We explore the theory of regular language representations in the constructive type theory of Coq. We cover various forms of automata (deterministic, nondeterministic, one-way, two-way), regular expressions, and the logic WS1S. We give translations between all representations, show decidability results, and provide operations for various closure properties. Our results include a constructive decidability proof for the logic WS1S, a constructive refinement of the Myhill-Nerode characterization of regularity, and translations from two-way automata to one-way automata with verified upper bounds for the increase in size. All results are verified with an accompanying Coq development of about 3000 lines.