Publication details

Saarland University Computer Science

Domain-Independent Local Search for Linear Integer Optimization

Joachim Paul Walser

PhD Thesis, Universität des Saarlandes, Fachbereich Informatik, October 1998

Integer and combinatorial optimization problems constitute a major challenge for algorithmics. They arise when a large number of discrete organizational decisions have to be made, subject to constraints and optimization criteria.
This thesis describes and investigates new domain-independent local search strategies for linear integer optimization. We introduce WSAT(OIP), an integer local search method which operates on an algebraic problem representation. WSAT(OIP) generalizes Walksat, a successful local search procedure for propositional satisfiability (SAT), to more expressive constraint systems.
For this purpose, we introduce over-constrained integer programs (OIPs), a constraint class which is closely related to integer programs. OIP allows for a natural generalization of the principles of SAT local search to integer optimization. Further, it will be shown that OIPs are a special case of integer linear programs and permit combinations with linear programming for bound computation, initialization by rounding, search space reduction, and feasibility testing. The representation is similar enough to integer programs to make use of existing algebraic modeling languages as front-end to a local search solver. To improve performance on realistic problems, WSAT(OIP) incorporates strategies from Tabu Search.
We experimentally investigate WSAT(OIP) for a variety of realisic integer optimization problems from the domains of time tabling, sports scheduling, radar surveillance, course assignment, and capacitated production planning. The experimental design examines efficiency, scaling (with increasing problem size and constrainedness), and robustness. The results demonstrate that integer local search can outperform or compete with state-of-the-art integer programming (IP) branch-and-bound and constraint programming (CP) approaches to these problems in finding near-optimal solutions.
Key findings of our empirical study include that integer local search is able to solve difficult constraint problems from time-tabling and sports scheduling when cast into a 0-1 representation, which are beyond the scope of IP branch-and-bound strategies and for which devising robust constraint programs is a non-trivial task.
For several realistic optimization problems (0-1 integer and finite domain) we show that integer local search exhibits graceful runtime scaling with increasing problem size and constrainedness. It can therefore significantly outperform IP branch-and-bound strategies on large or tightly constrained problems in finding near-optimal solutions. The problems under consideration are mostly beyond the limitations of a previous general-purpose simulated annealing strategy for 0-1 integer programs.

Download PDF        Show BibTeX               


Login to edit


Legal notice, Privacy policy