This thesis presents a machine-checked constructive metatheory of computation tree logic (CTL) and its sublogics K and K* based on results from the literature. We consider models, Hilbert systems, and history-based Gentzen systems and show that for every logic and every formula s the following statements are decidable and equivalent: s is true in all models, s is provable in the Hilbert system, and s is provable in the Gentzen system. We base our proofs on pruning systems constructing finite models for satisfiable formulas and abstract refutations for unsatisfiable formulas. The pruning systems are devised such that abstract refutations can be translated to derivations in the Hilbert system and the Gentzen system, thus establishing completeness of both systems with a single model construction. All results of this thesis are formalized and machine-checked with the Coq interactive theorem prover. Given the level of detail involved and the informal presentation in much of the original work, the gap between the original paper proofs and constructive machine-checkable proofs is considerable. The mathematical proofs presented in this thesis provide for elegant formalizations and often differ significantly from the proofs in the literature.