented by
Artemov and Protopopescu.

Lemma 4.26 (Admissibility of reflection) The reflection rule is ad-
misssible, i.e. ⊢ K A implies ⊢ A.

Proof. We prove the contraposition, thus it suffices to construct a
countermodel to K A from a countermodel for A. So assume (M ∶=
(W ,V ,≤,≤K) is a countermodel to A i.e. there is a world wA ∈ W s.t.
M, wA ⊮ A. We construct a new model by adding an additional world,
with a single K-successor wA. At that world K A is not a semantic
consequence.

We can now show that IEL has the disjunction property.

Lemma 4.27 (Disjunction Property) ⊢ A ∨ B Ô⇒ (⊢ A) ∨ (⊢ B)

Proof. We show the contrapositive. Therefore assume ¬(⊢ A∨ ⊢ B).
Now classically ⊬ A and ⊬ B. By strong completeness a modelsMA =
(WA,VA,≤A,≤K,A) andMB = (WB,VB,≤B,≤K,B) and worlds wa ∈ WA

and wB ∈ WB exist s.t.MA, wA ⊮ A andMB, wB ⊮ B.
We assume that the worlds are disjoint and let w be a world not

contained in either model. We create a new model by adding w as a
new world. Formally we construct a modelM ∶= (WA ∪WB ∪ {w},V ,≤
,≤K) where V agrees with VA and VB on the respective worlds and
V(pi, w) ∶= �. Similarly the cognition and verification relation are the
union of the models’ relations and additionally w ≤ w′ and w ≤K for
any world w′. Now ifM, w ⊩ A∨B, by definition of⊩ eitherM, w ⊧ A
orM, w ⊩ B. Both cases give rise to a contradiction.

However IEL does not enjoy the disjunction property for verifica-
tions.

Lemma 4.28 The rule K (A ∨ B) ⊃ K A ∨KB is not admissible.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#StrongCompletenessIEL
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#reflectionAdmissibleIEL
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#disjunctionPropertyIEL
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¬A

Figure 4.5.1: Countermodel to
K (A ∨ B) ⊃ K A ∨K B

Proof. Consider the following IEL model.
Obviously w ⊩ K (A ∨¬A) but neither w ⊩ K A nor w ⊩ K¬A

hold.

Despite Lemma 4.28 IEL and IEL− both have a weak disjunction
property for verifications:

Lemma 4.29 If ⊢ K (A ∨ B) then ⊢ K A or ⊢ KB.

Proof. If ⊢ K (A ∨ B). By admissibility of reflection we have ⊢ A ∨ B.
With the disjunction property we have ⊢ A or ⊢ P. With co-reflection
we have ⊢ K A or ⊢ KB as desired.

One interesting result we can show is that derivability in IEL can be
reduced to derivability in IEL−. This is because one of the possible
ways to express the truth condition is ¬K�. Thus by adding this as an
assumption to the context IEL− can simulate IEL-derivations.

Lemma 4.30 If T ⊢ A in IEL we can derive ¬K�,T ⊢ A in IEL−.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsClassicalCompleteness.html#disjunctionK
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#ielmReducesIEL_theories


5
Towards Constructive Completeness

In this chapter we first investigate how to improve on the classical
completeness proof presented in the Chapter 4. Our strategy is to
first refine the Lindenbaum construction by constructivizing it and
secondly use slightly modified Kripke semantics. Using these we can
then proof strong quasi-completeness, that is double negated strong
completeness, constructively. Using decidability, which we will prove
in chapter 6, we can even obtain a constructive proof of completeness.

5.1 Constructive Lindenbaum

We first establish a constructive variant of the Lindenbaum lemma.
Most of the properties of a saturated theory can be established construc-
tively, however we need to modify the primeness property. For this
we introduce the notion of quasi-primeness, which is simply doubly-
negated primeness. This is since we only needed classical reasoning
when proving the primeness in the classical Lindenbaum construction.
Now using quasi-primeness, we can circumvent using full excluded
middle.

Definition 5.1 (Quasi-primeness) Let T be a theory. It is quasi-prime
if and only if

∀AFBF . A ∨ B ∈ T Ô⇒ ¬¬(A ∈ T ∨ B ∈ T ).

In this section we will present a proof in more detail than in the first
chapter. We start by defining a general theory extension. Throughout
this section we will fix a theory T and a formula A� which is not
derivable from T (i.e. T ⊬ A�), which we will extend into a consistent
quasi-prime theory.

Definition 5.2 (Theory extension) Let T be a theory. We define the
extension T ⊕ B as

T ⊕ B ∶= λF. F ∈ T ∨ (T , F ⊬ A ∧ F = B).

That is just like in the preceding chapter we add a formula if and only
if adding it does not cause the extension to derive A�.

We again define a chain of theories T0, T1, . . . where just as before

https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#insert_form
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we set

T0 ∶= T
Ti+1 ∶= Tn ⊕ Fi.

We define the infinite union T∞ ∶= λF.∃n. F ∈ Tn.

Lemma 5.3 (Theory extension) For any theory T and formula B the
theory T is fully contained in the extension: T ⊆ T ⊕ B.

Proof. Let C be an arbitrary formula, we assume C ∈ T and have to
show C ∈ T ⊕ B which is just C ∈ T ∨ (B = C ∧ B,T ⊬ A�). But this is
easy since our assumption is the left disjunct.

With this we can prove some subset properties for the complete chain.

Lemma 5.4 (Chain subset properties) We can prove the following
subset properties for the chain:

1. T ⊆ Ti for all i

2. Ti ⊆ Tj for all i < j

3. Ti ⊆ T∞ for all i.

Proof. All of these are easily obtained from a subset property for theory
extension, Lemma 5.3. (i) can be established using induction on i, (ii)
by induction on i < j and (iii) by instantiating the existential with i.

Before we can establish that the extension does not derive A�, we first
prove a chain-compactness result.

Lemma 5.5 (Chain compactness) For any formula F, a derivation in
T∞ can be lowered to a concrete chain-level, i.e.

∀F.T∞ ⊢ F ⇐⇒ ∃n.Tn ⊢ F.

Proof. The right-to-left direction is easily obtained using weakening
and the chain subset properties (Lemma 5.4).

For the other direction suppose T∞ ⊢ F. Thus there is a list L with
formulas taken from T∞ s.t. L ⊢ F. Now we need to show that there
is a level i in the theory chain at which F can be derived. We show
this using weakening with a specific theory level, thus we need to
prove L ⊆ Ti for a fixed i. We have F ∈ L Ô⇒ ∃n.F ∈ Tn, we can
extract the level for every item and compute their maximum m. Using
the subset-properties every formula is contained in the Tm and thus
Tm ⊢ F.

We now show that the extension does not derive A� (provided T ⊬
A�).

Lemma 5.6 T∞ ⊬ A�

Proof. By the last lemma, it suffices to show ∀n.Tn ⊬ A�. We prove
this by induction on n.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#insert_form_subset
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#maxn_chain
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https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#does_not_derive


INTUITIONSITIC EPISTEMIC LOGIC IN COQ 33

Case 0: Since T0 = T , this is our assumption.

Case n + 1: By the inductive hypothesis we know that Tn ⊬ A�. We
need to show Tn+1 ⊬ A�. For deriving a contradiction, assume
Tn+1 ⊢ A�. If we can show that Tn+1 is extensionally equivalent
with Tn, we are done, since then we have both Tn ⊢ A� and Tn ⊬ A�

as hypotheses allowing us to derive a contradiction.

To show, Tn+1 ≡ Tn, we only consider the ⊆-direction, since the
other one is easily obtained from the closure properties. Informally
this is simple to show, since the theory is only extended, if its
extension does not derive A�, but we have already assumed that
Tn ⊬ A� by the inductive hypothesis. Formally let A ∈ Tn+1 thus
either A ∈ Tn (so we are done) or A = Fi and Ti, Fi ⊬ A�. We do a
proof of contradiction and thus must proof Ti, Fi ⊢ A�, we can use
weakening with Ti+1 next, which we have as an assumption.

We will now show that T∞ is deductively closed.

Lemma 5.7 If T∞ ⊢ B then B ∈ T∞

Proof. Assume T∞ ⊢ B. Of course it suffices to show, that there is a n
s.t. B ∈ Tn (because of the subset-properties, lemma 5.4). There is an
index i s.t. Fi = B because the enumeration is surjective. We will show,
that B ∈ Ti+1.1 1 Recall, that the i-th formula in the enu-

meration is inserted into Ti+1.Using the definition of Ti+1 we either have to show B ∈ Ti or Fi =
B ∧ Ti, B ⊬ A�. We choose to prove the right disjunct. Since that is
a conjunction, we need to prove both conjuncts, since the first is an
assumption, we only need to prove that second, i.e. Ti, B ⊬ A�. We
will derive a contraction by assuming Ti, B ⊢ A� and proving T∞ ⊢ A�,
contradicting lemma 5.6. We use the implication introduction rule
with B and need to prove both T∞ ⊢ B ⊃ A� and T∞ ⊢ B. The second is
easy, since we have T∞ ⊢ B as an assumption. For the first, we can use
implication agreement (which in this case is just the elimination rule
for implication) and need to prove T∞, B ⊢ A�, which we can obtain
from our assumption Tn, B ⊢ A� by weakening.

Last we will show the quasi primeness. We will now show, why we
can reason classically when proving negated goals.

Lemma 5.8 (Prime LEM) For any fixed proposition p, ¬¬(p ∨¬p).

Proof. Let p be arbitrary and assume ¬(p ∨¬p). We construct a proof
of falsity by using our hypothesis and choosing to prove the right
disjunct. Now we have to prove � with p as an additional assumption.
But by using ¬(p ∨¬p) once more, we again have to prove p ∨¬p, but
this time we choose to prove the left disjunct, since we have a proof of
p as an assumption.

Informally speaking this lemma will allow us to reason classically
(but only finitely often, i.e. we cannot use the law of excluded middle
infinitely often) whenever the goal is negated. This can be captured in
the following lemma:

https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#maxIsTheory
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Lemma 5.9 For any p and q

((q ∨¬q) → ¬p) → ¬p

Proof. Assume (q∨¬q) → ¬p and p. We have to derive a contradiction,
by Lemma 5.8 it suffices to prove ¬(q ∨¬q). Thus we have q ∨¬q as an
additional assumption and still need to derive a contradiction. Now
we can deduce ¬p using q ∨ ¬q. But then we have both ¬p and p as
assumptions yielding the desired contradiction.

Lemma 5.10 If T∞ ⊬ B then ¬¬T∞ ⊢ B ⊃ A.

Proof. Assume T∞ ⊬ B. We know that B is contained in the enumera-
tion , there is an i s.t. Fi = B. We can locally decide B ∈ Ti+1 ∨ B ∉ Ti+1.
In the first case we can derive a contradiction from T∞ ⊬ B using
weakening and the assumption rule.

The second case is more involved. We need to proof B ∈ Ti+1. We
prove the right disjunct i.e. B = Fi ∧ Ti, B ⊬ A. As always, the first dis-
junct is our assumption. For the second disjunct we can first introduce
it and use implication agreement to obtain a proof of Ti ⊢ B ⊃ A and
need to prove �. We can apply our assumption T∞ ⊬ B ⊃ A, thus we
need to prove T∞ ⊢ B. Now using weakening, we can use Ti ⊢ B ⊃ A
to complete the proof.

Lemma 5.11 (Quasi-primeness) T∞ is quasi-prime.

Proof. Since our goal is a double negated, we can do a single intro and
obtain ¬(T∞ ⊢ B ∨C Ô⇒ T∞ ⊢ B ∨ T∞ ⊢ C) as an assumption. Since
our goal is falsity, we can reason classically to decide B ∈ T∞ ∨ B ∉ T∞
and C ∈ T∞ ∨C ∉ T∞. Just as in the classical case, the cases where one of
the formulas are derived are simple. Now assume B ∉ T∞ and C ∉ T∞.
We can assert ¬¬T∞ ⊢ A� by removing the double-negations and then
using disjunction elimination and lemma 5.10. But this contradicts
T∞ ⊬ A�.

As a result we obtain the constructive version of the Lindenbaum
lemma.

Lemma 5.12 (Constructive Lindenbaum) Any theory T which does
not derive A can be extended into a consistent, quasi-prime, deductively-
closed theory which does not derive A.

Proof. An immediate consequence of above lemmata.

5.2 Modal shifting lemma

The modal shifting lemma,showing that if ΓK ⊢ A then Γ ⊢ K A was
not really proven in the last chapter, the proof was informal - this
section provides a more formal proof - however it is not essential for
understanding the modified completeness proof.

We begin by defining a shift function, shifting a list of formulas into
an implication chain.
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Definition 5.13 (Shifting) Define shift ∶ L(F) → F → F by

shift∅A ∶= A

shift B, Γ A ∶= B ⊃ (shift Γ A)

We will use the notation Γ ↝ A for shift Γ A. Note, that there are
different possibilities for the order when shifting.

We will prove some lemmas about shifting, which in the end will
be used to prove the modal shifting lemma.

Lemma 5.14 (Partial Shifting) If Γ1, Γ2 ⊢ A then Γ2 ⊢ Γ1 ↝ A.

Proof. Induction on Γ2 with A and Γ1 quantified.

Next we can prove one lemma about shifting and applying K to a list
of formulas. We will write KΓ to denote the list obtained by applying
K to every element in the list Γ (formally KΓ ∶= mapKΓ).

Lemma 5.15 If Γ1 ⊢ K (Γ2 ↝ A) then Γ1 ⊢ (KΓ2) ↝ K A

Proof. Induction on Γ2 with Γ1 quantified.

Now we can prove the modal shifting lemma.

Lemma 5.16 (Modal shifting lemma) If TK ⊢ A then T ⊢ K A.

Proof. From the assumption TK ⊢ A we know that there is a context
Γ s.t. Γ ⊢ A. We will use KΓ to instantiate the existential i.e. we have
to prove KΓ ⊢ K A (and also that every element of KΓ is an element
of T , which is easy). We can use the identity KΓ = KΓ ++ [] and can
now use lemma 5.14 and need to prove ⊢ (KΓ) ↝ K A. Now we use
lemma 5.15 and need to prove ⊢ K (l ↝ K A). Again we unshift and
need to prove l ⊢ K A, which by co-reflection reduces to l ⊢ A which is
our assumption.

One result, we will later need when showing rules of the sequent
calculus admissible is the following rule:

Lemma 5.17 If Γ, ∆,K∆ ⊢ K A then Γ,K (∆) ⊢ A.

Proof. We first duplicate the K∆ part using weakening and then shift
one instance of K∆ to the right. Using Lemma 5.15 we now need to
show Γ,K∆ ⊢ K(∆ ↝ A). We can use the co-reflection rule and un-shift
and thus need to prove Γ, ∆,K∆ ⊢ A, which is our assumption.

5.3 Kripke completeness

We will now showcase the modifications required to the canonical
model construction. We start by introducing the modified kripke
semantics.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#shift
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#partialShift
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#kIfys2
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#modalShiftingLemma
https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#ndKKrupski


INTUITIONSITIC EPISTEMIC LOGIC IN COQ 36

Definition 5.18 (Modified semantics) LetM= (W ,V ,≤,≤K) be an
IEL or IEL−-model. We define the modified entailment relation ⊩′ by induc-
tion on the formula.

M, w ⊩′ pi ∶⇔ ¬¬V(w, i)
M, w ⊩′ A ∧ B ∶⇔M, w ⊩′ A ∧M, w ⊩′ B

M, w ⊩′ A ⊃ B ∶⇔ ∀w′.w ≤ w′ →M, w ⊩′ A →M, w ⊩ B

M, w ⊩′ A ∨ B ∶⇔ ¬¬(M, w ⊩′ A ∨M, w ⊩′ B)
M, w ⊩′ K A ∶⇔ ∀w′, w ≤K w′ →M, w ⊩′ A

When comparing the modified semantics with the unmodified one,
the only differences are in the cases for disjunction and propositional
variables.

The main modification we make is, that the worlds in the canonical
models will be quasi-prime consistent deductively-closed theories.

Lemma 5.19 (Monotonicity) The modified forcing relation⊩′ is mono-
tone w.r.t ≤.

Proof. We consider the propositional variable and disjunction case.

Case A1 ∨ A2: We have w1 ⊩′ A1 → w2 ⊩′ A2 and w1 ⊩′ A2 → w2 ⊩ A2

as inductive hypotheses. We know w1 ⊩′ A1 ∨ A2 and need to show
w2 ⊩′ A1 ∨ A2 which is the same as ¬¬(w2 ⊧′ A1 ∨w2 ⊧′ A2). Since
the goal is negated we can reason classically and thus strip-off the
double negations of ¬¬(w1 ⊩′ A1 ∨w1 ⊩′ A2). This leaves us with
¬(w2 ⊩′ A1 ∨w2 ⊩′ A2) as an additional assumption and we still
need to derive a contradiction. Using the inductive hypotheses we
can obtain a proof of w2 ⊩′ A1 ∨w2 ⊩′ A2 which suffices to complete
the proof.

Case pi: We have ¬¬V(w1, pi) and ¬V(w2, pi) as assumptions and
need to derive a contradiction. Reasoning classically we can elimi-
nate the double-negation. Using the monotonicity of Kripke-models
w.r.t the valuation, we obtain V(w2, pi) which contradicts our as-
sumption.

We will now present the proof of the modified truth lemma.

Lemma 5.20 (Truth lemma) For all worlds (which are theories) T in
the canonical model, T ⊩′ A if and only if ¬¬A ∈ T .

Proof. As in the classical case the proof is by induction on A.

Case pi: Since T ⊩′ pi ∶= ¬¬V(T , pi), which in the canonical model is
equivalent to ¬¬pi ∈ T , the proof is elementary (i.e. the terms are
computationally equal).

Case A1 ∨ A2: For the if-direction assume T ⊩′ A1 ∨ A2. Let us first
assume T ⊩′ A0 ∨ A1, thus we have a proof of ¬¬(T ⊩′ A0 ∨ T ⊩′
A1) and need to show ¬¬(A0 ∨A1 ∈ T ). So we can assume A0 ∨A1 ∉
T and need to produce a proof of contradiction. Since we have to
prove falsity, we can strip the double negation in the assumption
and thus obtain a proof T ⊩′ A0 ∨T ⊩′ A1. We do a case distinction
on this.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsConstructiveCompletenesss.html#evalK
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsConstructiveCompletenesss.html#eval_monotone
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsConstructiveCompletenesss.html#truth_lemma
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• If T ⊩′ A0, we can conclude ¬A0 ∉ T by the inductive hypothesis.
Since we still need to derive a contradiction, we can strip this
double negation and have A0 ∈ T as an assumption. To finally
derive the contraction we can now show A0 ∨ A1 ∈ T . Since
A0 ∈ T , we know that T ⊢ A0 (this is the theory property of
Lindenbaum-extensions). But then it is easy to show T ⊢ A0 ∨A1,
using the left introduction rule for disjunction. Again using the
theory property we have a proof of A0 ∨ A1 ∈ T contradicting
our assumption.

• This case is similar to the one before, the only difference is that
we use the right-rule for disjunction.

For the other direction, assume ¬¬(A1 ∨ A2 ∈ T ) and we need
to prove ¬¬(T ⊩′ A1 ∨ T ⊩′ A2). Thus we can assume ¬(T ⊩′
A1 ∨ T ⊩′ A2) and need to derive a contradiction. Since we need
to prove a contraction, we can strip the double negation in our
assumption and thus can assume A1 ∨ A2 ∈ T . We can also strip the
double-negation off the quasi-primeness property for A1 ∨ A2, thus
we know that T ⊢ A1 ∨ A2 ⊃ T ⊢ A1 ∨ T ⊢ A2. Thus we either have
T ⊢ A1 or T ⊢ A2. In both cases, we can derive the contradiction
from our assumption that ¬(T ⊩′ A1 ∨ T ⊩′ A2) and the inductive
hypothesis.

Instead of proving strong completeness, we can now prove strong
quasi-completeness constructively.

Lemma 5.21 (Strong quasi-completeness) If T ⊩ A then ¬¬T ⊢
A.

With decidability we will later obtain completeness. While we were
able to prove strong quasi-completeness constructively we can only
soundness using the law of excluded middle.

Lemma 5.22 (Soundness using LEM) If T ⊢ A then T ⊩′ A.

Proof. The proof is analogous to the proof for the usual semantics.
However we need to use the law of excluded middle for the case of
the disjunction elimination rule.

One important thing to note is that we really need the full law of
excluded middle here; we cannot show prime-soundness for the modi-
fied semantics.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsConstructiveCompletenesss.html#StrongQuasiCompleteness
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsConstructiveCompletenesss.html#ndSoundIEL


6
Basic proof theory of IEL

The main result we will prove in this chapter is the decidability of
IEL (and IEL−). The fact that IEL is decidable is not a new result. It
has already been established by Wolter and Zakharyaschev (1999),
who prove, among other results, a class of intuitionistic modal logics
decidable, one of which happens to be IEL.1 Furthermore, PSPACE- 1 Of course, IEL with its philosophical

motivation was not considered there.
They obtain these results using filtra-
tion methods, which are usually non-
constructive.

completeness and thus also decidability was established for IEL (and
IEL−) by Krupski and Yatmanov (2016). In this chapter, we develop a
mechanized decidability procedure for IEL basing on this work, how-
ever we will only obtain decidability but not PSPACE-completeness as
a result.2 2 The complexity of our algorithm is ex-

ponential, see the further work section
for more on this.

We will not be able to do a proof search in the natural deduction
system. Informally speaking, this is due to having too many degrees
of freedom when choosing which rule to apply next. Especially in-
teresting is the case of the implication elimination rule (or modus
ponens):

Γ ⊢ B ⊃ A B, Γ ⊢ A
Γ ⊢ A

The main problem with this rule is that it is in some sense universally
applicable: In theory it can be applied anywhere in any derivation
and the choice of formula B is completely arbitrary. If we want to
do some kind of backwards proof search, this is bad, since we might
need to try every possible value of B. Thus, instead of doing a proof
search in the natural deduction system, we will use a sequent calculus
without the cut-rule (the cut-rule roughly corresponds to implication
elimination or modus ponens). Additionally, the sequent calculus
representation has the subformula property. This means that any
derivation of Γ ⇒ A will only consist of subformulas of formulas in
Γ, A. Fulfilling this property will guarantee the termination of the
proof search. The natural deduction implication elimination rule does
not fulfill the subformula property, since the formula B need not be
a subformula of Γ, A. Thus our decidability proof has two steps: We
first need to show that both systems agree, in the sense that Γ ⇒ A
if and only if Γ ⊢ A. The second step is then to design a terminating
proof search for the sequent calculus.

While we do not need to include the cut-rule in the sequent calculus
to simulate the natural deduction rules, including modus ponens, we
will still need to show it admissible:
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Γ⇒ B B, Γ⇒ A
CUTΓ⇒ A

If we had this rule in our sequent calculus , and would not just show it
admissible, the sequent calculus would no longer have the subformula
property. Sequent calculi were invented by Gentzen (1935a, 1935b) in
his study of natural deduction.

Methodology For IEL (and IEL−), cut-elimination was proven in Krup-
ski and Yatmanov (2016). Their sequent calculus is an extension of
the well-known sequent calculus G3I from the standard textbook by
Troelstra and Schwichtenberg (2000). Krupski and Yatmanov extend
the G3I calculus with two rules, one covering the K-introduction and
distribution rules, and another rule equivalent to the intuitionistic
reflection rule. Omitting the last rule, one obtains a sequent calculus
for IEL−.

We use these new rules and combine them with a sequent calculus
introduced by Smolka and Brown (2012) and later extended to all stan-
dard connectives by Dang (2015) to obtain a cut-free sequent calculus
which is well-suited for mechanization in the Coq proof assistant. This
calculus is a variaton of the GKi-calculus from Troelstra and Schwicht-
enberg (2000). 3 The main difference between the calculi by Dang; 3 Troelstra and Schwichtenberg attribute

this calculus to Kleene (1952), thus the
name GKi.

Smolka and Brown and the GKI calculus is that the former uses mem-
bership prominently. Before coming to this final formulation, we also
considered directly using the calculus from Krupski and Yatmanov
(2016) with a permutation based embedding. While we were able to
prove the results this way, there was a heavy mechanization overhead
and less automation could be used. We will compare some approaches
in Section 6.6. Throughout this chapter we will often do proofs by
inductions on derivations, we will only prove selected cases in detail
here, however all cases have been mechanized and checked in Coq.
As in the preceeding chapters theorems are linked to their respective
Coq formulization.

The layout of this chapter is as follows: We first introduce the
sequent calculus we will use and prove some structural results (i.e.
weakening and admissibility of inversion rules). Next, we detail the
proof of cut-elimination, which relies on the results proven before. We
can then prove the equivalence of the sequent calculus and the natural
deduction system. Last, we prove decidability of the sequent calculus
using a finite closure iteration. Thus we obtain the decidability of
IEL and IEL−. Afterwards, we take a look at a case-study extending
the cut-elimination and decidability proofs to a classical modal logic,
namely logic K. We close this chapter by comparing our approach with
other possible approaches.

6.1 Sequent representation for IEL

The sequent calculus for IEL and IEL− is represented as an inductive
predicate⇒∶ L(F) → F → P, the rules are given in Figure 6.1.1. What
makes this calculus well-suited for mechanization is its heavy use
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of membership, which is easier to reason about in a proof assistant.
Another distinctive property is that all rules are cumulative, since the
antecedents of all premises only extend the context of the derived
sequents.

pi ∈ Γ

Γ⇒ pi
(V)

� ∈ Γ

Γ⇒ S
(F)

F, Γ⇒ G

Γ⇒ F ⊃ G
(IR)

F ⊃ G ∈ Γ Γ⇒ F

Γ⇒ G
(IL)

F ∧G ∈ Γ F, G, Γ⇒ H

Γ⇒ H
(AR)

Γ⇒ F Γ⇒ G

Γ⇒ F ∧G
(AL)

F ∨G ∈ Γ F, Γ⇒ H G, Γ⇒ H

Γ⇒ H
(OL)

Γ⇒ Fi

Γ⇒ F1 ∨ F2
(ARi)

Γ,K−(Γ) ⇒ F

Γ⇒ K F
(KI)

Γ⇒ K�
Γ⇒ A

(KF)

Figure 6.1.1: Sequent system for IEL
(IELD)

By Γ
n⇒ A we denote, that A can be derived from the multiset Γ

using n steps or less; we encode this as an inductive predicate too.
Our height-encoding is the same as the one used by Michaelis and
Nipkow (2017); that is, we always assume that the subderivations’
heights are equal. Once we include an additional rule to increase any
derivations height by one, the resulting system is equivalent to the
one obtained by taking the maximum height over the subderivations’
heights increased by one as the height of a derivation. Let us consider
the left introduction rule for conjunction. Using a minimum maximum
encoding for height, one would have the following rule in the calculus:

Γ
h1⇒ F Γ

h2⇒ G

Γ
max(h1,h2)+1

⇒ F ∧G

We encode it in the following way:

Γ
h⇒ F Γ

h⇒ G

Γ
h+1⇒ F ∧G

We can now prove an obvious correspondence result between the
system with and without heights.

Lemma 6.1 (Characterization of the height system) Γ⇒ A if and
only if there exists an n such that Γ

n⇒ A.

Proof. Both cases are proven by induction on the derivation.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#genh_iff_gen
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Note that strictly speaking, the intuitionistic reflection rule (KF) in the
sequent calculus does not fulfill the subformula property, since K�
need not be a subformula of A, Γ.4 However, for our proof search it 4 Su and Sano (2019) present a sequent

calculus for IEL with the subformula
property. This is achieved by allowing
empty sets of formulas in the succedent,
thus it would be harder to mechanize.

will suffice to bound the set of possible antecedents in a derivation
which is still possible.

Lemma 6.2 The sequent calculus for IEL (and IEL−)5 has the (pseudo)- 5 Since the calculus for IEL excludes the
KF-rule, this statement could be stronger:
It enjoys the subformula property.

subformula property. That is, in any derivation Γ⇒ A only subformulas of
formulas contained in K�, A, Γ occur.

Let us now start proving some technical results. We will start by
proving depth-preserving weakening.

Lemma 6.3 (Weakening) If Γ ⊆ Ω and Γ
n⇒ A then Ω

n⇒ A.

Proof. Many cases in this proof are elementary, this is due to the use of
only membership and subderivations in the formulation. Since A ∈ Γ
and Γ ⊆ Ω, all of those cases are pretty easy. We will take a look at
the variable (V) , left rule for conjunction (AL) and K-introduction (KI)
cases now.

Case V: Assume pi ∈ Γ and Γ ⊆ Ω. We need to prove Ω
0⇒ pi. We can

apply the V rule and now only need to show pi ∈ Ω, which we can,
since Γ ⊆ Ω.

Case AL: Assume Γ
n⇒ A was derived using the AL-rule, thus B1 ∧

B2 ∈ Γ and we have a derivation B1, B2, Γ
n−1⇒ A. We construct the

following derivation:

B1 ∧ B2 ∈ Ω

B1, B2, Γ
n−1⇒ A

weak. (I.H.)
B1, B2, Ω

n−1⇒ A
AL

Ω
n⇒ A

Case KI: We essentially use, that Γ,K−(Γ) ⊆ Ω,K−(Ω) since Γ ⊆ Ω.
Then the case is solved, just like the other cases.

Readers familiar with the structural cut-elimination proof in text-
books like Troelstra and Schwichtenberg (2000) might expect us to
next prove a contraction result. However, our weakening property is
stronger than textbook weakening and already absorbs the contraction
property. Most textbooks prove

Γ⇒ A → B, Γ⇒ A

as the weakening property, but our property is stronger. To see this,
consider {A, A, A} and {A}. Using textbook weakening one can not
obtain a proof of {A} n⇒ B from {A, A, A} n⇒ B, while this is possible
using our weakening result. The textbook weakening does not allow
to contract double occurrences of formulas, while our version using
inclusion allows for this. Proving this stronger property directly is
only possible due to the membership based representation.

We additionally need to prove inversion results, allowing us to
invert some rules of the calculus.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#genhW
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Lemma 6.4 (Inversion results) The rules for conjunction, disjunction
and implication are height-preservingly invertible in the following sense:

• A ∈ Γ → A ⊃ B, Γ
n⇒ C → Γ

n⇒ C

• A ∈ Γ → A ∨ B, Γ⇒ C → Γ
n⇒ C

• B ∈ Γ → A ∨ B, Γ⇒ C → Γ
n⇒ C

• A ∈ Γ → B ∈ Γ → A ∧ B, Γ
n⇒ C → Γ⇒ C

Proof. The proofs are by induction on the height with the formulas
quantified (just as in Troelstra and Schwichtenberg (2000))6. Most 6 Indrzejczak (2021) attribute this

method (e.g. induction on the height)
of proving inversion results to Schütte
(1977). Interestingly, Michaelis and
Nipkow (2017) prove these results
by induction on the derivation in
Isabelle/Hol, however in Coq we had
no success with inductions on the
derivation here.

cases are solved by applying the rule used to obtain the derivation and
using the inductive hypothesis afterwards. Only when the rule we are
showing invertible is used on the same formulas (e.g. same A and B),
it suffices to use the inductive hypothesis directly.

Before coming to the main proof of this section, the cut-elimination
proof, we can prove the disjunction property for the sequent-calculus.

Lemma 6.5 (SC Disjunction property) If ⇒ A ∨ B then⇒ A or⇒
B.

Proof. The proof is by induction on the derivation⇒ A ∨ B.

6.2 Cut-Elimination proof

The general idea of the cut-elimination proof we present here follows
textbooks proofs (e.g. Troelstra and Schwichtenberg (2000), Indrze-
jczak (2021)).7 However, textbooks can make distinctions based on 7 Indrzejczak (2021) attributes this cut-

elimination proof for G3K to Dragalin
(1987).

principality, roughly speaking, wether two derivations rules match
in the sense that they use the corresponding introduction and elimi-
nation rule of a logical connective or not. Since many non-principal
cases are similar these each need not be discussed individually. In a
proof-assistant we cannot use such reasoning, and instead need to rely
more heavily on inversions i.e. case analyses on the derivations.

The general strategy is, to define a complexity measure on cuts and
subsequently eliminate cuts by replacing them with cuts of a lower
complexity, which can be eliminated using the inductive hypothesis.
We start by showing the induction principle we will use to prove the
result:

Lemma 6.6 (Lexicographic Pair Induction) Let P ∶ N → N → P be a
predicate. The following induction principle is valid:

(∀n m. (∀p q. p < n → P p q) → (∀q. q < m → P n q) → P n m) → ∀nm. P n m

Proof. Using two nested strong inductions, first on n, afterwards on
m.

Theorem 6.7 (Cut is admissible for IEL and IEL−) The cut rule is
admissible for both IEL and IEL−.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#inversionAnd
https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#disjunction_SC
https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#genDPCut
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[δ1]

Γ
h1⇒ B

[δ2]

B, Γ
h2⇒ A

Cut
Γ⇒ A

Proof. The version of cut we prove here is the so-called context-sharing
version, since the multiset Γ occurs in both derivations. There would
be the possibility to instead use two distinct contexts for the left and
right side, however this makes the proofs more complicated. Note, that
in calculi with (strong) weakening, both are equivalent, we will see this
in Section 6.6. The proof is by induction on pairs (s, r) of formula-size
s and cut-rank r. Here formula size is the size (c.f. Definition 4.2)
of the cut-formula B, and the cut-rank is the sum of the heights i.e.
r ∶= h1 + h2.

As an induction principle, we use the pair induction from Lemma 6.6.
This induction principle gives us two inductive hypotheses, one which
allows us to eliminate cuts of arbitrary height but with a cut formula
of smaller size (s-cut) and another one, allowing us to eliminate cuts
on formulas of the same size but with a smaller cut-rank (r-cut).

We now analyze which rule was used to derive δ1. In two cases,
namely the K introduction and right implication introduction rule we
will need an additional case analysis (i.e. inversion) on δ2.

AL-Rule: Assume δ1 was derived using the left-rule for conjunction.
Our derivation has the following form.

C1 ∧C2 ∈ Γ C1, C2, Γ
n−1⇒ F

Γ
n⇒ B B, Γ

m⇒ A
r-cut

Γ⇒ A

We can permute the application of the left rule for conjunction
downwards and use weakening on the derivation C1, C2, Γ

m⇒ ∆:

C1 ∧C2 ∈ Γ

C1, C2, Γ
n−1⇒ B B, Γ

m⇒ A
C1, C2, Γ⇒ A

Γ⇒ A

Note that the new cut is a cut on the same formula but of a smaller
rank, thus we can eliminate it by the inductive hypothesis.

IR-Rule: Assume last rule used in the derivation of δ1 was the right
introduction rule for implication. Thus we know, that B = B1 ⊃ B2.
We need to do a second case analysis on the derivation δ2.

1. If δ2 is an axiom, either pi = B or pi ∈ Γ and we know that A = pi.
The first case contradicts our assumption that B = B1 ⊃ B2 and in
the second case we can directly use the variable rule.

2. Similarly, if the second premiss is derived using the falsity rule,
either F = � or � ∈ Γ.
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3. An interesting case arises when the right premiss is proved using
the left introduction rule for implication.

B0, Γ
h1−1
⇒ B1

Γ
h1⇒ B0 ⊃ B1

C0 ⊃ C1 ∈ B, Γ B, Γ
h2−1
⇒ C0 C1, B, Γ⇒ A

B0 ⊃ B1
h2⇒ B

Γ⇒ A
We have 2 cases: Either B = C0 ⊃ C1 or C0 ⊃ C1 ∈ Γ.

(a) In the first case, we can build the following derivation:

Γ
h1⇒ B B, Γ

h2−1
⇒ B0

r-cut
Γ⇒ B0 B0, Γ⇒ B1

Γ⇒ B1

B1 ∈ B1, Γ B1, B, Γ⇒ A
IL-invB1, Γ⇒ A

Γ⇒ A
(b) In the second case, we can apply the left rule for implication

first and do two cuts afterwards.

C0 ⊃ C1 ∈ Γ
Γ

h1⇒ B B, Γ
h2−1
⇒ C0

r-cut
Γ⇒ C0

Γ
h1⇒ B weak.

C1, Γ
h1⇒ B B, C1, Γ

h2−1
⇒ C0

r-cut
C1, Γ⇒ A

ILΓ⇒ A

KI-Rule: Assume the premiss was derived using the K-introduction
rule. We need to make a second case distinction on the derivation
of the right deduction. Most cases are similar to those obtained in
the right rule for implication subcases, and we will not go into too
much detail here.

Γ,K−(Γ) ⇒ B0

Γ⇒ KB0 KB0, Γ⇒ A
Γ⇒ A

1. The right premise is an axiom. Either pi = KB0 which is impossi-
ble (since the constructors of an inductive datatype are disjoint)
or A ∈ Γ in which case we can directly construct the derivation.

2. The most interesting case occurs when the KI-rule is used on
both sides. We have the following derivation:

Γ,K−(Γ)
h1−1
⇒ B0

Γ
h1⇒ KB0

KB0, B0, Γ,K−(Γ)
h2−1
⇒ A0

KB0, Γ
h2⇒ K A0

Γ⇒ K A0

We can build the following derivation:

Γ,K−(Γ) ⇒ B0

Γ,K−(Γ)
h1⇒ KB0

weak.
Γ,K−(Γ)

h1⇒ KB0 KB0, B0, Γ,K−(Γ)
h2−1
⇒ A0

r-cut
B0, Γ,K−(Γ) ⇒ A0

s-cut
Γ,K−(Γ) ⇒ A0

KIΓ⇒ K A0
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6.3 Equivalence between ND and SC

As the section title suggests, we will now be concerned with proving
the equivalence between the sequent calculus and the natural deduc-
tion representations. The general structure of these proofs is well
known. While proving the direction transforming a sequent calculus
derivation into a natural deduction one is fairly easy (the K-case is
slightly more involved), the other direction is harder to proof and
needs admissibility of cut.

Lemma 6.8 (SC to ND) If Γ⇒ A then Γ ⊢ A

Proof. The proof is by induction on the derivation Γ ⇒ A, in Coq
most cases are solved automatically. Easiest are the cases of right
rules, which are basically the same in the sequent calculus and natural
deduction. The left rules are also fairly easy, but use modus ponens in
the natural deduction system quite often.

Case AL: We have the following sequent calculus derivation:

B1 ∧ B2 ∈ Γ B1, B2, Γ⇒ A
Γ⇒ A

As the inductive we obtain a derivation B1, B2, Γ ⊢ A. We can build
the following natural deduction derivation8: 8 We used the cut-rule in ND directly, in-

stead of first using the elimination rule
for implication followed by using the in-
troduction rule.

B1 ∧ B2 ∈ Γ
Γ ⊢ B1 ∧ B2

Γ ⊢ B2

B1 ∧ B2 ∈ B1, Γ
B1, Γ ⊢ B1 ∧ B2

B1, Γ ⊢ B2 B1, B2, Γ ⊢ A
B2, Γ ⊢ A

Γ ⊢ A

Case OR1: We have a the following sequent calculus derivation:

Γ⇒ A ∨ B
Γ⇒ A

We can easily turn this into the following natural deduction deriva-
tion:

Γ ⊢ A ∨ B
Γ ⊢ A

Case KI: We have the following sequent calculus derivation:

Γ,K−(Γ) ⇒ A0

Γ⇒ K A0

As was shown in Lemma 5.17, the following rule is admissible in
IEL:

Γ, Ω,KΩ ⊢ A → Γ,KΩ ⊢ K A

With this rule, the derivation is easy, we use that K (K−(Γ)) ⊆ Γ:

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#genToNd
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Γ,K−(Γ) ⇒ A0 (weak)
Γ,K (K−(Γ),KΓ

Γ,K (K−(Γ)) ⊢ K A0

Γ ⊢ K A0

For the other direction, we can first prove admissibility results.

Lemma 6.9 (ND-rules are admissible) The following rules are ad-
missible:

• Γ⇒ � → ∀A. A ∈ Γ

• A ∈ Γ → Γ⇒ A

• Γ⇒ A ∧ B → (Γ⇒ A) ∧ (Γ⇒ B)

• Γ⇒ A ⊃ B → A, Γ⇒ B

Proof. All of the proofs are by induction on the derivations.

Lemma 6.10 (From ND to SC) If Γ ⊢ A then Γ⇒ A.

Proof. We use cut and the admissible rules multiple times. The variable
and falsity cases can be solved rather easily using the admissibility
results.

Case IE: As observed earlier, the implication elimination rule corre-
sponds to cut.

Γ ⊢ A Γ ⊢ A ⊃ B
Γ ⊢ B

We build the following sequent calculus derivation:

Γ⇒ A
Γ⇒ A ⊃ B admissibility
A, Γ⇒ B

cut
Γ⇒ B

As a corollary, we obtain the equivalence result.

Corollary 6.11 Γ ⊢ A if and only if Γ⇒ A.

Proof. Immediate with Lemma 6.10 and Lemma 6.8.

As a corollary we now have a constructive proof of the disjunction
property for IEL and IEL−.

Lemma 6.12 (Disjunction Property) If ⊢ A ∨ B then either ⊢ A or
⊢ B.

Proof. We use the equivalenece from Corollary 6.11 to replace natural
deduction entailment with sequent calculus entailment. The proof is
finished using the disjunction property for the sequent calculus (i.e.
Lemma 6.5).

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#gen_fal
https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#ndgen_iff
https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#disjunction_ND
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6.4 Decidability of IEL

We now prove decidability of IEL (and IEL−) utilizing a proof-search
procedure in the cut-free sequent calculus. Throughout this section we
fix a finite multiset (i.e. list in the formalization) Γ and a formula A
and want to a design decision procedure which decides wether Γ⇒ A
or Γ⇏ A. Since Γ and A are arbitrary, this will give us the decidability
proof.

The general strategy for the decidability proof is to compute the
set of derivable sequents which are only made-up of subformulas of
Γ and A. For this let U denote the list of subformulas from Γ and A
and K�, which can be computed. The following set (i.e. a list in the
formalization)

{(Γ′, A′)∣Γ′ ⇒ A′ ∧ Γ ⊆ U ∧ A′ ∈ U}

, containing every derivable U -sequent, can be computed using a fixed-
point iteration, incrementally expanding the set of derivable sequents.
This approach is possible, since we have a (modified) subformula
property and the universe is finite.

We call a pair (Γ, A) a goal and more specifically a U-goal, if Γ ⊆ U
and A ∈ U. Let us call a pair (Γ, A) normalized, if the elements of Γ
are ordered just like the elements in U. With ⌜Γ⌝ we denote the list
obtained by reordering the elements from Γ just like the elements from
U. In the proof search we can restrict the search to normalized U-goals
due to weakening.

We now wish to construct a list of derivable U-goals. This list will be
constructed using a fixed point iteration. In each step of the iteration,
we will know a set (in the formalization a list) of goals, which can be
derived and need to check if we can extend this by a specific sequent.
For example, if we know that Γ ⇒ A and Γ ⇒ B, because (Γ, A) and
(Γ, B) are contained in the list of derived sequents, we know that
Γ ⇒ A ∧ B is derivable and thus (if A ∧ B ∈ U) we could add the pair
(Γ, A ∧ B) to the list.

Lemma 6.13 (c.f. Smolka2012, Lemma 12.3.3) One can construct a list
Λ of U-goals such that:

1. If (Γ, A) ∈ Λ then Γ⇒ Λ

2. Λ contains every U-goal (Γ, A) satisfying:

• � ∈ Γ

• B ⊃ C ∈ Γ and (Γ, B) ∈ Λ and (⌜C, Γ⌝, A) ∈ Λ.

• B ∧C ∈ Γ and (⌜B, C, Γ⌝, A) ∈ Λ

• B ∨C ∈ Γ and both (⌜B, Γ⌝, A) and (⌜C, Γ⌝, A) ∈ Λ.

• A = pi and pi ∈ Γ

• A = A1 ⊃ A2 and (⌜Γ, A1⌝, A2) ∈ Λ

• A = A1 ∧ A2 and (Γ, A1) ∈ Λ and (Γ, A2) ∈ Λ
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• A = A1 ∨ A2 and (Γ, A1) ∈ Λ or (Γ, A2) ∈ Λ

• A = K A1 and (⌜K−(Γ)⌝, A1) ∈ Λ

Proof. This list can be constructed using a fixed-point construction.

What we need to prove decidability is to verify that using the rules
in (2) as a step-function starting from the empty list, we will be able to
compute all of the subformulas which can be computed.

Our presentation of this method follows Menz (2016) and Smolka
and Brown (2012). In the general setting, we want to compute a list
with elements from an enumerable universe V, with elements from a
decidable type X that satisfy a property p ∶ X → P. For this, we assume
to have constructed a step predicate step ∶ L(X) → X → P, which is
decidable. In each step, we check if there is an element u from the
universe and check whether s L u holds. If this is the case, we add u to
the list, otherwise we do not modify the list. One can easily verify that
this process yields a fixed point after at most ∣V∣ iterations.9 However, 9 Since the step function is deterministic,

if there have been no elements added
during an iteration, there will never be in
the next round. Thus after ∣V∣ iterations
the fixed-point will have been reached.

we still need to establish the connection between this fixed-point and
the derivability for the sequent calculus. We define (following Menz)
A ⊆ p for a list A over X as ∀x ∈ A. p x.

Two crucial properties we need in the proofs are the closure property
and induction principle.

Lemma 6.14 The following hold for the list Λ we construct by finite-
closure iteration:

• Λ-Closure. If step Λ x and x ∈ U , then x ∈ C.

• Λ-Induction. Let step A x → p x for all A ⊆ p and x ∈ V. Then Λ ⊆ p.

Proof. See Lemma 12.4.2 in Smolka and Brown (2012).

Lemma 6.15 If Γ ⊆ U and A ∈ U and Γ⇒ A then (⌜Γ⌝, A) ∈ Λ.

Proof. The proof is by induction on Γ ⇒ A. We use closure in every
step and thus only need to prove that step Λ (⌜Γ⌝, A) holds.

Case AR: Assume Γ⇒ A1 and Γ⇒ A2, thus (⌜Γ⌝, A1) ∈ Λ and ((⌜Γ⌝, A2) ∈
Λ by the inductive hypothesis. Thus by the definition of step,
step Λ (⌜Γ⌝, A1 ∧ A2). Generally speaking, all the right rules are
easily solved similarly.

Case AL: Assume there is B∧C ∈ Γ and B, C, Γ⇒ A. Thus by the induc-
tive hypothesis (⌜B, C, Γ⌝, A) ∈ Λ (of course, we need to show that
B, C, Γ ⊆ U but this simple since U is subformula-closed). By using
the third rule from Lemma 6.13 we need to show (⌜B, C, ⌜Γ⌝⌝, A) ∈ Λ,
but since for ⌜B, C, ⌜Γ⌝⌝ = ⌜B, C, Γ⌝ this is our inductive hypothesis.

Lemma 6.16 If (Γ, A) ∈ Λ then A⇒ A.

Proof. By Λ-induction. We can then do a case analysis on why the
step-function was fulfilled and thereby prove the result.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#gen_lambda
https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#lambda_gen
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Lemma 6.17 (SC is decidable) For any context Γ and formula A,

(Γ⇒ A) + (Γ⇏ A).

Proof. Since the type of U-goals is decidable, we compute Λ and check
if (⌜Γ⌝, A) ∈ Λ. In the positive case, we obtain a proof of Γ ⇒ A by
Lemma 6.16. In the negative case, we can prove Γ⇏ A by deriving a
contradiction. Thus we assume Γ⇒ A, now using our assumption, it
suffices to proof (⌜Γ⌝, A) ∈ Λ, what we can do with Lemma 6.15.

Corollary 6.18 (ND is decidable) For any context Γ and formula A,

(Γ ⊢ A) + (Γ ⊬ A).

Proof. This result is obtained by combining the equivalence proof
between the sequent-calculus and natural deduction systems (Corol-
lary 6.11) with Lemma 6.17.

As hinted at in the chapter on the constructive strong quasi-completeness
we can now obtain a constructive proof of completeness.

Corollary 6.19 (Completeness) If Γ ⊩′ A then Γ ⊢ A.

Proof. Assume Γ ⊩′ A. By quasi-completeness ¬¬Γ ⊢ A. We can now
use the decider from Corollary 6.18 to do a case distinction on Γ ⊢ A
or Γ ⊬ A. If Γ ⊢ A we are done. In the other case, we can derive a
contradiction since we have both Γ ⊬ A and ¬¬Γ ⊢ A as assumptions.

6.5 The Classical Modal Logic K

Last, we will showcase how to adapt this method of proving cut-
elimination and decidability to the classical modal logic K (Kripke,
1959).

We chose the classical modal logic K here as a benchmark since
it is the simplest classical modal logic. Logic K only has two rules
additional to the rules of propositional logic:

• Necessitation Rule: ⊢ A →⊢ ◻A

• Distribution Rule: ◻(A ⊃ B) → ◻A ⊃ ◻B

Note that on a formal level, IEL− and K are pretty similar: Both have
only two additional rules, however, while IEL− has co-reflection as an
axiom, K only has the necessitation rule.

The methods used for proving this should generalize to other modal
logics (e.g. S4 or extensions of K as KT)10. 10 There is a possibility to extend the G3C-

calculus to S4 (Troelstra & Schwichten-
berg, 2000).

For this, we extend the sequent calculus for classical propositional
logic used by Dang (2015) and Smolka and Brown (2012) by the clas-
sical K-rule from Hakli and Negri (2012), the rules for this sequent
calculus are given in Figure 6.5.1. Note, that as most sequent calculi
for classical logic, we have a multiset of formulas in the succedent, too.

The modal rule we use is slightly different from the one given by
Hakli and Negri. They use the following rule:

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidability.html#ielg_dec
https://www.ps.uni-saarland.de/~hagemeier/website/iel.modelsConstructiveCompletenesss.html#CompletenessIEL
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pi ∈ Γ pi ∈ ∆

Γ⇒ ∆
(A)

� ∈ Γ

Γ⇒ ∆
(F)

A ⊃ B ∈ Γ Γ⇒ A, ∆ B, Γ⇒ ∆

Γ⇒ ∆
(IL)

A ⊃ B ∈ ∆ A, Γ⇒ B, ∆

Γ⇒ ∆
(IR)

A ∧ B ∈ Γ A, B, Γ⇒ ∆

Γ⇒ ∆
(AL)

A ∧ B ∈ ∆ Γ⇒ A, ∆ Γ⇒ B, ∆

Γ⇒ ∆
(AR)

A ∨ B ∈ Γ A, Γ⇒ ∆ B, Γ⇒ ∆

Γ⇒ ∆
(OL)

A ∨ B ∈ ∆ Γ⇒ A, B, ∆

Γ⇒ ∆
(OR)

◻A ∈ Ω ◻−(Γ) ⇒ A

Γ⇒ Ω
(K)

Figure 6.5.1: Sequent system G3K

Γ⇒ A
◻(Γ), Θ⇒ ∆,K A

Note that A is a single formula and not a set of formulas. We essentially
made two changes: First, we use the same trick as in the IEL case,
where our rule is such, that a maximal Γ is chosen.11 Second, we 11 Krupski and Yatmanov propose the fol-

lowing introduction rule for K:

Γ, ∆,K∆⇒ A
Γ,K (∆) ⇒ K A

The rule we chose (also mentioned by
Krupski and Yatmanov) is the result of
always choosing a maximal ∆.

express the multiset-constraint on the succedent using membership.
Because both systems enjoy height-preserving weakening, this does
not change the derivable sequents capabilities.

Lemma 6.20 (Weakening for K) If Γ ⊆ Γ′ and ∆ ⊆ ∆′ and it is possi-
ble to derive Γ⇒K ∆ then it is possible to derive Γ′ ⇒K ∆′.

Proof. Just as in the intuitionistic case, by induction on the derivation
of Γ⇒ ∆ with Γ′, ∆′ quantified.

Following the cut-elimination proof for the intuitionistic case, we
now state and prove inversion results.

Lemma 6.21 (Inversion principles for K) The following inversion prin-
ciples hold:

• A ∈ ∆ → A ⊃ B, Γ⇒K ∆ → Γ⇒K ∆

• B ∈ Γ → A ⊃ B, Γ⇒K ∆ → Γ⇒K ∆

• A ∈ Γ → B ∈ Γ → A ∧ B, Γ⇒K ∆ → Γ⇒ ∆

• A ∈ Γ → B ∈ Γ → Γ⇒K A ∨ B, ∆ → Γ⇒ ∆

• A ∈ Γ → A ∨ B, Γ⇒K ∆ → Γ⇒ ∆

• B ∈ Γ → A ∨ B, Γ⇒K ∆ → Γ⇒ ∆

Proof. All of the proofs are by induction on n and inversion on the
derivation afterwards.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidabilityK.html#gk3chW
https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidabilityK.html#inversionIL
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Now, we can proceed to show the cut-elimination theorem for K.

Lemma 6.22 (Cut-Elimination for K) The following rule is admissi-
ble in G3K.

Γ
h1⇒ A, ∆ A, Γ

h2⇒ ∆
Γ⇒ ∆

Proof. Just as in the intuitionistic case, we use the same pair-induction
principle on the formula-size and cut-rank. We do an inversion on the
derivation Γ⇒ A, ∆.

AL-Rule: Since the left rule for conjunction was used, the derivation
has the following form:

B ∧C ∈ Γ B, C, Γ
h1−1
⇒ A, ∆

Γ
h1⇒ A, ∆ A, Γ

h2⇒ ∆
Γ⇒ ∆

Just as in the intuitionistic case, we can permute the cut upwards
and first apply the AL-Rule and obtain the following derivation:

B ∧C ∈ Γ
B, C, Γ

h1−1
⇒ A, ∆ A, Γ

h2⇒ ∆
B, C, Γ⇒ A, ∆

Γ⇒ ∆

IR-Rule: This case is quite different from its intuitionistic counterpart,
since we have stronger inversion results for the classical system,
which spare us the second inversion in this case. The derivation has
the following form:

B ⊃ C ∈ A, ∆ B, Γ
h1−1
⇒ D A, ∆

Γ
h1⇒ A, ∆ A, Γ

h2⇒ ∆
Γ⇒ ∆

We either have A = B ⊃ C or B ⊃ C ∈ ∆.

1. We can use the inversion lemmata and replace the cut with two
cuts on structurally smaller formulae:

B ∈ B, ∆ B ⊃ C, Γ⇒ ∆, B
invILΓ⇒ ∆, B

B, Γ
h1−1
⇒ ∆, C, B ⊃ C A, Γ

h2⇒ ∆
r-cut

B, Γ⇒ ∆, C
B ⊃ C, B, C, Γ

h2⇒ ∆
invB, C, Γ⇒ ∆

scut
B, Γ⇒ ∆

s-cut
Γ⇒ ∆

2. If B ⊃ C ∈ ∆ we can just permute the cut upwards (i.e. do an
r-cut), yielding the following derivation:

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidabilityK.html#cutElimination
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B ⊃ C ∈ Γ

B, Γ
h1−1
⇒ D A, ∆

weak.
B, Γ

h1−1
⇒ D A, B, ∆

B, Γ
h2⇒D ∆

weak.
A, B, Γ

h2⇒ ∆
r-cut

B, Γ⇒ C, ∆
Γ⇒ ∆

modal rule: Just as in the intuitionistic case, we need a second case

analysis on the derivation A, Γ
h2⇒ ∆ when the modal rule was used

to derive Γ
h1⇒ A, ∆.

We take a look at the case when the modal rule is used in both
derivations.

◻A0 ∈ ∆, A ◻−(Γ) ⇒ A0

Γ⇒ ∆, A
◻A1 ∈ ∆ ◻−(A, Γ) ⇒ A1

A, Γ⇒ ∆
Γ⇒ ∆

We have two cases: Either A = ◻A0 or ◻A0 ∈ ∆.

1. In the first case, we first use the modal and then do an s-cut:

◻A1 ∈ ∆

◻−(Γ) ⇒ A0
weak.◻−(Γ) ⇒ A0, A1

◻−(A, Γ) ⇒ A1
weak.

A0,◻−(Γ) ⇒ A1 s-cut◻−(Γ) ⇒ A1

Γ⇒ ∆

2. If ◻A0 ∈ ∆, we can directly use the modal rule.

◻A0 ∈ ∆ ◻−(∆) ⇒ A0

Γ⇒ ∆

We can now prove the decidability of logic K using a similar proof
search as in the intuitionistic case.

Theorem 6.23 K is decidable.

6.6 Other approaches

In this section, we compare our approach with other approaches to
mechanizing cut-elimination-proofs. We will look at the different
possible encodings of the sequent calculus and other possible strategies
to prove cut admissible. Dang (2015) proves a different version of cut:

Γ⇒ A, ∆ Γ′ ⇒ ∆′

Γ, Γ′ ∖ A⇒ ∆ ∖ A, ∆′

According to Dang, a similar generalization was suggested by Girard
(1989). In his Coq mechanization, he does not need a height-bounded
system and does not prove any inversion results, but instead uses 3
nested inductions. We use a single, but special induction (with up to
two inversions), but need to prove inversion lemmas beforehand.

Schepler (2016) uses the following generalization to prove admissi-
bility of cut for intuitionistic propositional logic:

Γ⇒ B Γ′ ⊆ B, Γ Γ′ ⇒ A
Γ⇒ A

https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidabilityK.html#gk3c_dec
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His proof is by subformula-induction on the cut-formula and induction
on the derivation of Γ′ ⇒ A afterwards.

We tried producing a similar proof using one of these generaliza-
tions for IEL but ultimately failed. This is probably due to in both cases
not being able to eliminate cuts on the same formula with a smaller
height, though it could also be that with a clever trick, such a proof
is possible. In terms of complexity (measured in lines of code), these
approaches are fairly similar to our approach.

One difference between their and our approach is that we prove
the context sharing (Γ⇒ A, ∆ → A, Γ⇒ ∆ → Γ⇒ ∆) instead of context
disjoint (Γ1 ⇒ A, ∆1 → A, Γ2 ⇒ ∆2 → Γ1, Γ2 ⇒ ∆1, ∆2) versions of
cut. We could have also proven context-disjoint versions, this makes
a proof a little bit more complicated, however in any system with
weakening, it does not make a difference which version we prove.
Assume for example, we have proven context-sharing cut. We can
then easily obtain context-disjoint cut:

Γ1 ⇒ A, ∆1 weak.Γ1, Γ2 ⇒ A, ∆1

A, Γ2 ⇒ ∆2 weak.A, Γ1, Γ2 ⇒ ∆1, ∆2 cs-cut
Γ1, Γ2 ⇒ ∆1, ∆2

That is, with context-sharing cut we can emulate the context-disjoint
cut rule in a classical system. For the other direction, we use that
Γ ⊆ Γ, Γ.

Γ⇒ A, ∆ A, Γ⇒ ∆
cd-cutΓ, Γ⇒ ∆, ∆

weak.Γ⇒ ∆

Let us last discuss other possible ways to encode sequent systems in
a proof assistant. One way to look at the different encodings is that all
of them provide different answers to the question of how permutation
invariant multisets can be represented using lists. As we will see all of
these encodings are used in some mechanizations of proof-theoretic
results.

A general observation we made was that there is a trade-off between
representations which can be used to construct concrete derivations
and being able to prove for example proof-theoretic results. For exam-
ple there are representations, which prima facie seem very complicated
and add a lot of mechanization overhead when actually constructing
derivations which, that are well suited for proving cut-elimination (e.g.
the permutation-representation). On the other hand, very simple en-
codings (e.g. the structural encoding) can make proofs of the high-level
results much more tedious while being much better suited for actually
constructing a concrete derivation. We will shortly mention benefits
and drawbacks of each possible representation and showcase how
the conjunction introduction rule would be encoded in the sequent
calculus.

Membership encoding This is the encoding that we used for both K
and IEL. It is elegant and gives short proofs, however it needs a
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special proof system similar to the GKI-calculus from Troelstra and
Schwichtenberg (2000). The other representations we consider do not
have such a strong restriction on the syntax of the inference rules but
lead to more complicated proofs.

Explicit permutation rule The perhaps most straightforward encoding
is to always have the principal formulas at the beginning of a list and
add one rule allowing to permute lists arbitrarily in any derivation.

Γ ≡P Γ′ Γ′ ⇒ A
PermΩ⇒ A

The main drawback of this encoding was that adding heights is com-
plicated. Essentially one has to decide whether using the permutation
rule shall increase the height of a derivation or not (i.e. the height stays
the same). If it does increase the height, weakening is no longer depth
preserving, if it does not increase the height proofs by induction on the
derivation get more complicated (and induction on the height becomes
infeasible). However, this encoding can ease mechanizing decidability
proofs, since only the head of the list has to be matched on (e.g. Hara
(2013)).

Permutation encoding This encoding makes the proofs very similar
to textbook proofs. It incorporates the permutation rule into every
rule of the sequent calculus, and thus there is no need to include a
permutation exchange rule.

Γ ≡P B1 ∧ B2, Γ′ Γ′′ ≡ B1, B2, Γ′ Γ′′ ⇒ A
Γ⇒ A

It seems to be easier to use such an encoding in proof assistants
which have a lot of automation for dealing with permutations built-
in. For example Michaelis and Nipkow (2017) prove cut-elimination
using this approach, they claim that most cases in their cut-proof are
solved by automation. At least in Coq, we were not able to prove
these results using automation directly. However a cut-elimination
proof using this encoding is possible, although the code is more com-
plicated and proofs of all lemmata are more complicated. This is
mainly due to worse automation for permutations in Coq. In every
step when constructing a derivation, simple permutation equivalences
need to be proven. We also cannot directly prove weakening with
inclusion and instead need to prove both textbook weakening and
textbook contraction to obtain the general weakening result. Using
a permutation-solver12 found on GitHub, which solves permutation 12 https://github.com/foreverbell/

permutation-solverequivalences like A, Γ1, D, Γ2 ≡P A, B, Γ2, Γ1 based on transforming
permutation equivalences into equations over natural numbers, we
were able to make the proofs feasible in Coq. However this is of course
still a weaker kind of mechanization than what built-in automation
for permutations might be able to provide. A lot of trivial steps in
informal reasoning about permutations need to formalized.

https://github.com/foreverbell/permutation-solver
https://github.com/foreverbell/permutation-solver
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Structural encoding In non-modal logics or more generally any logic
were no rule modifies the complete context, it is possible to simulate
multisets by squishing formulas in-between arbitrary lists.

Γ1, B1, B2, Γ2 ⇒ A
Γ1, B1 ∧ B2, Γ2 ⇒ A

It is an elegant mechanization, a possible drawback is that case analysis
on the premisses are lengthy. This encoding was used by Penington
(2018) and van Doorn (2015).

Overall evaluation Thus, for proving cut elimination for IEL (and IEL−,
K) only the permutation encoding and the system based on the G3I-
calculus , we ultimately ended up using, can prove cut-elimination.
We have cut-elimination proofs for both the representations, however
the difference in code size and general elegance is profound: For the
classical modal logic K13 the proof with permutations is about 750 13 We only compare the results for K here,

since here we prove context-sharing ver-
sions of cut for both representations,
while for IEL the permutation-based en-
coding is used to prove context disjoint
cut.

lines of Coq code. However this is only the main part of the proof,
the complete proof depends on further on the permutation solver
and general equivalence of textbook structural properties and general
weakening (roughly 400 lines of code). In contrast to this, our cut-
elimination proof utilizing the representation by Dang and Smolka is
only 240 lines long. Many cases in the proof have a resemblance to the
ones proven with the permutation encoding but are generally easier
to solve, since no hard case analyses on permutation equivalence of
lists are needed. Of course this too uses automation namely a lot of
list automation from the Programming System Lab’s Base Library,14 14 https://github.com/uds-psl/

base-libraryfor example, this helps Coq to solve list inclusions automatically. One
advantage of the permutation encoding might be that the proofs are
quite similar to the textbook proof, thus this suggests that many logics
can be treated in a similar fashion (e.g. S4 and others).

In conclusion, while the permutation based-encoding is currently
harder to mechanize in Coq, we believe that better library support
and automation should make this encoding more feasible. The fact,
that for example in Isabelle/HOL, which has built-in multiset support,
there are more mechanizations of sequent calculi using such encodings
(e.g. Cox (2019) and Michaelis and Nipkow (2017)) can be considered
evidence for this. At the moment, however, the representation we
ultimately use is a much better choice for mechanization. One of the
benefits is that these representations can be directly used for the decid-
ability proof. However, it is not obvious that such a representation can
be found for any G3C or G3I-style sequent calculus, where it is much
easier to argue this for the permutation based representation.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.permutationSCforK.html#cutElimination'
https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidabilityK.html#cutElimination
https://www.ps.uni-saarland.de/~hagemeier/website/iel.decidabilityK.html#cutElimination
https://github.com/uds-psl/base-library
https://github.com/uds-psl/base-library


7
IEL and Epistemic Paradoxes

We first present the well-known Church-Fitch paradox (Fitch, 1963). It
tries to show that the innocent assumption that every truth is know-
able leads to an epistemic collapse and forces us to accept that every
truth is known. We then discuss the IEL solution and shortly present
the so-called typing approach. After discussing the IEL solution, we
consider a second epistemic paradox, the paradox of idealization (Flo-
rio & Murzi, 2009). This paradox tries to establish the existence of an
unknowable truth - which threatens the validity of IEL’s co-reflection
principle.

7.1 The Church-Fitch paradox

We have certain intuitions regarding the relationship between knowl-
edge and truth. Fitch’s paradox of knowability shows that two of
these are incompatible. The paradox consists of a derivation, deriving
the troubling omniscience claim, that every truth is known from the
innocent assumption that every truth is knowable and the assumption
that we are collectively non-omniscient. Note that the K-operator in
this context is to be read as somebody at sometime knows that P.1 Thus it 1 There is discussion wether this how K

should be interpreted for deriving the
paradox. For example Flachs (2020, p.2)
remarks that this will lead to knowledge
losing the facticity and instead interprets
it as it is now known by someone.

presents a threat to any philosophical theory committed to the claim
that every truth is possibly knowable, for example, verificationist
theories like Dummets semantic anti-realism.2

2 As pointed out by Chung (2007), ac-
cording to Kvanvig (2006) many philo-
sophical theories (and not just verifica-
tionist theories of truth) from different
areas are at least tacitly committed to the
claim that all truths are knowable.

We will refer to the principle that all truths are knowable as weak
verificationism or the knowability principle and express it by

A ⊃ ◇K A. (WVER)

The second intuition, which anti-realist theories usually share, is the
claim that not every truth is known. That is, there is a true proposition
A which is not known. The paradox consists in a derivation of a
theorem which is often called omniscience from these assumptions
and standard principles about knowledge.

A ⊃ K A. (OMN)

A rough proof sketch goes as follows: Assume p is an unknown
truth. Thus by the knowability principle, it is possible to know p ∧
¬K p. But knowing such a conjunction is impossible since knowing
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a conjunction implies knowing both conjuncts, i.e. K p and K¬K p,
however by facticity we know K p from the second conjunct and can
derive a contradiction.

7.1.1 Deriving Church-Fitch

In this section, we will present the formal proof of the Church-Fitch-
paradox. Our presentation follows the presentation in Wójcik (2020).
In the original paper (Fitch, 1963) the presentation is slightly different,
since Fitch does not use a K-modality directly but instead uses the con-
cept of truth-classes where a truth-class α is a set s.t. A ∈ α → A. Fitch
credits an anonymous referee for discovering the link between this
paradox and knowledge, only fairly recently, the anonymous referee
turned out to be Alonzo Church (Salerno, 2010). The re-discovery of
the paradox (in an epistemic context) is often attributed to Hart (Bell
& Hart, 1979).

We will begin by laying out the assumptions which are assumed in
the derivation of the paradox. First, we need the rule of necessitation,
which states that a theorem is necessary at any possible world:

⊢ A Ô⇒ ⊢ ◻A (Nec)

The second standard assumption regarding the modal logic expresses
a relationship between possibility and necessity:

¬◇ A ⊣⊢ ◻¬A (interdef)

The symbol ⊣⊢ expresses inter-definability. While some instances
of inter-definability are intuitionistically invalid (or should not be
endorsed, see below), we argue that the specific principle used here is
valid. For this recall the translation from modal into first-order logic:
¬◇ A can be expressed as ¬∃w′. w′ ⊩ A and ◻¬A as ∀w′. w′ ⊩ ¬A.
We can give a constructive proof of this equivalence, therefore this
inter-definability principle is acceptable in intuitionistic logic. As
De Vidi and Solomon (2001) argue other classically equivalent inter-
definability laws behave strangely in an intuitionistic context. Using
both ◇A ∶= ¬ ◻ ¬A and ◻A ∶= ¬◇¬A would allow deriving double-
negation elimination for modal sentences, i.e. ◻A↔ ¬¬◻ A. It seems
to be unplausible to reject double negation elimination for general
sentences and only allow it for modal sentences, thus this stronger
inter-definability is not intuitionistically acceptable. Now we come to
the assumptions regarding K. As stated earlier, we assume the facticity
of K.

KA ⊃ A (Fact)

The last assumptions we need are distribution of K over conjunction
and the non-omniscience assumption.

K (A ∧ B) ⊃ K A ∧KB (Distr)

∃A.A ∧¬K A (Non-Omn)
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We can now formally derive the Church-Fitch paradox. First, we show
that ¬K (A ∧¬K A) for any A. So assume K (A ∧¬K A). By distribu-
tion over conjunction one obtains K A ∧K¬K A. By using facticity on
the second assumption we have K A ∧ ¬K A - which leads to a con-
tradiction. Thus we have proven ¬K (A ∧¬K A). By necessitation,
we obtain ◻¬K (A ∧¬K A) and by inter-definability of the modal op-
erators, we get ¬◇ K (A ∧¬K A). But since we assumed A ∧ ¬K A
we get ◇K (A ∧¬K A) by the knowability principle, which obviously
contradicts our assumption.

We showcase a Hilbert-style derivation of the paradox:

1.∃A.A ∧¬K A (ass.)

2.A ∧¬K A from (1)

3.∀A.A →◇K A (ass.)

4.(A ∧K A) → ◇K (A ∧K A) Instance of (3)

5.◇K (A ∧K A) (MP)

6.K (A ∧K A) (assumption for reductio)

7.K A ∧K¬K A (Distr)

8.K A ∧¬K A (Fact)

9.¬K (A ∧K A)
10.◻¬K (A ∧K A) (Nec)

11.¬◇K (A ∧K A) (interdef)

Since (11) contradicts (5), our non-omniscience assumption (1) is con-
tradicted. Thus ¬∃A. (A ∧ ¬K A), which is classically equivalent to
∀A. A ⊃ K A. In intuitionistic logic, we are only committed to a weaker
conclusion, namely ∀A.K A ⊃ ¬¬A (and of course other intuitionisti-
cally equivalent theorems). There are other ways to derive the paradox,
for example, Maffezioli et al. (2013) present a derivation in a sequent
calculus.

7.1.2 Overview of Solution Attempts

Strategies to block the paradox can be roughly classified into the fol-
lowing categories (this division is based on Brogaard and Salerno
(2019)):

• Syntactic Restriction strategies: These strategies try to restrict the
sets of formulas to which K can be applied. Syntactic restriction thus
introduce a logical property F and restrict the knowability principle
in the following way (Brogaard & Salerno, 2019):

A →◇K A for all A such that F A (F-KP)

Most notable here is Tennant’s (1977) proposal to restrict weak ver-
ificationism to Cartesian propositions, where a proposition A is a
cartesian if K A is consistent. Another commonly discussed ap-
proach is Dummett’s proposal to restrict knowability to so-called
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basic statements. These strategies are often criticized to be ad-hoc,
since there seems to be no motivation for introducing these con-
straints other than blocking the derivation of the paradox.

• Logical revisions: These approaches try to solve the paradox by
changing the underlying logic. Most notable here are approaches
using intuitionistic or para-consistent logics.3 3 Para-consistent logics do not have an

explosion rule, thus both K A and ¬K A
can hold without any theorem being
derivable.

• Others: There are authors who, for example, suggest that knowa-
bility is not distributing over conjunction. However versions of
the paradox can be run, even when distribution over conjunction is
rejected (e.g.Jago (2010)).

There also is some general discussion, whether A → ◇K A is an
adequate expression for the knowability principle. Especially troubling
here is using ◇K A for expressing knowability. For example Jarmużek
et al. (2021) criticize that knowability is a de re modality but is expressed
as a de dicto modality in the paradox. To see this consider the difference
between the sentences:

a) It is possible that John knows that a Ferrari is a sports car. (De dicto)

b) John may know that a Ferrari is a sports car. (De re)

They argue that the second captures the intended sense behind the
idea that all truths are knowable more closely. Someone who asserts
this wants to assert that it is possible to know a truth in the actual
world and not that there is a possible world in which it is known.

Fuhrmann (2014) makes a similar point by distinguishing between
possible and potential knowledge; here possible knowledge is knowl-
edge at a possible world and potential knowledge represents the pos-
sibility of knowing something in the actual world.4 4 This is realized by mixing Kripke-

models with belief revision.Furthermore, Costa-Leite (2006) argues that knowability is factive
i.e. if A is knowable, A is true. If this was formalized as ◇K A ⊃ A, it
would allow to derive A ↔◇K A, which would equate knowability
and truth.

7.1.3 The Intuitionistic Response

There have been arguments brought forward that just adopting intu-
itionistic logic will resolve the paradox. Using intuitionistic logic, we
cannot obtain general omniscience but only the following principle,
which is what we know as the intuitionistic reflection principle:

A ⊃ ¬¬K A

Williamson interprets this as expressing that once A is known, it
can no longer be falsified:

It forbids intuitionists to produce claimed instances of truth that will
never be known. (Williamson, 1982, p. 206)

Thus it is a weaker result than omniscience. If intuitionistic negation
is read as it is impossible to refute A, it only states that once knowledge
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is acquired, it can not be falsified. Williamson further argues that the
intuitionist could still happily accept

¬¬(∀A. A ⊃ K A)

since it does not contradict

¬∃A. A.∧¬K A.

Dummett (2009) comes to a similar conclusion and urges us to
accept A ⊃ ¬¬K A as the knowability principle instead. Percival (1990)
identifies three conclusions from the intuitionistic response. These
are especially relevant since these can also be viewed as a criticism of
IELs intuitionistic reflection principle. His analysis basically consists
of 3 theorems, he argues proponents of intuitionistic solutions to the
paradox are committed to and an analysis, why each is troublesome.

Lemma 7.1 Intuitionist theories of knowledge, who solve the paradox by
endorsing A ⊃ ¬¬K A are committed to the following 3 theorems:

(i) ¬K A ⊃ ¬A

(ii) ¬K A↔ ¬A

(iii) ¬(¬K A ∧¬K¬A)

Proof. We derive each seperately:

(i) For deriving the first statement, we first use the contraposition
law on intuitionistic reflection and obtain ¬¬¬K A ⊃ ¬A. Since
¬A ⊃ ¬¬¬A is valid in intuitionistic logic, we obtain the desired
result.

(ii) Is obtained using the classical truth condition and (i).

(iii) Assume ¬K A and ¬K¬A. Using intuitionistic reflection on both
hypotheses gives us ¬A and ¬¬A which allows us to derive a con-
tradiction

Note, that his criticism of these theorems also is a criticism of IEL
principles, as IEL is committed to all of the above.

Lemma 7.2 In IEL, all three theorems from above can be derived.

Proof. We only show how to derive ¬(¬K A ∧¬K¬A). To derive a con-
tradiction, assume ¬K A ∧¬K¬A. Thus (by conjunction elimination)
we have proofs of ¬K A and ¬K¬A and need to prove falsity. Using the
second hypothesis, we need to show K¬A. By co-reflection it suffices
to show ¬A, thus we have A as an additional assumption. Now we
use the first conjunct and need to prove K A, again by co-reflection it
suffices to prove A, but we have a hypothesis which is a proof of A.
The other proofs can be found in the Coq development.

Let us now consider Percivals arguments against the logical equiva-
lence of ¬A and ¬K A. He asks us to consider a mathematical statement

https://www.ps.uni-saarland.de/~hagemeier/website/iel.nd.html#t8
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¬A. He reads ¬K A as the impossibility that A is known and ¬A as
A being false. Now, according to him ¬K A is contingent while ¬A is
not.5 But it is hard to imagine that only one of two logically equivalent 5 A proposition p is contingent if it is not

necessarily true, formally: cont p ∶= ◇p∧
◇¬p.

propositions is contingent.
Lastly, he argues that we can envision a situation in which our

knowledge of a necessary a posteriori truth P is dependent on a con-
tingent truth (De Vidi & Solomon, 2001):

For example, imagine a laboratory researcher about to record the litter
of Doris rabbit who turns around to see that Mabel rabbit shifts her
offspring Peter into Doris’s nest. He then thinks: if I hadn’t looked
around it would never have been known that Mabel is Peter’s parent.
(Percival, 1990, p. 184-185)

In the example, P is the proposition that Mabel is not Peter’s parent.
In the counterfactual situation, where the researcher had not turned
around in the right moment, P would not have been discovered and
thus not known by the researcher, thus the researcher had turned around
is a contingent truth on which the knowledge is dependent. Therefore,
in the counterfactual situation where the researcher had not turned
around, according to Percival, both P and ¬KP would be true, refuting
the logical equivalence.

The third consequence ¬(¬K A ∧¬K¬A) is interpreted by Percival
as stating that no statement is forever undecided,6 which would be 6 Here, a proposition A is called unde-

cided if neither A nor ¬A is known. Thus
it is not the computer-scientific meaning
of the term.

just as troubling as an omniscience claim.
We also consider objections raised by Artemov and Protopopescu

(2016) and De Vidi and Solomon (2001). De Vidi and Solomon argue
that Percival essentially uses a classical interpretation of the logical
constants and misses that intuitionistic negation is in some sense an
impossibility operator, since if ¬A is semantically valid, A is false at any
successor state. Thus ¬A does not express currently not knowing A
but impossibility to know A.

In the researcher-mouse example Percival asserts ¬KP since it will
never be known that Mabel is Peters parent. However, while it may
not be known in the counterfactual situation at the moment, it would
in theory, for example through methods as DNA-testing be possible to
come to know P; thus there is a possible extension of the knowledge
where P is known.

His last example also bases on the false reading of ¬K A. If it were
the case that the correct reading would be that no statement would
forever remain undecided the argument would be perfectly fine. How-
ever, a better translation might be that it is impossible that both P and
¬P are unknowable. That the validity of ¬(¬K A ∧ ¬K¬A) intuition-
istically does not force every proposition to be decided can also be
seen by considering a Kripke-model where every world wi has one
successor where P is forced and one where P is not forced.

Artemov and Protopopescu argue in a similar fashion that each of
Percivals conclusions is perfectly acceptable when read under an IEL
conception of knowledge. ¬K A ↔ ¬A only states that if A cannot
be proven it is impossible to verify that A and vice-versa, both are
acceptable ideas. If any truth can be verified and it is provable that a
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verification of A is impossible, A cannot be proven (since else it would
be verifiable).

7.1.4 Typing K

Some recent (e.g. Linsky (2010), Paseau (2008), and Raclavský (2018))
articles on the paradox try to restrict it by typing the K-modality. The
general idea of all typing approaches is to stratify the knowledge pred-
icate into an infinite hierarchy of K-modalities (akin to universes levels
in constructive type theories). Propositions without any intensional
operators (in our case the knowledge operator) are level 1 propositions.

For example, the well known socrates paradox, I know, that I don’t
know anything can be resolved with a typing approach. When Socrates
claims that he knows nothing, he asserts a second order proposition

K2(∀p1.¬K1 p)

which is no longer contradictory since he only claims not to know any
1st-order proposition but this knowledge is a second-order proposi-
tion. Similarly the derivation of the Church-Fitch paradox can also be
blocked. Essentially with distribution one only obtains

K2 p ∧¬K1 p

in step 8, which no longer is contradictory. Typing approaches, just as
syntactic restriction strategies, have been criticized to be an ad-hoc so-
lution, recently by Carrara and Fassio (2011) who argue that there can
be no paradox-independent motivation for introducing types, however
Raclavský (2018) argues against this. Others object that decomposing
the knowability-predicate is poorly motivated since nothing in ordi-
nary language would suggest this. Paseau (2008) (among a general
discussion of a typing approaches) criticizes this line of response by
comparing the motivation for typing knowledge to the motivation to
typing truth.

7.1.5 IEL Response

The IEL response, as given by Artemov and Protopopescu (2016), is
that the paradox, as a threat to intuitionistic theories of knowledge
does not exist. Since it critically rests on a specific understanding
of certain (modal) formulas. In this their approach is similar to for
example criticizing A ⊃ ◇K A as not expressing knowability.

According to them the paradox critically rests on the following 3
assumptions:

• A ⊃ K A means all truths are known.

• A ⊃ ◇K A means that all truths are knowable

• That all truths are knowable is definite of intuitionistic truth.

However since all of the formulas meanings are different in IEL and
since the (classically objectionable) conclusion A ⊃ K A is a defining



INTUITIONSITIC EPISTEMIC LOGIC IN COQ 63

principle of knowledge in IEL, there is no paradox. Let us recapitulate,
how Artemov and Protopopescu read the formulas: Against the first
reading they object that it just expresses the constructive nature of
intuitionistic truth, that is that any verified proposition is known,
thus it is not an omniscience claim. Against the second principle,
they argue that if it read as a classical principle it is plain wrong,
since not every classical truth is knowable. They argue, that as an
intuitionistic principle it is strictly weaker than the acceptable co-
reflection principle. They admit it might be suitable under a reading
of proofs as timeless platonic entities combined with a reading of K A
as A is actually known could provide reasonable semantics for the
knowability principle. It can then be read as, if a proposition has a
proof (in a platonist, timeless sense) it can actually be known. The
third principle is also misguided: the constructive nature and not the
knowability of any truth is essential for an intuitionistic understanding
of knowledge. Their argument against Church-Fitch now is, that the
conclusion is perfectly acceptable in IEL, thus there is no need to even
discuss if the derivation is possible in intuitionistic epistemic logic.

7.1.6 Discussion

One objection against the IEL response is that intuitionistic knowability
only extends to mathematical propositions since non-mathematical
statements are not susceptible to notions as proof. A similar objection is
already raised by Percival. Artemov and Protopopescu claim that BHK
is universally applicable since it makes no reference to mathematical
concepts such as numbers, functions, etc. and only relies on notions
as justification or concrete evidence, notions which have always, and
especially after Gettier (1963), influential to epistemology. Furthermore
notions such as proof and conclusive evidence are also used in non-
mathematical settings for example in the context of legal standards or
arguments in a court of law.

While I do not believe that this is necessarily the best argument
for the claim, I would agree that notions such as verification can
also extend to empirical propositions. However in combination with
BHK-semantics this will surely lead to a vastly different account of
knowledge. I will try to illustrate this with two examples from the
literature, one concerned with the BHK-interpretation of disjunctions
and another one about negations.

Edgington (1981) points out that the BHK-interpreation of disjunc-
tion will limit the disjunctions we can assert, since asserting a disjunc-
tion A ∨ B is only possible if one either verified that A or verified that
B. Consider a factory worker sorting balls by color. He sorts balls
which are either blue or green into one bag and all other balls into
another bag. He now might remember that the 5-th ball he sorted was
put into the first bag but does not remember which color the ball was.
Since he does not remember wether the ball was blue or green, he can-
not know the disjunction the 5th ball was blue or the 5-th ball was green,
since he would need to know which color the ball had. While this is
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already disconcerting, we can imagine more consequences: Consider
a language very similar to English with the only difference that the
language has a special word bleen for objects which are either blue
or green. We now have two options, either we accept that the ball is
bleen or deny it. If we accept it, it seems that inventing new words
can circumvent the BHK-semantics and that many words we take to
have the same meaning as for example sibling or brother or sister can
no longer be used interchangeably. If we deny it, we would also have
to accept a similar division of predicates in other cases, for example
of bleen into a more gray or less bleen, which is only a troublesome
consequence, this might it doesn’t seem apparent when we can stop
such a division of predicates. For example green could be divided into
ligher green or darker green (and lighter green could again be divided
further).

De (2013) argues that BHK-semantics need to be enriched with
a new operator to model empirical negation. He tries to show that
intuitionistic negation cannot be used to express some empirical state-
ments. One example he considers is the proposition that the Goldbach-
conjecture is currently undecided. If we use intuitionistic negation
to express this, we could do this as ¬(G ∨ ¬G). By the definition of
intuitionistic negation this is equivalent to (G ∨ ¬G) → �, However
this is too strong: It models the fact that G can never be decided and
not the fact that the statement is currently not decided. Thus a new
operator is needed, which he tries to construct semantics for.

While both examples are not enough to defeat the project of ap-
plying BHK-semantics to empirical propositions it shows that there
are at least some questions to be answered if we want to combine
BHK-semantics and empirical knowledge and defenders of this view
owe us a better explanation than just referring to Gettier and the fact
that there is mention of mathematical objects in a BHK-proof.

However, even if we ignore those arguments for now and assume
that IEL can also be used to knowledge about empirical statements,
the question remains wether this approach can solve the paradox. I
would argue that it solves the paradox for intuitionistic knowledge,
however not for classical knowledge. If we take the Church-Fitch
paradox to be an argument that two intuitions regarding classical
knowledge (or rather knowledge as we often use it) are inconsistent, it
is not resolved by the IEL solution. Note, that there is a difference here
between the intuitionistic solution and the IEL solution, as only the
latter basically changes the meaning of the K-operator. But changing
the meaning of the K-operator changes the argument. For example
consider a mathematician who, by some reasoning, came to the appar-
ently false conclusion that 2− 2 ≠ 0. If we would take the IEL-response
as principled, we would have to accept that suggesting to just interpret
the minus as plus would resolve the mathematicians paradox. That is
to say, the paradox as a threat to classical knowledge is not resolved.

Secondly, it seems to be hard to capture Church-Fitch like argu-
ments in IEL. IEL seems to be too inexpressive to model knowability,
since first there is no way to distinguish between the existence of an
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intuitionistic proof and having cognitive access to it and secondly IEL
seems to model an individual’s rather than a collective’s knowledge,
since otherwise the co-reflection principle is not well unjustified. How-
ever even intuitionistic knowledge will have to be committed to a
knowability-like thesis akin to “If agent is in possession but has no
cognitive access to a proof of p, he might know that p”. If being in
possession of an intuitionistic proof is factive it might be possible to
run a version of the paradox with this operator. Of course, the IEL
strategy would be to claim that the operation is not factive because the
truth (in the sense that the agent can assert A) is only established once
the agent has realized that he possesses a proof.

Thus the IEL response does not successfully resolves the Church-
Fitch paradox for classical knowledge.

7.2 Paradox of Idealization

In this section we will first state the paradox of idealization, as introduced
in Florio and Murzi (2009) and then apply it to IEL. The argument
shows that under certain assumptions, intuitionists are committed
to the existence of unknowable truths. We argue that the paradox of
idealization can be applied to IEL, which conceptually threatens the
co-reflection principle. If this is the case, IEL endorsers have no option
but to bite the bullet and accept strict finitism (that is roughly speaking
denying any idealization). However, while strict finitism itself already
has “highly revisionary consequences“ (Florio & Murzi, 2009) we will
see that it does not work well in tandem with co-reflection.

The paradox of idealization can be derived in a multimodal multi-
agent epistemic logic, with operators K, ◇, and ◻, where as usual the
diamond is interpreted as possibility, the box as necessity, and the K
as a knowledge modality. Just as in the paradox of knowability (Fitch,
1963), the assumptions on the rules governing K are quite modest e.g.
only distribution over conjunction, facticity, and distribution (over
implication) are necessary. We start by analyzing the principle of weak
verificationism

A ⊃ ◇K A (WVER)

which states that every truth can be known. It is weaker than IELs
co-reflection principle. Using this principle, it is easy to introduce
strict finitism and motivate the need for idealization. Strict finitists
will claim that the K in the formula above, expresses knowability by
real agents. That is any truth can in principle be known by agents just
like us. Most anti-realists would reject this and reply that the above
formula expresses knowability in an idealized sense. That is, every
truth is knowable by agents just like us or agents whose cognitive
capacities finitely exceed ours (Murzi, 2010).

There are good reasons, why most anti-realists reject strict finitism.
It seems unreasonable that propositions cannot be true or known for
mere medical limitations. Intuitionists routinely assert propositions
ranging over all natural numbers, for example, the existence of a
computable primality test can be used to assert that every number is a
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prime or composite: ∀n. p(n) ∨ ¬p(n).7 Let us further assume that the 7 We assume that p is the primality pred-
icate.proof sizes of p(n) ∨ ¬p(n) grow linearly.8 Call a number n apodictic
8 A monotonously increasing proof com-
plexity would also suffice but make the
argument slightly more involved.

(Dummett, 1975) if proofs of length n can be checked in practice. For
example, 100 is clearly an apodictic number but Gogol (10100) is not
(Magidor, 2012; Montesano Montessori, 2019). Our intuition is that
even for an apodictic number a, we should be able to know p(a) ∨
¬p(a), even though we will not be able to check the proof. Thus if anti-
realists still accept the principle WVER for this specific proposition,
they are committed to an idealized account of knowability. Note that
in theory any decidable proposition whose smallest proof size is an
apodictic number can be used to establish that knowability in WVER is
knowability in an idealized sense (unless of course, such propositions
are not seen as true).

7.2.1 Deriving the Paradox

The first premise of the idealization paradox tries to capture the re-
quirement for idealization. This is expressed using a predicate I(a) on
agents, where I(a) expresses, that the agent a is idealized that is the
agents’ cognitive capacities can only finitely exceed ours.

Our first premise frames the requirement for idealization as an
existential. There is a proposition that can only be known by idealized
agents:

∃P.P ∧◻∀a.Ka(P) ⊃ I(x). (P1)

Note, that this is quite a strong premise: There is a single proposition
P which can only be known by idealized agents in any possible world.
The second assumption is that no idealized agents exist. This seems to
be a well-motivated thesis because idealized agents are exactly those
agents whose cognitive capacities exceed any actual agents. If we take
actual agents to mean existing agents, it is an analytical truth.

∀x.¬I(x) (P2)

These are all the assumptions we need, apart from standard epis-
temic assumptions (i.e. knowledge is factive and distributes over con-
junction). Now consider the following proposition , which will be our
unknowable truth:

P ∧∀x.¬I(x). (7.1)

It is true (since both conjuncts have a proof), however, it cannot be
known. Intuitively this is the case since the left conjunct can only be
known by idealized agents, whose existence is impossible (because of
the right conjunct).

Lemma 7.3 Equation (7.1) cannot be known.

Proof. Assume the proposition is known by an agent a. Since knowl-
edge distributes over conjunction, we obtain Ka(P) ∧Ka∀x.¬I(x). Us-
ing P1 we obtain I(a), using facticity and distributivity of knowledge
we obtain ∀x.¬I(x) - a contradiction.
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That already is the paradox: from rejecting strict finitism and some
innocent assumptions about the knowledge operator we obtained the
existence of an unknown truth.

As Florio and Murzi (2009) argue, this can be generalized to any
formula A and P(x, A) s.t.

∃A.A ∧◻(∀a.Ka(A) ⊃ P(x, A) ∧ ¬∃x.P(x, A)),

even the well-known Church-Fitch knowability paradox (Fitch, 1963)
can be seen as an instance of it (where P(x, A) = Kx(A)).

Replies Let us consider one objection presented in Florio and Murzi
(2009). The objection consists in claiming that any truth can be known
in at least one possible world i.e. while there may be truths which
cannot be known in a concrete possible world, there always is a differ-
ent possible world where it can be known by a non-idealized agent.
One possible way to motivate this thesis is that other possible worlds
might use a different language, which is better suited for proving a
specific proposition. This objection formally consists in endorsing the
following principle:

∀A. (A ⊃ ◇∃x(Kx(A) ∧ ¬I(x)). (7.2)

Florio and Murzi claim that by introducing a proposition s, which
forces the spatial structure of a world to be similar to the actual world
this objection can be blocked. Thus let s be a description of the actual
world (which for example forces the spacial time structure or the
language) 9, now consider 9 Essentially s shall force the minimum

proof size of A to be larger than the
agents cognitive capacities.∃A.A ∧ s ∧◻(∀x.Kx(A ∧ s) ⊃ I(x))). (7.3)

The argument now runs as before, additionally using that the world
where the agent knows A ∧ s must additionally have the same spacial
time structure as the actual world since this is forced by s.

Raclavský (2018) criticizes that the paradox of idealization is based
on the obviously self-refuting assumption that an idealized agent
knows that no idealized agents exist. Thus it is not necessary to even
consider typing approaches to reject this inference. We would argue
that this is not an invalid inference but at the core of how the unknow-
able truth has been constructed.

7.2.2 Discussion

Now, does the paradox of idealization threaten IEL or is it a refutation
of the co-reflection principle? First, there is the technical difficulty
that the knowledge paradox uses a multi-agent logic. At first glance,
the IEL principles seem hard to apply in a multi-agent logic. If the
co-reflection principle is adapted naively as A → Ka(A) for every
agent a, the aforementioned justification of the co-reflection principle
would not work anymore and any agent would know all theorems of
intuitionistic propositional calculus and not just those for which she
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has access to a proof. However, the intuitionistic and distributivity
principles seem to translate easily.10 So can P ∧ ∀x.I(x) be known 10 For example the intuitionistic reflec-

tion principle can be translated as
∀aA.Ka(A) ⊃ ¬¬A.

under an IEL-interpretation?

Lemma 7.4 Equation (7.1) cannot be known, when using IEL principles.

Proof. Again, assume the proposition is known by an agent a. Since
knowledge distributes over conjunction we obtain Ka(P)∧Ka(∀x.¬I(x)).
Again from (P1) we can derive I(a). Now we cannot use reflection, but
intuitionistic reflection and obtain ¬¬∀x.Ix, which still is inconsistent
with I(a).

Note, that this argument does not even depend on how IELs co-
reflection principle is expressed in a multi-agent setting. We could try
to express co-reflection as

∀A. A ⊃ ∀a. ◇Ka(A) (7.4)

or as
∀A.A ⊃ ∃a.◇Ka(A). (7.5)

The important question here is if the agents (over which the universal
quantification ranges) can be idealized or not. If it is possible that A
can only be known by idealized agents, we can derive the paradox of
idealization. Otherwise, it is possible to bite the bullet and endorse
strict finitism in IEL. At least for IEL this seems to be the better and
maybe more natural strategy, since the idea behind the co-reflection
principle already relies on the agent being able to verify a proof of A.
It would limit knowledge to what can actually be verified e.g. it would
not be possible for an agent to know decidable propositions involving
apodictic numbers, even if there is a for example a verified computer
program that can construct a proof for any n.

While even this might be acceptable, though severely limiting the
propositions which are true and can be known, it is questionable if
the co-reflection axiom can work well with strict finitism. Consider an
agent constructing a sequence of proofs A, K A, KK A, . . . . If these
proofs increase in size and there is a limit on her cognitive capacities,
there will be an n s.t. the agent can know Kn(A) but not Kn+1(A). This
argument can also be framed as a happy sorites argument11, consider 11 Montesano Montessori (2019) calls an

argument a happy sorites argument if all
the premisses are true but the conclusion
obviously is not.

the following framing:

A can be known
For any A: If A can be known, so can K A.

K2100(A) can be known ∴

This would indeed make the co-reflection principle unplausible.
It would contradict the well-motivated assumption that we actually
cannot know propositions with proof sizes of 2100. However, there
are some arguments that strict finitism and the existence of happy
sets (i.e. sets which are closed under successor but bounded) are not
inconsistent (Magidor, 2012), for example one could argue that proofs
by inductions are not (or only in a restricted sense) available to the
strict finitist.
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Remarks The paradox of idealization has not generated a lot follow-
up scholarly work. We are aware of Akcelik (2016) claiming to solve
the paradox. He achieves this by restricting the scope of ∀a.¬I(x) to
actual agents.



8
Conclusion

We have presented results about IEL in a constructive setting. Our
main results included a constructive decidability proof and a con-
structive proof of completeness and strong quasi-completeness for
modified semantics. As a second result, we have studied and com-
pared approaches to mechanizing sequent calculi and especially cut-
elimination proofs in the Coq proof assistant. We formulated sequent
calculi which were well suited for mechanization and were able to
extend the results to the classical modal logic K.

In this chapter we discuss related and future work.

8.1 Related Work

This section is split into three subsections: One concerned with papers
about IEL, which do not necessarily have a mechanization component,
and two others concerned with (mostly) mechanized completeness
and one about mechanized cut-elimination (and decidability) proofs,
respectively.

IEL Of course the main reference for IEL is the paper introducing
the logic by Artemov and Protopopescu (2016). Protopopescu (2016a)
furthermore proves soundness and completeness of embeddings from
IEL to S4. His dissertation (Protopopescu, 2016b) consists of two more
papers on IEL, one investigating the connection between IEL and
modal logics of verifications and one about fallibilistic knowledge.

The proof theory of IEL has been studied by Krupski and Yatmanov
(2016). Su and Sano (2019) proposed a sequent calculus for IEL with
the subformula property and extended IEL with first order quantifica-
tion. As already mentioned, their calculus for IEL uses sets of formulas
with at most 1 element in the succedent of some rules. Fiorino (2021)
has further studied proof search for IEL. Tarau (2019) develops a theo-
rem prover for IEL using Prolog and presents embeddings from IEL
into IPC (intuitionistic propositional calculus), however soundness or
completeness proofs about the embeddings are not given. We tried
to investigate those, but were only able to formally verify a sound-
ness proof. This allows for proving consistency of IEL utilizing the
consistency of IPC (Hagemeier, 2020). Recently it has been suggested
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by de Groot et al. (2021) that IEL’s modality can be embedded into
Heyting-Lewis logic with a strict-implication modality.

There have been some type-theoretic investigations into IEL and
IEL−. Perini Brogi (2021) develops a typed modal λ-calculus which
is Curry-Howard-equivalent to IEL. One very interesting result of
this work is that the knowledge modality in IEL seems to be weaker
than type truncation; thus simply reading K as type truncation (or
inhabitedness) seems to be too simple. Furthermore Rogozin (2021)
proposes a modal λ-calculus which is Curry-Howard-equivalent to
IEL−.

Formalized completeness of modal logics Bentzen (2019) proves com-
pleteness and soundness of the classical modal logic S5 in Lean. His
proofs are entirely classical. There are slightly different Henkin-style
constructions, for example van Dalen (2013) uses a construction where
only disjunctive formulas are enumerated and one of the disjuncts
is added to the context. It might be interesting to formalize these.
Doczkal and Smolka (2016) prove completeness and decidability for
CTL in Coq/SSreflect.

Cut-elimination and decidability The main references for our decid-
ability and cut-elimination proofs are the report by Dang (2015) and
lecture notes by Smolka and Brown (2012). Michaelis and Nipkow
(2017) use a similar method as we do, to prove (among other results
like completeness) cut-elimination for classical propositional logic.
They formalize their results in the Isabelle/Hol. Park (2013) formalizes
a bidirectional decision procedure for an intuitionistic modal logic
using Coq. Hara (2013) formalizes decidability of intuitionistic propo-
sitional logic in Coq. The decision procedure uses a terminating search
in a cut-free sequent calculus. The result is obtained by induction on
the multiset ordering. Chaudhuri et al. (2017) prove cut-elimination
for linear logic in Abella. Their encoding is similar to the permutation
encoding in Coq, they also mention to have a Coq version of their code.
Van Doorn (2015) proves soundness, completeness and cut-elimination
for classical propositional logic in Coq, his cut-elimination proof is
semantic. Penington (2018) has an incomplete mechanization of cut
elimination following Troelstra and Schwichtenberg in Coq. Cox (2019)
proves equivalence between a sequent calculus and natural deduction
for intuitionistic propositional logic in Isabelle/Hol. Indrzejczak (2017)
proposes to prove tautology elimination instead of cut-elimination. He
claims that the resulting proofs are easier. Wu and Goré (2019) claim
to mechanize the first verified decision procedures for K, KT and S4.
They formalize their results in Lean und use a tableau-method.

8.2 Future Work

While our decidability procedure is correct, it is currently not very
efficient. A first step to this end, would be to mechanize the decision
procedure used for obtaining PSPACE-completeness by Krupski and



INTUITIONSITIC EPISTEMIC LOGIC IN COQ 72

Yatmanov. Our current procedure is needs more than polynomial
space since the number of subformulas is not polynomial in the size of
a formula. It might also be worthwhile to verify the algorithms given
in Fiorino (2021), who give a sequent representation for IEL, with
linear sized proof trees. Their refutation calculus could also be used to
obtain an informative decider for IEL, e.g. a decision procedure that
constructs either a derivation or , if Γ ⊬ A, a countermodel.

It would certainly be interesting to further if the additional axioms
used in the strong-completeness proof can be weakened or to establish
which classical axioms can be proven when assuming . For example,
similar analyses (among other work) were done by Forster et al. (2021),
who investigated first-order intuitionistic logic.

Another possibly interesting area for future research, would be to
extend IEL to multiple agents, similar to Jäger and Marti (2016), we
already outlined some of the problems this approach might face. The
translation of the co-reflection rule seems to be quite challenging, one
might approach this by formalizing it as Aa(P) → Ka(P), read as if an
agent is aware of a proof of P, she knows that P. However it is not
clear, how semantics for this operator should work.

It might be easier to obtain a completeness result using a different
notion of model. For example Coquand and Smith (1996) proves com-
pleteness of topological models for intuitionistic FOL (first-order-logic)
in a proof assistant based on constructive type theory. In unpublished
work, Krupski also mentioned that IEL has the finite model property
for topological models.

In the context of cut-elimination proofs it might be interesting to
try and find even easier proofs or to prove cut for a general class of
logics. For example Tews (2013) formalizes cut-elimination for the
class co-algebraic logics in Coq, based on a paper by Pattinson and
Schröder (2010). However classical axioms are used.

There is the option to prove decidability by embedding (intuitionis-
tic) propositional modal logics into the two-variable guarded fragment
of first-order logic (Alechina & Shkatov, 2006). Formalizing such a
translation and the decidability of the two-variable guarded fragment
would immediately yield decidability proofs for a large class of modal
logics, however this is non-trivial.

8.3 Overview of the Mechanization

The mechanization also includes some results which have not been fur-
ther mentioned in the thesis. These are the aforementioned soundess
proof of Tarau’s embedding and a embedding of IEL into Coq’s logic
which can be used to establish consistency of a variant of the natural
deduction system in T instead of P. We believe that it should in theory
be possible to translate between the two for consistency proofs, since
the goal is negated. The complete development has been verified using
Coq 8.13.2. The development and a reference to the accompanying doc-
umentation can be found online, the accompanying coq-development
can also be found there.

https://www.ps.uni-saarland.de/~hagemeier/website/iel.embedding.html#embedding
https://www.ps.uni-saarland.de/~hagemeier/website/iel.embedding.html#embedding
https://www.ps.uni-saarland.de/~hagemeier/website/iel.shallow.html#nd_type_consistent
https://www.ps.uni-saarland.de/~hagemeier/bachelor.php
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Component Spec Proof

preliminaries 121 93
natural deduction + lindenbaum 183 418

completeness 219 585
constructive completeness 81 258

cut-elimination + decidability IEL 193 398
cut-elimination + decidability K 116 362

∑ 720 2307

permutation-based cut for K 125 644
permutation-based cut for IEL 176 1045
permutation library and solver 106 143

∑ 407 1832

Overall ∑ 1127 4139

Figure 8.3.1: Overview of the mechaniza-
tion components

In Figure 8.3.1 an overview over the size of the development in
terms of code size is given. The line-counts were extracted using coqwc.
Reiterating a point made in the discussion at the end of chapter 6, the
difference in code size between the permutation encoding and the
permutation-encoding by Dang and Smolka is vast. While our cut-
elimination proofs differ significantly from Dang’s, the decidability
proofs are similar but had to be slightly adjusted for the modal rules
and different formula datatype.

Our formulization also relied on a permutation-solver from GitHub1 1 https://github.com/foreverbell/
permutation-solverand the Programming System Lab’s Base Library2. It is an interesting
2 https://github.com/uds-psl/
base-libraryprospective for future work to optimize the compile-time by using

automatic proof search / solvers more efficiently. While the current
compile time is feasible, it could be faster. On a 2.6 GHz machine
compilation takes about 4 minutes, however when compiling with
4 threads the compilation time reduces to only 2.5 minutes. This is
mostly due to proof automation taking a long time to solve for exam-
ple (more or less easy) inclusions e.g. Γ1, A ⊆ Γ1, Γ3 if we additionally
know that A ∈ Γ1. The hope would be that for example proofs of the
inversion lemmas could be fully automated. Here it might help to
use more advanced Coq features, for example, creating multiple hint
databases.

https://github.com/foreverbell/permutation-solver
https://github.com/foreverbell/permutation-solver
https://github.com/uds-psl/base-library
https://github.com/uds-psl/base-library
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