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We prove soundness and completeness for IEL− in a classical setting. The
general proof idea and structure is taken from Artemov and Protopopescu
(2016), the Lindenbaum lemma’s formalization is based on previous works
by Wehr (2018) (constructive extension of contexts) and Bentzen (2019)
(reasoning about delta chain in a proof assistant). Wehr proves complete-
ness for classical first-order predicate logic. Bentzen proves completeness
for (non-intuitonistic) propositional modal logic S5 in the Lean proof as-
sistant using classical reasoning. The proofs have been formalized in the
Coq proof assistant. We outline how the proofs can be adapted for IEL .

IEL and IEL− were introduced by Artemov and Protopopescu (2016) as
logics which model an intuitionistic conception of knowledge. Formulas
in intuitionistic epistemic logic are generated by the following Backus-
Naur-Form:

φ, ψ := pi | ¬ψ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | K φ

where pi is any proposition from a set of (possibly countably infinite)
propositional variables. The set of all formulas is denoted by F . In the
accompanying Coq development, variables are represented by natural
numbers.

The provability relation for IEL− can be presented as a natural deduc-
tion calculus whose rules are listed in Figure 1. We use the common no-
tation Γ ` φ to express that from a set of formulae Γ, the formula φ can
be derived. One obtains a natural deduction calculus for IEL by adding
intuitionistic reflection that is Γ ` K φ→ Γ ` ¬¬φ.

A
ϕ ∈ Γ

Γ ` ϕ

E
Γ ` ⊥
Γ ` ϕ

II
Γ ∪ {ϕ} ` ψ Γ ` ϕ

Γ ` (ϕ→ ψ)

IE
Γ ` (ϕ→ ψ) Γ ` ϕ

Γ ` ψ

KIMP
A ` K (ϕ→ t)

A ` K ϕ→ K t

INTREFL
A ` s

A ` K s

DIL
A ` s

A ` s ∨ t

DIR
A ` t

A ` s ∨ t

DE
A, s ` ψ A, t ` ψ A ` s ∨ t

A ` q

CI
A ` s A ` t

A ` s ∧ t

CEL
A ` s ∧ t

A ` s

CER
A ` s ∧ t

A ` t

Figure 1: Natural deduction rules for IEL−

We call any set of formulas Γ a context. In our development, contexts
are represented as predicates Γ : F → P. With the intended reading,
that φ ∈ Γ if and only if Γ φ is provable.
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We define an adjunction operation on contexts which adds a formula
into a context. This operations is defined as Γ, φ := λz.Γ z ∨ (z = φ).
Two contexts are extensionally equivalent, denoted by A ≡ B if ∀φ ∈
F : A φ ⇐⇒ B φ. Extensionally equivalent contexts derive the same
formulae.

Lemma 1 (Weakening). For contexts Γ, Ω if Γ ⊆ Ω and Γ ` ψ then
Ω ` ψ.

Proof. The proof is by induction on the derivation Γ ` ψ.

Our representation of contexts as functions allows for infinite con-
texts, which will ease proving completeness. However, reasoning along
the lines “ Since Γ ` φ, there are γ1, . . . , γn−1 s.t. γ1, . . . , γn−1 ` φ”
becomes more complicated. We therefore introduce the concept of a fi-
nite context and proof that Γ ` φ if and only if there is a finite subcontext
proving φ. In Coq we use the notion of listability for expressing finiteness,
that is a context is finite iff there is a list containing every formula from
the context.

Lemma 2 (Finite Derivation Lemma). For any context Γ and formula φ,
Γ ` φ if and only if there exists a finite context γ ⊆ Γ with γ ` φ.

Proof. The “ =⇒ ”-direction is proven by induction on the derivation.
The only-if direction is proven by weakening.

Lindenbaum Lemma

The Lindenbaum lemma states that any context not deriving a formula
ψ can be extended to a theory, that is a set such that φ ∈ Γ ⇐⇒ Γ ` φ,
which also does not derive ψ and adding any formula, not already con-
tained, would allow deriving ψ.

In this section we consider a fixed context Γ and a formula ψ not deriv-
able in Γ, i.e. Γ 0 ψ. The construction works by greedily extending the
context. We assume an enumeration δ : N → F which is surjective, i.e.
for every formula φ ∈ F there exists (at least) an n s.t. δ n = φ.

We begin by defining a function, which extends a context by a formula,
if this does not lead to the context deriving ψ.

Γ + φ :=

Γ, φ if Γ, φ 0 ψ

Γ otherwise

We realize this function not as an if-statement (since we have not proven
decidability for `) but instead encode the case distinction as a disjunc-
tion:

Γ + φ := λγ . Γ γ ∨ (Γ, φ 0 ψ ∧ γ = φ)

Lemma 3. Either Γ + φ ≡ Γ and Γ + φ ` ψ or Γ + φ ≡ Γ, φ.

Proof. Either Γ, φ ` ψ or Γ, φ 0 φ by classical reasoning. After doing a
case analysis on that, the proof is easy.
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The construction used to generate the maximal set is to define a chain
of sets ∆0 = Γ ⊆ ∆1 ⊆ · · · ⊆ ∆m ⊆ . . . . Where ∆i+1 is obtained
by extending ∆i by the i-th formula in our enumeration, if this does not
cause the set to derive ψ.

∆i :=

Γ if i = 0
(∆i−1 + φi−1 otherwise

Lemma 4 (Lindenbaum). If Γ 0 ψ, then ∆ :=
⋃

i∈N

∆i

• is a theory, that is ∆ ` φ ⇐⇒ φ ∈ ∆

• does not derive ψ, formally ∆ 0 ψ

• is prime1, i.e. Γ ` s ∨ t→ Γ ` s ∨ Γ ` t 1 Note, that for theories an equivalent def-
inition would be (s ∨ t) ∈ Γ → s ∈
Γ ∨ t ∈ Γ.• is a superset of Γ, i.e. Γ ⊆ ∆

We will prove each of the above parts independently. We start with the
easiest:

Lemma 5. Γ ⊆ ∆

Proof. Since ∆0 = Γ and ∆0 ⊆ ∆ the inclusion is true.

To proof that ∆ does not derive ψ we first proof the following lemma:

Lemma 6. For all i, ∆i 0 ψ.

Proof. The proof is by induction on i. The i = 0 case is easy, in the suc-
cessor case, we can establish the property using Lemma 3.

Proving that the union of all ∆i’s does not derive ψ is a bit harder. Our
strategy is the following one: We proof that ∆ ` ψ ⇐⇒ ∃i, ∆i ` ψ.

Lemma 7 (Chain lemma). ∆ ` ψ ⇐⇒ ∃i, ∆i ` ψ

Proof. Showing the only-if part is easy: Assume ∆i ` φ. Since ∆i ⊆ ∆
weakening completes the proof.

For the if-part, we use the fact that ∆ ` φ implies that there is a finite
context ∆φ ⊆ ∆ s.t. ∆φ ⊆ ∆ and ∆φ ` φ. Since for every element γ in ∆
there is a minimal i s.t. γ ∈ ∆i there is an index I (the maximum of the
individual minimal I’s) s.t. all formulas in γ are ∆I . Thus (by weakening)
∆I ` φ.

Lemma 8. ∆ 0 φ.

Proof. Assume ∆ ` φ, then by the Chain lemma there is an i s.t. ∆i ` φ.
This contradicts Lemma 6.

Thus we have proven that ∆ does not derive ϕ.
Next we will prove that ∆ is a theory.

Lemma 9 (Theory Lemma). For all φ ∈ F : ∆ ` φ ⇐⇒ φ ∈ ∆.

Proof Sketch. Assume ∆ ` φ. We want to prove φ ∈ ∆. Since δ enumer-
ates F , there exists an i s.t. φi = φ. We do a case distinction on wether φ

was inserted into ∆i+1 or not (formally a case distinction on Lemma 3).



A COMPLETENESS PROOF FOR INTUITIONISTIC EPISTEMIC LOGIC 4

• If φ was not inserted, ∆i, φ ` ψ. Thus ∆ ` φ → ψ, thus we can prove
∆ ` ψ by the implication elimination rule, which contradicts lemma 8.

• If φ was inserted, it trivially also is in ∆, since ∆i ⊆ ∆.

The converse direction is proven using the assumption rule.

For establishing the primeness property, we need an additional lemma.

Lemma 10. If ∆ 0 φ then ∆ ` φ→ ψ.

Proof. The proof is similiar to Lemma 9. We do a case distinction on
wether φ was inserted or not. If it was inserted, we arrive at a contra-
diction, since it would obviously be derivable.

If φ was not inserted there is a j such that ∆j, φ ` ψ; by implication
introduction we obtain ∆j ` φ → ψ and by weakening we proof the
result.

With this Lemma in place, we can show primeness:

Lemma 11. ∆ is prime, i.e. ∆ ` (s ∨ t) =⇒ ∆ ` s ∨ ∆ ` t

Proof. By classical reasoning ∆ ` s ∨ ∆ 0 s and ∆ ` t ∨ ∆ 0 t. We get 4
cases, all cases were s or t are derivable from ∆ are straightforward. The
case ∆ 0 s, ∆ 0 t is most interesting as we need to arrive at a contradic-
tion. We know that ∆ is consistent and does not derive ψ (since Γ 0 ψ).
By the lemma above we get both ∆ ` s → ψ and ∆ ` t → ψ. Applying
the disjunction elimination rule we obtain ∆ ` φ and we have arrived at
a contradiction.

Kripke Models

Definition 1 (IEL-Models). An IEL−model is a quadruple (W ,V ,≤,≤v)
where

• W is a type, whose elements represent the possible worlds

• V : W → N → P is the valuation function, which maps worlds and
propositional variables to propositions.

• ≤ is a preorder on the worlds, the cognition relation

• ≤v is the verification relation on worlds

To be a valid IEL− models the following constraints have to be satisified:

• The verification relation has to be a subrelation of the cognition rela-
tion, i.e. u ≤v v =⇒ u ≤ v for all u, v ∈ W .

• If u ≤ v and v ≤v w then u ≤v w for all u, v ∈ W .

IEL models have the additional condition, that every world has a ≤v-
successor , i.e. ∀w ∈ W : ∃w′ ∈ W : w ≤v w′.
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The distinction between IEL− and IEL models will be made by defin-
ing a predicate on the models.

Next we have to define semantic entailment in the model. That is we
define a semantic entailment relation between formulas and worlds. This
entailment relation is represented as a function from models, a formula
and a world in the model to propositions. We use the common notation
M, w  φ to denote that φ is semantically entailed in the modelM at
world w .

Definition 2. We can define semantic entailment by induction on the for-
mula.

• M, w  pi := Vw(i)

• M, w  φ ∧ ψ := (M, w � φ) ∧ (M, w � ψ)

• M, w  φ ∨ ψ := (M, w � φ) ∨ (M, w � ψ)

• M, w  φ → ψ := ∀w′, w ≤ w′ =⇒ (M, w′ � φ) =⇒ (M, w′ �
ψ)

• M, w  K φ := ∀w ≤v w′ : w′ � φ

• M, w  ⊥ := ⊥

Note, that the last case establishes, that⊥ can never be true at a model
(unless we have proven falsity).

Completeness

In order to prove completeness we define a canonical modelMc.

Definition 3 (Canonical Model). The canonical model is a quadruple (W, V,≺
,≺v) with

• W := {Γ|Γ is a consistent prime theory}

• V(s, Γ) := s ∈ Γ

• Γ ≺ Γ′ :⇔ Γ ⊆ Γ′

• Γ ≺v Γ′ :⇔ ΓK ⊆ Γ′ where ΓK := {φ|K φ ∈ Γ}. 2 2 Note that (we will also proof this result
below) for every theory Γ, ΓK ⊆ Γ′ =⇒
Γ ⊆ Γ′, since in both IEL and IEL− intu-
itionistic reflection holds.

Lemma 12. The canonical model is a model for both IEL− and IEL .

Proof. We need to check that

• ≺ is a preorder

• ≺v⊆≺

• Γ ≺ Ω ∧Ω ≺v Λ→ Γ ≺v Λ

The first one is simple and left out. For the second assume Γ ≺v Ω. We
need to show that Γ ≺ Ω, i.e. Γ ⊆ Ω. Let φ ∈ Γ, by co-reflection (and the
fact that Γ is a theory), we get K φ ∈ Γ. Thus φ ∈ ΓK and since ΓK ⊆ Ω
the claim φ ∈ Ω follows.

To prove the third one, first note that Γ ⊆ Ω =⇒ ΓK ⊆ ΩK.3 We can 3 The proof is simple: Let φ ∈ ΓK thus by
definition K φ ∈ Γ. Since Γ ⊆ Ω, K φ ∈
Ω immediately follows and by definition
φ ∈ ΩK.
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assume Γ ≺ Ω that is Ω ⊆ Γ, thus ΓK ⊆ ΩK by our insight and Γ ≺v Λ
that is ΩK ⊆ Λ. With transitivity of⊆ we obtain the desired result.

For IEL , we addditionally have to prove, that there are no worlds with-
out a≺v successor. To main idea to prove, that a world Γ has a≺v succes-
sor, is to apply the Lindenbaum-Lemma to ΓK avoiding to derive ⊥. To
proof that this extension does not derive ⊥ (and therefore is consistent
and thus a world in the canonical model), it suffices to prove ΓK 0 ⊥,
which can be done by using reasoning similar to the Artemov Lemma be-
low. 4 4 Assume ΓK ` ⊥ then by the Artemov

Lemma Γ ` K⊥. Using, that IEL de-
rives K⊥ → ⊥, we could proof Γ `
⊥. This would contradict our assumption,
that Γ is consistent (since Γ is a world in
the model).

The canonical model has the property, that a formula is semantically
entailed at a world if and only if it is an element of the respective world.
We will need a small additional lemma first.

Lemma 13 (Artemov Lemma). For any context Γ, ΓK ` φ→ Γ ` K φ.

Proof. Assume ΓK ` φ. By the finite derivation lemma, this implies the
existence of finitely many γi such that{γ1, . . . , γm} ` φ with γ1, . . . , γm ∈
ΓK. We can shift the context into the formula (we iteratively apply the
equivalence s, Γ ` t ⇐⇒ Γ ` s → t) and thus have a proof of
` γ1 → γ2 → · · · → γm → φ. By using positive introspection and
iteratively applying the KIMP rule, that is K s→ t ` K s → K t, we ob-
tain ` Kγ1 → · · · → Kγm → K φ. We can now “unshift” the Kγi

into the context and get {Kγ1, . . . ,Kγm} ` K φ. But now Γ ` K φ since
Kγ1, . . . ,Kγm ∈ Γ since γ1, . . . , γm are contained in ΓK.

In the proof of the next lemma we will use the contrapositive of the
Artemov Lemma.

Lemma 14 (Truth Lemma). For all φ ∈ F , Γ ∈ W(Mc) : Mc, Γ �
φ ⇐⇒ φ ∈ Γ.

Proof. Induction on the formula φ with the worlds quantified. We write
Γ  φ and leave out the modelMc.

Case φ = ⊥: In the if-part we get falsity Γ  ⊥ = ⊥ as an assumption.
Since we can proof anything from falsity, the proof is done. In the only-
if part, we know that Γ⊥ is provable. Since our models are consistent
theories, meaning ¬Γ⊥, we have a proof of falsity.

Case φ = s ∧ t: We get the induction hypotheses ∀Γ : Γ  s ⇐⇒ s ∈ Γ
and ∀Γ : Γ  t ⇐⇒ t ∈ Γ. For the if-part, we can assume Γ  (s∧ t)
thus Γ  s and Γ  t by the definition of . Therefore we have a
proof of s ∈ Γ and t ∈ Γ. We can now apply the introduction rule for
conjunction and obtain a proof of Γ ` (s ∧ t), and since Γ is a theory,
this proofs s∧ t ∈ Γ. For the other direction, assume (s∧ t) ∈ Γ, since
Γ is a theory Γ ` s∧ t and by conjunction elimination Γ ` s and Γ ` t.
Again using that Γ is a theory and applying the inductive hypothesis
concludes the proof.

Case φ = s ∨ t: The proof is (somewhat) similar to the conjunction proof,
as we get the same inductive hypotheses. It can be done by equational
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reasoning and needs that in a prime theory Γ, s ∨ t ∈ Γ ⇐⇒ s ∈
Γ ∨ t ∈ Γ:

Γ  s ∨ t ⇐⇒ s ∨ t ∈ Γ

Γ  s ∨ Γ  t ⇐⇒ s ∨ t ∈ Γ (Definition of )
Γ  s ∨−  t ⇐⇒ s ∈ Γ ∨ t ∈ Γ (Γ is a prime theorie)
s ∈ Γ ∨ t ∈ Γ ⇐⇒ s ∈ Γ ∨ t ∈ Γ (inductive hypothesis)

Since the last equivalence is a tautology (and we only used rewriting
with equivalences), the proof is done.

Case φ = Kψ: For the only-if-part we can assume Kψ ∈ w and need to
show w  Kψ that is for all w′ �v w : w′  ψ. Let w′ be such a
world. Since w ≺v w′ and K φ ∈ w, we know φ ∈ w′, by the inductive
hypothesis we deduce w′  φ.
We show the if-part by contraposition. So assume K φ /∈ Γ. We have
to show Γ 1 K φ. Since Γ is a theory, Γ 0 K φ, thus ΓK 0 φ by the
Artemov Lemma. Using the Lindenbaum-Lemma we can extend ΓK

to a consistent prime theory Γ′ without φ i.e. φ /∈ Γ′. But by the in-
ductive hypothesis, this implies Γ′ 1 φ. We have Γ ≺v Γ′, since Γ′ is
an extension of ΓK but Γ′ 1 φ, therefore Γ 1 K φ.

Case φ = s→ t: We will start by proving the only-if part, since it is easier.
So assume s → t ∈ Γ. We need to prove that for every world Γ′ � Γ if
Γ′  s then Γ′  t. So let Γ′ be such a world; therefore assume Γ ≺ Γ′

and Γ′  s. We need to prove Γ′  t. By the inductive hypothesis and
since Γ′ is a theory, it suffices to show Γ′ ` t. We apply the elimination
rule for implications and have to show Γ′ ` (s→ t) and Γ′ ` s. For the
second part, it suffices to show s ∈ Γ′ (by the inductive hypothesis),
but that was our assumption. For the second, we know (s → t) ∈ Γ.
Using Γ ≺ Γ′ we get (s→ t) ∈ Γ′.
For the if-part, we show the contraposition. That is we assume (s →
t) /∈ Γ and need to prove Γ 1 s → t. For this it suffices to show the
existence of a Γ′ ≺ Γ, in which s is a semantic consequence and t is
not, i.e. Γ′  s and Γ′ 1 t. We construct such a Γ′ as the Lindenbaum-
extension of s, Γ, avoiding to derive t. That such a extension is a world
our model is straightforward, since the Lindenbaum-Lemma gener-
ates consistent maximal theories.5 The Lindenbaum-Lemma also guar- 5 Notice, that at such a Γ′, s is always se-

mantically entailed due to monotonicity.antees that such an extension does not derive t if the initial context
does not derive it. That s can be derived is straightforward. Of course
we need to check the precondition, that is s, Γ 0 t. Assume s, Γ ` t, by
implication introduction we get Γ ` s→ t which would contradict our
assumption. Therefore Γ 0 s→ t and we can apply the Lindenbaum-
Lemma.

Theorem 1 (Completeness). If a formula is entailed in every model it is
derivable from an empty context.
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Proof. We show the contraposition. Assume 0 φ. By the Lindenbaum
Lemma there is a prime ∆ such that φ /∈ ∆. By the Truth Lemma, in the
canonical model ∆ 1 φ. But then the formula is not entailed in every
model.

Conclusion

We proved soundness and completeness in a classical setting and mech-
anized the proof for IEL− in Coq. Next steps could include

• mechanize the proof for IEL

• proof decidability of IEL or/and IEL−

• try to proof completeness constructively
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