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Abstract
We formally prove the undecidability of entailment in intu-
itionistic linear logic in Coq. We reduce the Post correspond-
ence problem (PCP) via binary stack machines and Minsky
machines to intuitionistic linear logic. The reductions rely on
several technically involved formalisations, amongst them a
binary stack machine simulator for PCP, a verified low-level
compiler for instruction-based languages and a soundness
proof for intuitionistic linear logic with respect to trivial
phase semantics. We exploit the computability of all func-
tions definable in constructive type theory and thus do not
have to rely on a concrete model of computation, enabling
the reduction proofs to focus on correctness properties.

CCS Concepts • Theory of computation→Models of
computation; Linear logic; Type theory.

Keywords Undecidability, many-one reduction, binary stack
machines, Minsky machines, intuitionistic linear logic, low-
level compiler, constructive type theory, Coq
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1 Introduction
Undecidability of advanced problems is usually established
using computable (many-one) reductions from a problem
already known to be undecidable. Such reductions rely on
many subtle details and could thus be a prime example for
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the use of interactive theorem provers to assist ongoing re-
search. However, formalisations of undecidability proofs are
not common in the literature. There are two main obstacles
in our eyes: (1) proofs on paper mostly omit the invariants
needed for the verification of the reduction; (2) they omit
the computability proof, which amounts to the formal veri-
fication of a program in the chosen model of computation.
Constructive type theory, as implemented in the proof

assistant Coq [37], provides a particularly convenient set-
ting for decidability and undecidability proofs. Since every
function definable in constructive type theory is computable,
one can use a synthetic approach to computability. This ap-
proach makes an explicit model of computation and explicit
computability proofs unnecessary, enabling the proofs to
focus on the invariants needed for the reduction.
In this paper we contribute a formalised chain of reduc-

tions, starting at the Post correspondence problem (PCP), via
binary PCP (BPCP), BPCPwith indices (iBPCP), binary stack
machines (BSM), Minsky machines (MM) and (elementary)
intuitionistic linear logic (both eILL and ILL):

PCP ⪯ BPCP ⪯ iBPCP ⪯ BSM ⪯ MM ⪯ eILL ⪯ ILL

Combined with the reductionHalt ⪯ PCP of [10], this yields
a fully formalised reduction from the halting problem of
Turing machines to entailment in ILL.

PCP is a problem over a finite set of cards, each having a
string at the top and bottom. Such a PCP instance is solvable
if there is a non-empty finite sequence of those cards with
an equal upper and lower string. We follow [10] in giving a
definition of PCP with countably many symbols. We reduce
PCP to BPCP, where symbols are restricted to Booleans and
to iBPCP, where the sequence of cards is represented by a
sequence of their indices (natural numbers).
We describe a general framework for the semantics of

instruction-based machine models and explain how it can
be used for compositional reasoning. We then define bin-
ary stack machines as an instance of such instruction-based
machines. BSMs have a fixed number of binary stacks and
programs consist of consecutively indexed PUSH and POP
instructions, the latter allowing conditional jumps based
on the obtained Boolean or if the stack is empty. A BSM
program terminates if it jumps to a non-existing index. We
verify an iBPCP simulator —which is a BSM program ter-
minating if and only if a given iBPCP instance is solvable—
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by enumerating all possible sequences of cards. The pro-
gram size is linear in the size of the instance and always has
more than 80 instructions. It consists of several independ-
ent sub-programs, making the verification crucially rely on
compositional reasoning.
We define Minsky machines [31] with a fixed number of

natural-number registers as another instance of instruction-
based machines.MM-programs consist of INC and DEC op-
erations, the latter allowing conditional jumps if the re-
gister is zero. We describe and verify a general compiler
for instruction-based languages and use it to compile BSM
programs to MM programs. The main challenge is to re-
arrange jumps using a linker. For the reduction we have
to prove correctness of the compiler for both terminating
and non-terminating programs, a notable difference to other
verified compilers (e.g. [5, 27]).

We formalise intuitionistic linear logic with a sequent cal-
culus SILL. We introduce the elementary fragment of ILL [25,
26] together with a goal directed sequent calculus GeILL
which is equivalent to SILL on this fragment: both define the
same entailment predicate. We give a denotational semantics
for ILL using trivial phase semantics based on commutat-
ive monoids and prove soundness of SILL for this semantics.
Finally, we show that entailment in GeILL is complete for
trivial phase semantics, yielding a reduction of eILL to ILL.
Our arguments slightly generalise those of the proof in [26]
to formalise the reduction chain MM ⪯ eILL ⪯ ILL.

We conclude the paper by summarising our efforts to build
a library of undecidable problems in Coq [13] and by giving
an overview of related work. The library should contain
both entry points for plugging new undecidability results
and tools to mechanise the corresponding reductions. We
discuss some ongoing additions to our library.

The axiom-free Coq formalisation of all the results in this
paper is available online and the main lemmas and theorems
in the pdf version of the paper are hyper-linked with the
html version of the Coq source code:

https://uds-psl.github.io/ill-undecidability

2 Type Theory and Formal Undecidability
2.1 Definitions
We write P to denote the type of propositions. The basic
inductive data structures we use are natural numbers (n :
N ::= 0 | S n), Booleans (b : B ::= 0 | 1), the option type
(OX ::= (x : X ) | ⋆) and lists (l : LX ::= [] | x :: l). We write
l1 ++ l2 for the concatenation of two lists, |l | for the length
of a list, l for the reversal of a list, and [ f s | s ∈ l ] for a
map over a list. We define l[i] : OX as the i-th element of l .
Moreover, we write s ∈ l if s is a member of l , and l1 ⊆ l2 if
every member of l1 is a member of l2.

Wewill overload the notation for lists and use it for vectors
as well. Given a type X , we write the (dependent) type of
vectors of length n as Xn . We denote by Fn the finite type

of n elements (α, β : Fn ::= 0 | . . . | n − 1). If v : Xn , x : X
and α : Fn , we define v[α] as the α-th component of v and
v[α := x] as the vectorv updated by x on its α-th component.

2.2 Undecidability in Coq
A decision problem consists of a typeX and a unary predicate
p : X → P on X . A problem (X ,p) is decidable if there is a
function f : X → B s.t.∀x . p x ↔ f x = 1, or equivalently, if
there is a (dependent) decider of type ∀x : X , {p x} + {¬p x}.
Being able to define the concept of decidability without

referring to a model of computation is a feature of construct-
ive type theory: due to the commitment of its designers to
effective methods, all definable functions are computable.
There has been a lot of work on proving problems to be
decidable using this notion, see e.g. [4, 7, 8, 21, 24, 30, 35].

Note that since it is consistent in constructive type theory
to assume that all problems are “decidable,” i.e. by the axiom
∀P : P, {P} + {¬P}, the logical negation of decidability
of a problem p can never be actually proven.1 However, in
practice, the undecidability of a problem is rarely established
directly anyway. Most proofs are by reduction from another
undecidable problem, and ultimately most problems are thus
proven undecidable by reduction from an initial undecidable
problem. In most textbook presentations, it is the halting
problem (Halt) which is seen as a seed of undecidability.

The idea to exploit reductions to prove the undecidability
of problems is well-known. It was first used to formalise un-
decidability proofs in a proof assistant without referring to
an explicit model of computation in [10]. They define (many-
one) reductions from a problem (X ,p) to (Y ,q) as a (comput-
able) function f : X → Y such that ∀x, p x ↔ q (f x). We
write p ⪯ q and say that p reduces to q if a reduction of (X ,p)
to (Y ,q) exists. In the case of axiom-free Coq, all such reduc-
tions are inherently computable and thus, computability can
be dropped from the definition. This coincides with usual
practice in non-formalised papers where the computability
of reductions is left out most of the time.
Actually, many-one reductions are only an instance of

the more general notion of Turing-reductions (see e.g. [34]):
(X ,p) is Turing-reducible to (Y ,q), written p ⪯T q, if p is
decidable given that q is decidable.

Lemma 2.1. If p ⪯ q then p ⪯T q.

The structure of undecidability proofs can be comprehens-
ively described using an inductive predicate undec p:

undec Halt

p ⪯T q undec p

undec q

1This illustrates that adding axioms to Coq could render the assumption
that all functions are computable invalid, thus we safely commit ourselves
to axiom-free Coq.

https://uds-psl.github.io/ill-undecidability
https://uds-psl.github.io/ill-undecidability/Undecidability.UNDEC.html#red_turing


Certified Undecidability of Intuitionistic Linear Logic via BSM and MM CPP ’19, January 14–15, 2019, Cascais, Portugal

The first rule establishes the halting problem for Turing
machines as a seed of undecidability. By the second rule,
undecidability can be transferred via (Turing) reductions.

Lemma 2.2. undec (λx .¬p x) implies undec p.

Proof. If p is decidable then so is λx .¬p x . □

Lemma 2.3. undec p if and only if Halt ⪯T p.

A problem that would be decidable and undecidable at the
same time would entail an obviously unwanted statement:

Lemma 2.4. If p is decidable and undec p then Halt is de-
cidable.

We rely on the assumptions that Halt in [10] is a faithful
implementation of the halting problem and that functions
in Coq are indeed computable. If the latter would not be
the case, the earlier mentioned publications on decidability
proofs would all lose their grounds.

The choice ofHalt as the seed of undecidability is arbitrary:
most problems that are universally accepted as undecidable
would work. Since the halting problem Halt for a concrete
Turing machine model has already been reduced to PCP
in Coq [10], we can safely use PCP as an alternate seed
of undecidability. This also explains why the reductions in
this paper start at PCP. Remark that we use this inductive
definition of undec only for illustrative purposes. For our
proofs, we simply rely on many-one reductions.

3 Post Correspondence Problem
All definitions concerning strings will be parametrised over
a type X of symbols. We will later use natural numbers as
symbols for PCP and Booleans as symbols for BPCP. A string
is a list of symbols. We write X ∗ if the symbol type is X . We
call strings over Booleans bitstrings. The letters x , y, z, u,
and v range over strings, and the letters a, b, c range over
symbols. We write xy for x ++y and ax for a :: x . We use ϵ to
denote the empty string.
A card x/y a is a pair (x,y) of two strings. When we call

x/y a card we see x as the upper and y as the lower string
of the card. A card set (CS) is finite set of cards represented
by a list (where the order and multiplicity do not matter). A
stack is a sequence of cards also represented by a list (but
the order and multiplicity matter). The letters A, B, C range
over stacks and the letter R ranges over CS. We use the letter
I to range over a list of natural numbers.

The upper trace A1 and the lower trace A2 of a stack A are
strings defined by the following equations:

[]1,2 := ϵ (x/y ::A)1 := x(A1) (x/y ::A)2 := y(A2)

Note that A1 is the concatenation of the upper strings of
the cards in A, and that A2 is the concatenation of the lower
strings of the cards in A. We say that a stack A matches if
A1 = A2. A match is a matching stack.

We define the predicate for the Post correspondence problem
over elements of type X as symbols as:

PCP (R : CSX ) := ∃A ⊆ R. A , [] ∧A1 = A2

Note that PCP(R) holds iff there exists a non-empty match
A ⊆ R. If we do not specify the type X , we mean the spe-
cial case PCP (R : CSN) where the symbols type is N, used
as the standard one in [10]. Here we also define the bin-
ary Post correspondence problem fixing Booleans as symbols:
BPCP (R : CSB) := PCP (R : CSB).

Finally, we define a version of BPCP using explicit indices,
which is easier to treat for low-level machines. We define
functions IkR for lists of indices I and k ∈ {1, 2}.

[]kR := ϵ (i :: I )kR := IkR (for R[i] undefined)

(i :: I )1R := x(I 1R ) (i :: I )2R := y(I 2R ) (for R[i] = x/y)

and define binary PCP with indices:

iBPCP (R : CSB) := ∃I , [], (∀i ∈ I , i < |R |) ∧ I 1R = I 2R

Note the equivalence when we reverse lists of indices:

Lemma 3.1. iBPCP R iff ∃I , [], (∀i ∈ I , i < |R |)∧ I
1
R = I

2
R .

3.1 PCP Reduces to BPCP
We define a function f : N∗ → B∗ by f ϵ := ϵ and f (nx) :=
1n0 (f x) and we extend f to cards and lists of cards by
pointwise application.

Lemma 3.2. The following hold for k ∈ {1, 2}:

1. (f A)k = f (Ak ) and 2. If A ⊆ C then f A ⊆ f C .

We define the inverse function д : B∗ → N→ N∗ with an
auxiliary argument by д ϵ n := ϵ and д (1x)n := д x (1 + n)
and д (0x)n := n(д x 0). We write д x for д x 0 and again
extend it pointwise to cards and stacks.

Lemma 3.3. If k ∈ {1, 2} and A ⊆ f B then

1. (дA)k = д(Ak ) and 2. дA ⊆ B.

Theorem 3.4. PCP ⪯ BPCP.

Proof. We prove that PCPR ↔ BPCP(f R).
For the direction from left to right let [] , A ⊆ R with

A1 = A2 be given. Then f A ⊆ f R by Lemma 3.2 (2), f A , []

is trivial and (f A)1 = (f A)2 follows from Lemma 3.2 (1).
For the direction from right to left let [] , B ⊆ f R with

B1 = B2 be given. д B ⊆ R follows by Lemma 3.3 (2), д B , []

is trivial and (д B)1 = (д B)2 by Lemma 3.3 (1). □

3.2 BPCP Reduces to iBPCP
We define

f R [] := []

f R (x/y ::A) := n :: f R A (if x/y ∈ R at pos. n)
f R (x/y ::A) := f R A (if x/y < R)

https://uds-psl.github.io/ill-undecidability/Undecidability.UNDEC.html#undec_compl
https://uds-psl.github.io/ill-undecidability/Undecidability.UNDEC.html#undec_char
https://uds-psl.github.io/ill-undecidability/Undecidability.UNDEC.html#undec_PCP
https://uds-psl.github.io/ill-undecidability/Undecidability.Definitions.html#PCP
https://uds-psl.github.io/ill-undecidability/Undecidability.Definitions.html#BPCP
https://uds-psl.github.io/ill-undecidability/Undecidability.Definitions.html#BPCP
https://uds-psl.github.io/ill-undecidability/Undecidability.iBPCP_BSM.html#tiles_solvable_iBPCP
https://uds-psl.github.io/ill-undecidability/Undecidability.iBPCP_BSM.html#tau1_f
https://uds-psl.github.io/ill-undecidability/Undecidability.iBPCP_BSM.html#f_subset
https://uds-psl.github.io/ill-undecidability/Undecidability.iBPCP_BSM.html#tau1_g
https://uds-psl.github.io/ill-undecidability/Undecidability.iBPCP_BSM.html#f_g_subset
https://uds-psl.github.io/ill-undecidability/Undecidability.PCP_BPCP.html#PCP_BPCP
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and

д R [] := []

д R (i :: I ) := (x/y)(д R I ) (if R[i] = x/y)
д R (i :: I ) := д R I (if R[i] is undefined)

Lemma 3.5. The following hold for k ∈ {1, 2}:
1. If B ⊆ R then (f R B)kR = Bk

2. If (∀i ∈ I , i < |R |) then (д R I )k = IkR .

Proof. (1) is by induction on B, (2) by induction on I . □

Theorem 3.6. BPCP ⪯ iBPCP.

4 Code
We define code over arbitrary instruction sets to reuse later
for both binary stack machines and Minsky machines. Since
both instruction sets contain absolute jump instructions, the
positions of instructions are represented by natural numbers.

4.1 Syntax
We model the type of code type-theoretically by defining it
over a type of instructions I as N × L I. We use the letter ρ
for individual instructions and P for lists of instructions. A
code (i, [ρ0; ρ1; . . . ; ρn−1]) can be seen as a labelled program:

i : ρ0; i + 1 : ρ1; . . . i + n − 1 : ρn−1;

where i, i + 1, . . . , i + n − 1 represent program counter (PC)
values which identify the positions of individual instructions.
The reason we use any number i instead of just 0 as the first
label is to be able to reason about the whole code as well as
about segments in the code, segments which we call subcode.
We define the subcode relation denoted (i, P) <sc (j,Q) by

(i, P) <sc (j,Q) := ∃ l r , Q = l ++ P ++ r ∧ i = j + |l |

meaning that P is the segment of Q starting at label i . Many
of the upcoming semantic relations below defined will be
“somehow preserved” by the subcode relation and this is an
essential ingredient of compositional reasoning over subcode;
see Section 4.3 for more precise preservation properties.
The start label of a code (i, P) is start(i, P) := i . The end

of code for (i, P) is the first label above the code block, i.e.
end(i, P) := i + |P |. We define when a PC value k is in(side)
or else out(side) of the code block (i, P) as

in k (i, P) := start(i, P) ≤ k < end(i, P)
out k (i, P) := k < start(i, P) ∨ end(i, P) ≤ k .

4.2 Semantics
The semantics of all our machines is defined by providing a
type of states S := N×C where a state (i,v) : S is composed
of a PC value i : N and an abstract configuration v : C,2
and a step relation denoted ρ // (i1,v1) ≻ (i2,v2) of type
2meaning that C is a type parameter to be instantiated later on, usually
together with the type parameter I of instructions.

I→ S→ S→ P which describes the effect of instruction ρ,
transforming the state (i1,v1) into the state (i2,v2).
We inductively extend the step relation to a small-step

semantics of type N × L I→ S→ N→ S→ P denoted by
(i, P) // (i1,v1) ≻n (i2,v2), and meaning that the program
(i, P), starting from state (i1,v1), reaches state (i2,v2) after
the execution of n individual instructions:

(i, P) // (i1,v1) ≻
0 (i1,v1)

P = P1 ++ ρ :: P2 i1 = i + |P1 |
ρ // (i1,v1) ≻ (i2,v2) (i, P) // (i2,v2) ≻

n (i3,v3)

(i, P) // (i1,v1) ≻
n+1 (i3,v3)

The first two premises of the second rule express that in-
struction ρ occurs at position i1 in the program (i, P), or
equivalently (i1, [ρ]) <sc (i, P). Notice that whenever j sat-
isfies out j (i, P) then (i, P) // (j,v) ≻n s implies n = 0 and
s = (j,v), i.e. the computation is blocked outside of (i, P).

To shorten notation, we will often use s to represent states
like (i,v) and P to represent code like (i, P). We define the
transitive closure ≻+ and reflexive-transitive closure ≻∗ of
the step relation as follows:

P // s ≻+ s′ := ∃n > 0, P // s ≻n s′

P // s ≻∗ s′ := ∃n, P // s ≻n s′

We call the step relation deterministic if for any ρ and s, s1
and s2, if ρ // s ≻ s1 and ρ // s ≻ s2 then s1 = s2. In this paper,
we only consider deterministic step relations. In this case,
the small-step semantics is also deterministic, i.e. for any P, s
and n, there is at most one s′ s.t. P // s ≻n s′. However, there
are generally many possible s′ s.t. P // s ≻∗ s′. Thus neither
≻∗ nor ≻+ are a well-suited big-step semantics because they
are not deterministic. By further assuming termination, we
obtain the unicity of the end state.

Hence we define the (deterministic) big-step semantics as
the terminates on predicate, and in addition, we also define
the terminates on in p steps predicate, the terminates on with
progress predicate and the termination predicate as:

P // s⇝ (j,w) := P // s ≻∗ (j,w) ∧ out j P
P // s⇝n (j,w) := P // s ≻n (j,w) ∧ out j P
P // s⇝+ (j,w) := P // s ≻+ (j,w) ∧ out j P

P // s ↓ := ∃s′, P // s⇝ s′

Finally note that although out j P is a sufficient condi-
tion for j to be a state where the program cannot progress
any more, this condition is not necessary. Indeed, in certain
models of computation, some instructions might block a
program, either unconditionally like a HALT instruction, or
conditionally when a POP instruction is not allowed to run
on an empty stack. To avoid having to distinguish between
halting when outside or halting on a blocking instruction,
we only manipulate machine models where the step relation
is total, i.e. the property ∀ρ s ∃s′, ρ // s ≻ s′ holds. In that

https://uds-psl.github.io/ill-undecidability/Undecidability.BPCP_iBPCP.html#itau_tau1
https://uds-psl.github.io/ill-undecidability/Undecidability.BPCP_iBPCP.html#tau_itau1
https://uds-psl.github.io/ill-undecidability/Undecidability.BPCP_iBPCP.html#BPCP_iBPCP
https://uds-psl.github.io/ill-undecidability/Undecidability.Code.subcode.html#subcode
https://uds-psl.github.io/ill-undecidability/Undecidability.Code.sss.html#sss_steps
https://uds-psl.github.io/ill-undecidability/Undecidability.Code.sss.html#sss_steps
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case, being outside of the code is the only way to block a
computation.

4.3 Compositional Reasoning over Subcode
Compositional reasoning is the ability to derive properties
of the whole from the properties of its components. It is an
essential tool in the certification of big developments such
as low-level computer code.
In our setting, compositional reasoning translates into

tools which allow the transfer of properties of subcode to
larger code. For instance, the following property is a simple
and obvious example of compositional reasoning:

Lemma 4.1. Given P <sc Q we have for any n, s, s′:

P // s ≻n s′ → Q // s ≻n s′

This reflects the fact that a computation running inside
some subcodeP ofQ also runs insideQ itself. Amore critical
tool of compositional reasoning is the following result:

Lemma 4.2. Given P <sc Q we have for any s1, s3:

Q // s1 ⇝ s3 → ∃s2, P // s1 ⇝ s2 ∧ Q // s2 ⇝ s3

Any terminating computation in code Q can be decom-
posed into a prefix terminating computation in subcode P
followed by a suffix terminating computation in Q.

Lemma 4.3. If we assume the step relation ≻ to be determin-
istic, we get:

P <sc Q ∧ P // s1 ≻+ s2 ∧ Q // s1 ⇝p s3
→ ∃q < p, Q // s2 ⇝q s3

This last result allows the analysis of terminating computa-
tions in Q by induction on their length, using the behaviour
of its subcodes such as P, as soon as they make the compu-
tation progress.

Such tools are our major examples of compositional reas-
oning: they are used to derive e.g. soundness and complete-
ness properties of computations in code Q from the sound-
ness properties of progressing computations in its subcodes.

5 Binary Stack Machines
We define Binary Stack Machines (BSM) as a particular in-
stance of (low-level) code. BSM have a fixed number n : N
of Boolean stacks modelled by lists of Booleans. We fix a
number n of stacks as a parameter for all further definitions.
BSM configurations are vectors v of n Boolean stacks, i.e.
C := (LB)n . We define BSM instructions as follows:

In ::= POP (α : Fn) (p : N) (q : N) | PUSH (α : Fn) (b : B).

5.1 Semantics for BSM
The rules defining the step relation for BSM instructions are:

PUSH α b // (i,v) ≻ (1 + i,v[α := b :: l]) if v[α] = l
POP α p q // (i,v) ≻ (q,v) if v[α] = []

POP α p q // (i,v) ≻ (p,v[α := l]) if v[α] = 0 :: l
POP α p q // (i,v) ≻ (1 + i,v[α := l]) if v[α] = 1 :: l

The PUSH α b instruction pushes b : B to the stack α . The
POP α p q instruction (1) jumps to PC value q if the stack α
is empty, or (2) jumps to p if the top element of the stack α
is 0 and removes it or (3) increases the PC by one if the top
element of the stack α is 1 and removes it.
The above defined step relation for BSM is obviously de-

terministic and total: individual instructions always execute
and depending on the input state, lead to a unique output
state. Finally, we define the halting problem for binary stack
machines as a predicate over a dependent quadruplet:

BSM
(
n : N, i : N, P : L In,v : (LB)n

)
:= (i, P) // (i,v) ↓.

Note that the execution starts with the first instruction of
the program and that we do not care about its final state as
long as it terminates (on a PC value outside of its code).

5.2 Overview of the Reduction from iBPCP to BSM
We first describe the overall idea of the reduction and then
explain some parts in detail. Recall that an iBPCP instance is
given as a list R : L (LB×LB) of binary cards. The problem
is to find a non-empty list of indices of cards of R such that
the upper and lower trace are equal. We solve this problem
using a simulator denoted pcp_bsmR implemented as a BSM-
program in which the iBPCP instance R is hard-coded.
So let us fix the list R. The program pcp_bsmR will solve

the instance generated by R. A card ci in R = [c0; . . . ; ci ; . . . ]
is represented by its index i < |R |. Finding a match is de-
composed into three problems: (1) enumerate all the possible
non-empty lists of card indices below |R |; (2) given a non-
empty list of card indices, decode it into an upper trace and
a lower trace and (3) compare those two traces for equality.
The simulator pcp_bsmR has 4 binary stacks s,u, l and a:

stack s contains the encoding of the current list of cards
indices, u and l contain the upper and lower traces, and a is
a spare stack for internal computations:

(1) pcp_bsmR solves part (1) by generating in s all the
possible non-empty finite binary sequences. We use
a simple encoding of LN in LB: e.g. the list [5; 3; 0; 2]
of card indices is to be recognised as the sequence
000001·0001·1·001 (the · only helps at reading). Any
binary sequence which is not a valid encoding of cards
— be it terminating with a 0 or be it containing indices
larger than |R |— is going to be rejected as invalid
in part (2) and pcp_bsmR will branch again at (1) to
generate the next possible binary sequence in s .

https://uds-psl.github.io/ill-undecidability/Undecidability.Code.sss.html#subcode_sss_steps
https://uds-psl.github.io/ill-undecidability/Undecidability.Code.sss.html#subcode_sss_compute_inv
https://uds-psl.github.io/ill-undecidability/Undecidability.Code.sss.html#subcode_sss_progress_inv
https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.bsm_defs.html#Binary_Stack_Machine
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(2) Given an encoding of a non-empty sequence of cards
indices in s , pcp_bsmR computes the upper (resp. lower)
trace of that sequence in u (resp. l). To decode a card
index at the top of s , it uses a dispatcher that analyses
the head sequence of s of the shape 0i1 . . . If i ex-
ceeds |R | or s ends up empty before a 1 is encountered,
then the dispatcher rejects the whole sequence s as
an invalid encoding of card indices and jumps back to
part (1). Otherwise, it decodes the cards indices one
after the other and, when encountering the index i of
card ci , defers the execution into a hard coded version
of card ci = (xi/yi ) that pushes the upper part of xi
into u and the lower part yi into l , i.e. u ⇝ xi ++u
and l ⇝ yi ++ l and then continues the analysis of the
remaining part of s . Note that after the decoding of the
sequences [i1; . . . ; ik ] of indices, we get xik ++ · · ·++xi1
inu andyik ++ · · ·++yi1 in l , i.e. the cards are stacked in
reversed order, but we proved that this is no problem
in Lemma 3.1.

(3) Given an upper/lower trace in u/l , pcp_bsmR solves
part (3) by a 1-to-1 comparison between u and l . If u
differs from l , pcp_bsmR reverts back to generating the
next binary sequence by branching at (1). If u equals l
then pcp_bsmR jumps to a terminating PC value out-
side of its code.

Notice that pcp_bsmR never stops if there is no solution to
the iBPCP instance R. On the other hand, since (1) enumer-
ates any possible card list (including some possibly invalid
encodings which are rejected as such), if there is a solution
to R, then pcp_bsmR will stop when (3) detects such a solu-
tion where u = l . Of course, these parts (1)-(3) correspond
to specific BSM code for which correctness and complete-
ness results are established. Here we only explain certain
sub-programs of the pcp_bsmR program.

5.3 Details of the Reduction from iBPCP to BSM
To solve part (1), we enumerate all index lists using a function
next : LB → LB such that the sequence of its iterations
starting at [0] visits all non-empty binary lists:

Lemma 5.1. There is a function next : LB→ LB such that

∀A : LB, A , [] → ∃n : N, nextn [0] = A.

Then we show that next is BSM-computable:

Lemma 5.2. For any n, i : N and x , y : Fn there is a
program increment : L In with 15 instructions satisfying

∀v, (i, increment) // (i,v) ≻∗ (15 + i,v[x := next (v[x])]).

Notice the absence of y in the specification of increment
witnessing its use as a spare register: its content might be
locally modified during the execution of increment but it is
reverted back to its initial value afterwards. Using a simple
loop over increment allows us to solve part (1) of pcp_bsmR .

To solve part (2) we implement programs tileα/β pushing
the strings α and β to the stacks x and y:

Lemma 5.3. For all n : N, x , y : Fn and α, β : LB there is a
program tileα/β : L In with |tileα/β | = |α | + |β | satisfying
the following specification:

∀v i w, w = v
[
x := α ++v[x],y := β ++v[y]

]
→ (i, tileα/β ) // (i,v) ≻

∗ (|tileα/β | + i,w).

The cards decoder consists in gluing tilec1 , tilec2 , . . . ,
tileck where R = [c1; . . . ; ck ], interleaved with a measure
of the number j of head 0’s inv[s] = 0j1 . . . to branch on the
appropriate tilec j . This decoders also detects and rejects a
value j ≥ |R | or a stack v[s] of the form 0∗ not containing
any 1. This card index decoder is implemented by structural
induction on R. We refer to the Coq term full_decoder in
file bsm_utils.v for more detailed explanations. This solves
part (2) of pcp_bsmR .

To solve part (3), we implement stack comparison.

Lemma 5.4. For all n : N, x , y : Fn and i,p,q : N, there is a
program compare_stacks : L In (of length 10) which satisfies
the following specification:

∀v ∃ j w, (i, compare_stacks) // (i,v) ≻∗ (j,w)

∧ ∀z, z , x → z , y → v[z] = w[z]

∧ (v[x] = v[y] ∧ j = p ∨v[x] , v[y] ∧ j = q).

Hence, compare_stacks can distinguish between v[x] =
v[y] and v[x] , v[y] by jumping to either p or (another)
PC value q. Notice that the resulting statew is not affected
too much by the computation since it preserves any stack
register except x and y. Since the values of w[x] and w[y]
are unspecified, we might have to erase them afterwards:

Lemma 5.5. The program (i, empty_stack) with

empty_stack := [POP x i (3 + i); PUSH x 0; POP x i i]

composed of 3 instructions satisfies the specification

∀v, (i, empty_stack) // (i,v) ≻∗ (3 + i,v[x := []]).

This solves part (3) of pcp_bsmR . To complete the reduc-
tion of an iBPCP instance to aBSM instancewe have to prove
soundness and completeness of the pcp_bsmR program. We
do this by combining the previous results using the tools of
compositional reasoning described in Section 4.3.

Theorem 5.6 (iBPCP simulator). For any configuration v
and any state s, the two following properties hold:

iBPCP R → (1, pcp_bsmR ) // (1,v) ≻∗ s0 (sound)
(1, pcp_bsmR ) // (1,v)⇝ s → iBPCP R ∧ s = s0 (complete)

where s0 = (0,v0) and v0 = [s,u, l,a := []].

Let us remark that the length of pcp_bsmR is 86 + 3|R | +
sizeR where sizeR is the length of all concatenated upper
and lower traces in R. This allows us to conclude:

Theorem 5.7. iBPCP ⪯ BSM.

https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.list_bool.html#list_bool_next_total
https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.bsm_utils.html#increment_spec
https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.bsm_utils.html#tile_spec
https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.bsm_utils.html#full_decoder
https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.bsm_utils.html#compare_stack_spec
https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.bsm_utils.html#empty_stack_spec
https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.bsm_pcp.html#pcp_bsm_sound
https://uds-psl.github.io/ill-undecidability/Undecidability.Bsm.bsm_pcp.html#pcp_bsm_complete
https://uds-psl.github.io/ill-undecidability/Undecidability.iBPCP_BSM.html#iBPCP_BSM_HALTING
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6 A Certified Low-Level Compiler
We present the implementation of a certified compiler for
low-level languages as defined in Section 4, to be used in later
Section 7.3 to reduce BSM-termination to MM-termination.
Let us start with a description of the problem. We are

given two models of computation X and Y as presented in
Section 4, each with their own set of instructions and their
own semantics described by step relations. We adapt the
notation of Section 4 to discuss about those two different
models at the same time by decorating the notations with
either X or Y , hence P //X s1 ≻3 s2 means program P

of model X can compute state s2 in 3 steps when starting
from state s1, while Q //Y s ↓means that the computation of
program Q of model Y terminates when starting from state
s. The model X will be the source while Y will be the target
model of the compiler.

The compiler consists of transforming any program P in
model X into a program Q in model Y such that Q simulates
the behaviour of P faithfully. We model the correspondence
between the configurations of machines in model X and in
model Y by a simulation binary relation ▷◁ : CX → CY → P.
A typical soundness result would be

v1 ▷◁ w1 ∧ P //X (i1,v1) ≻
∗ (i2,v2)

→ ∃(j2,w2), v2 ▷◁ w2 ∧ Q //Y (j1,w1) ≻
∗ (j2,w2)

meaning that this particular computation of P from (i1,v1) is
simulated by some computation ofQ from (j1,w1) preserving
the simulation relation between the configurations in X and
Y . However, such a result only expresses a relation between
configurations, not between PC values. The relation between
PC values is going to be made more precise using a linker.

As it is generic, our compiler cannot cope with the partic-
ular behaviour of individual instructions because that really
depends on the choice of X and Y : for instance, there can-
not exist a correct compiler if model X is more expressive
than model Y . As a result, the generic compiler assumes as
input a one-to-many instruction compiler that transforms a
single instruction in IX into a list of instructions in L IY .
The problem solved by our generic compiler is transforming
this individual instruction compiler into a program compiler
while preserving soundness.

Because the replacement of X instructions by Y instruc-
tions is one-to-many, absolute jumps must be relocated at
addresses that depend on the whole program, not only on the
instruction that is being compiled. For instance, consider the
absolute jumps p and q embedded in the BSM-instruction
POP α p q which is compiled in 16MM-instructions in Sec-
tion 7.3. These PC addresses p/q must be recomputed before
compiling the POP α p q instruction. But their new values
depend on the content of the compiled program ahead of the
instructions they point at. If they point forward, a chicken-
and-egg problem appears. To solve it, traditional compilers
replace p/q with symbolic addresses and the whole program

is compiled in a symbolic address space of graph-like struc-
ture. Symbols are resolved by a linker in a later phase that
maps the graph of instructions into a sequence again.
Here, we can avoid this quite complex machinery by as-

suming a specific feature of our instruction compiler: even
though the list llρ : L IY of Y -instructions corresponding
to some X -instruction ρ : IX might depend on where ρ is
located in the compiled code (and also on where the absolute
and relative3 jumps which ρ contains are remapped), the
length |llρ | does not depend on those actual positions. So there
is a first abstract compilation phase that only computes the
length of codes, from which we can deduce a linker that is
going to be compatible with a later concrete compilation
phase that computes actual instructions at their definitive
location as given by the linker.
Let us now describe the compiler more formally. We as-

sume an instruction compiler and a code length function:

icomp : (N→ N) → N→ IX → L IY
ilen : IX → N

where icomp lnk i ρ compiles instruction ρ into llρ : L IY
at source position i using linker lnk to remap absolute and
relative jumps, and the length of llρ is given by ilen ρ. Hence,
we assume the hypothesis

Hilen : ∀ lnk i ρ, |icomp lnk i ρ | = ilen ρ

so that the length of compiled instructions only depends
on instruction ρ, not where it is positioned (i.e. i) or where
jumps are remapped (i.e. lnk). In contrast, the actual code
icomp lnk i ρ almost always depends on lnk and i .
Let us now come to the semantic soundness hypothesis

on icomp. For this, a step relation for X and a step relation
for Y must be given. For simplicity of arguments, we assume
that the step relation for X is total and that the step relation
for Y is deterministic (i.e. functional).

HX : the step relation ≻X is total
HY : the step relation ≻Y is deterministic

We do not view totality as a strong requirement. It could be
noted however that determinism would not be satisfied in
case the target code involves some form of parallelism.
Given a simulation relation ▷◁ : CX → CY → P between

the configurations ofX andY , the critical soundness assump-
tion we make on icomp is the following:

Hicomp : ∀ lnk ρ (i1,v1) (i2,v2) w1,

ρ //X (i1,v1) ≻ (i2,v2)

∧ v1 ▷◁ w1 ∧ lnk(1 + i1) = ilen ρ + lnk(i1)

→ ∃w2, (lnk i1, llρ ) //Y (lnk i1,w1) ≻
+ (lnk i2,w2)

∧ v2 ▷◁ w2

3Although instructions might not refer to specific relative addresses ex-
plicitly, the default incrementation of the PC by one makes +1 an almost
ubiquitous relative address.
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where llρ is shorthand for llρ := icomp lnk i1 ρ. It requires
some explanations: Hicomp states that if llρ is the result of
the compilation of instruction ρ at source position i1 using
linker lnk, if theX -step relation for ρ transforms state (i1,v1)
into state (i2,v2) and if w1 simulates v1, then the compiled
code llρ at its target address as given by lnk computes some
state (lnk i2,w2) from state (lnk i1,w1) in the Y semantics
andw2 simulates v2. The simulated computation must make
progress, hence llρ can never be empty. Additionally, the
pre-condition lnk(1 + i1) = ilen ρ + lnk(i1) assumes that the
linker lnk preserves the +1 (implicit) relative address.

These assumptions, in particular Hicomp which is the most
important, are sufficient to build our program compiler and
show its correctness, of which the proof is decomposed in
two phases: a semantic one and a syntactic one.

6.1 Semantic Correctness of Compiled Code
Under the previous assumptions, suppose that we are given a
sourceX -program P, a linker lnk and a compiledY -program
Q. We give a syntactic correctness criterion which is suffi-
cient to establish that Q correctly simulates P. The criterion

HPQ : ∀ i ρ, (i, [ρ]) <sc P → ∧

{
(lnk i, icomp lnk i ρ) <sc Q
lnk(1 + i) = ilen ρ + lnk(i)

means that whenever instruction ρ occurs in P at position i
then its corresponding compiled code icomp lnk i ρ occurs at
position lnk i in Q and lnk respects the 1+ i relative address.
This condition does not involve the semantics chosen for
X and Y at all, it is a purely syntactic assumption which,
in combination with Hicomp, is sufficient to ensure that Q
correctly simulates P.

Theorem 6.1. Under assumptions Hicomp,Hilen,HX ,HY and
HPQ , the program Q soundly simulates P, that is for any
(i1,v1), (i2,v2) andw1, the following property holds:

v1 ▷◁ w1 ∧ P //X (i1,v1) ≻
∗ (i2,v2)

→ ∃w2, v2 ▷◁ w2 ∧ Q //Y (lnk i1,w1) ≻
∗ (lnk i2,w2)

Proof. By induction on the computation of P. □

The completeness of Q is more complicated to express
and prove because not every computation of Q corresponds
to a computation of P. To ensure that property, we must
restrict the computations of Q to those which start at some
lnk i (obviously) but we must also assume termination using
big-step semantics.

Theorem 6.2. Under assumptions Hicomp,Hilen,HX ,HY and
HPQ , the program Q completely simulates P, that is for any
(i1,v1) andw1, the following property holds:

v1 ▷◁ w1 ∧ Q //Y (lnk i1,w1) ↓ → P //X (i1,v1) ↓

Proof. By complete induction on the length q of the termin-
ating computation Q // (lnk i1,w1)⇝

q s. □

Hence, to get a correct (sound and complete) compiler
from a sound instruction compiler, it is enough to produce
code that satisfies HPQ which is a purely syntactic criterion.

6.2 A Syntactically Correct Compiler
Obtaining lnk and Q satisfying condition HPQ from P is
not completely trivial because as said earlier, the linker lnk
which represents the remapping of the address space of the
source program P, depends on the length of compiled code
(hence Q) and P needs lnk to be compiled correctly. The
circularity is broken under the Hilen assumption that isolates
code length from target address space considerations.
More formally, given source code P = (i, [ρ0; . . . ; ρn−1])

and a destination address j where the compiled code is sup-
posed to start, we first build lnk such that

lnk(k + i) = j + ilen ρ0 + · · · + ilen ρk−1 for k ∈ [0,n]

and then the compiled code Q as

Q := (j, icomp lnk i ρ0 ++ · · ·++ icomp lnk (n − 1 + i) ρn−1).

There are some subtleties of secondary importance related to
where source PC values outside of P should be remapped.4
For our purpose, we simply map them all to lnk(n + i). This
simple linker/compiler satisfies the syntactic correctness cri-
terionHPQ and we deduce the following correction theorem.

Theorem 6.3 (Compiler). Assuming Hicomp,Hilen,HX ,HY ,
for any X -program P and any destination address j, one can
compute a linker lnk : N→ N and a Y -program Q with the
following properties:

1. j = startQ = lnk(startP);
2. for any i , out i P → lnk i = endQ;
3. the following holds for any i1,v1, i2,v2,w1:

v1 ▷◁ w1 ∧ P //X (i1,v1)⇝ (i2,v2)

→ ∃w2, v2 ▷◁ w2 ∧ Q //Y (lnk i1,w1)⇝ (lnk i2,w2)

4. the following holds for any i1,v1,w1, j2,w2:

v1 ▷◁ w1 ∧ Q //Y (lnk i1,w1)⇝ (j2,w2)

→ ∃ i2v2, v2 ▷◁ w2 ∧ P //X (i1,v1)⇝ (i2,v2) ∧ j2 = lnk i2.

This concludes our implementation of a generic and cer-
tified compiler, as a functor that maps a sound instruction
compiler into a correct program compiler.

6.3 Discussion
Our generic compiler is certainly not the only certified com-
piler around, CakeML [22] (ML compiler to assembly, certi-
fied in HOL) and CompCert [27] (C compiler to assembly, cer-
tified in Coq) being among the most famous ones. We make
some comparisons with two Coq-certified compilers [5, 27].
Unfortunately for our purpose, these two compilers both in-
volve specific source and target languages which are of little
4Depending of the intended application, it could be useful to distinguish
the remappings of source PC addresses outside of P.

https://uds-psl.github.io/ill-undecidability/Undecidability.Code.compiler_correction.html#compiler_sound
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use for the BSM-MM reduction we need. These compilers
are more ambitious than our intended BSM-MM compiler:
source and target languages are more complex both syn-
tactically and semantically. In the case of CompCert [27],
there is also an aim at certifying most of the compilation
tool-chain, up to near state-of-the-art optimisations.
Hence, we do not claim to have solved a very difficult

open problem with our generic compiler. Nonetheless, we
want to point out two of its main specificities. First, we have
identified a small set of assumptions that suffice at proving
correctness of the produced compiled code. We hope that
these could serve as guidelines for other developments to
come. More critically in our setting which consists in build-
ing reductions between undecidable problems, our compiler
comes not only with a soundness theorem 6.1 comparable to
those of [5, 27], but it also comes with a proof of complete-
ness (Theorem 6.2) stating that termination of compiled code
implies termination of source code.

In the cases of [5] or CompCert [27], this might be a non-
issue since the intended use is only for terminating programs.
To the best of our understanding, this question of complete-
ness does not seem to have been considered by any of these
projects. However, to establish undecidability results — all
the more in a constructive setting, — it is not possible to
assume termination and thus we really need a completeness
result to show the correctness of compiler-based reductions.

7 Minsky Machines
Minsky Machines (MM) [31] have n registers with natural
number values. Similar to BSM configurations, we define
MM configurations as vectors of registers values, i.e.C := Nn .
Instructions are defined by

In ::= INC (α : Fn) | DEC (α : Fn) (p : N).

7.1 Semantics for MM
The rules defining the step relation for MM instructions are:

INC α // (i,v) ≻ (1 + i,v[α := 1 + n]) if v[α] = n
DEC α p // (i,v) ≻ (p,v) if v[α] = 0
DEC α p // (i,v) ≻ (1 + i,v[α := n]) if v[α] = 1 + n

That means, INC α increases the value of register α by one.
DEC α p decreases the value of register α by one if that is
possible and increases the PC, or, if the register is already 0,
jumps to PC value p. As is the case for BSM, the step relation
forMM is both deterministic and total.

Finally, we use a more restricted halting problem for MM
than for BSM, where we start execution with PC at 1 and
expect the machine to halt with PC at 0 and on the configur-
ation where all registers are null:

MM
(
n : N, P : L In,v : Nn

)
:= (1, P) // (1,v)⇝ (0, ®0).

This restricted halting problem is well-suited for a reduction
to linear logic. We could use a more general halting problem

and then reduce this more general problem to the special
problem. However, this would require a dedicated transform-
ation onMM programs, which we circumvent by reducing
BSM to the special version directly.

7.2 Simulating Binary Stacks with Numbers
The reduction from BSM toMM is derived as a direct con-
sequence of our implementation of a generic certified low-
level compiler. Basically to get a correct compiler from BSM
to MM, the only remaining tasks are: (a) simulate binary
stacks with natural numbers, and (b) simulate individual
BSM-instructions with lists of MM-instructions. We give
a high-level overview of the principal ideas and the main
soundness and completeness results.
BSM programs manipulate binary stacks in LB while

MM programs manipulate natural numbers in N. Hence
to represent LB with N, we implement multiplication and
division by 2. For instance, we show the following fact.

Fact 7.1. For any n : N, x , q , r : Fn and i : N, the list
mm_div2 of 6 MM-instructions

[DEC x (6+ i); INC r ; DEC x (6+ i); DEC r (4+ i); INC q; DEC r i]

implements division by 2 because it satisfies the following
specification for all k,b,v :

v[q] = 0 ∧v[r ] = 0 ∧v[x] = b + 2.k
→ (i, mm_div2) // (i,v) ≻+ (6 + i,v[x := 0,q := k, r := b])

Note that b : B is cast into 0/1 : N to simplify the above
statement. We also need transfer (resp. nullify) programs
which adds the value of register x to y, nullifying x at the
same time (resp. nullifies one or several registers). These
programs are (somewhat) obvious to write and prove correct.
We can then encode a binary stack l : LB as a natural

number s2n l : N using:

s2n [] := 1 s2n (0 :: l) := 2 · s2n l s2n (1 :: l) := 1 + 2 · s2n l

and simulate PUSH x 0, PUSH x 1 and POP x j e instructions.

Lemma 7.2. For any n : N, x , z , t : Fn and i : N, there is
a list mm_push_0 of 7 instructions which satisfies the following
specification for all l,v :

v[t] = 0 ∧v[z] = 0 ∧v[x] = s2n l
→ (i, mm_push_0) // (i,v) ≻+ (7 + i,v[x := s2n(0 :: l)])

Lemma 7.3. For any n : N, x , z , t : Fn and i : N, there is
a list mm_push_1 of 8 instructions which satisfies the following
specification for all l,v :

v[t] = 0 ∧v[z] = 0 ∧v[x] = s2n l
→ (i, mm_push_1) // (i,v) ≻+ (8 + i,v[x := s2n(1 :: l)])

Lemma 7.4. For any n : N, x , z , t : Fn and i, j,k, e : N,
there is a list mm_pop of 16 instructions which satisfies the
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following specifications for any l and v s.t. v[t] = v[z] = 0:

v[x] = s2n []→ (i, mm_pop) // (i,v) ≻+ (e,v)
v[x] = s2n(0 :: l)→ (i, mm_pop) // (i,v) ≻+ (j,v[x := s2n l])
v[x] = s2n(1 :: l)→ (i, mm_pop) // (i,v) ≻+ (k,v[x := s2n l])

Hence, we simulate any individual BSM instruction by
a (small) list of MM instructions that operate on stacks en-
coded using s2n. Using Theorem 6.3 of Section 6, we obtain a
correct compiler for whole BSM programs toMM programs.

7.3 BSM Reduces toMM
We describe the correctness and completeness results we
obtain from the generic compiler of Theorem 6.3. Assume
that we are given a BSM program (i, P) with n binary stack
registers, we compile (i, P) at address 1 into a linker lnk :
N→ N and aMM programQ starting at address 1 with 2+n
registers. Each stack register p : Fn is s2n encoded into the
register 2 +p : F2+n ofQ . The registers 0, 1 : F2+n ofQ serve
as spare registers for internal computations. The simulation
invariant

v ▷◁ w := w[0] = 0 ∧w[1] = 0 ∧ ∀p,w[2 + p] = s2n(v[p])

ensures the preservation of the encoding during execution.
lnk satisfies lnk i = 1 and for any j for which out j (i, P)
holds, we have lnk j = end(1,Q). Moreover, the code (1,Q)
satisfies the following soundness and completeness results:

Fact 7.5. For any i1, i2,v1,v2,w1, the following holds:

v1 ▷◁ w1 ∧ (i, P) // (i1,v1)⇝ (i2,v2)

→ ∃w2, v2 ▷◁ w2 ∧ (1,Q) // (lnk i1,w1)⇝ (lnk i2,w2).

Fact 7.6. For any i1,v1,w1, j2,w2, the following holds:

v1 ▷◁ w1 ∧ (1,Q) //Y (lnk i1,w1)⇝ (j2,w2)

→ ∃ i2v2, v2 ▷◁ w2 ∧ (i, P) //X (i1,v1)⇝ (i2,v2).

From those correctness results, it is easy to derive a simu-
lator for BSM termination asMM termination.

Theorem 7.7 (BSM simulator). Let (i, P) be a BSM-program
with n binary stacks. One can compute a 2 + n registers MM-
program bsm_mm with the following specification. For any v ,
withw := [s2n l | l ∈ v], we have:

(i, P) // (i,v) ↓ ↔ (1, bsm_mm) // (1, 0 :: 0 ::w)⇝ (0, ®0).

Proof. The code of bsm_mm consists of the compiled code
(1,Q) of (i, P) followed by some obvious code nullifying all
the variables after the execution of (1,Q) is terminated and
then jumping to PC value 0. The nullifying code uses the fact
that any output state (j2,w2) of (1,Q) satisfies j2 = end(1,Q)
andw2[0] = 0 to nullify the other registers using register 0 as
empty register.We critically need both the soundness Fact 7.5
and completeness Fact 7.6 to get the above equivalence. □

This allows us to conclude:

Theorem 7.8. BSM ⪯ MM.

8 Intuitionistic Linear Logic

A ⊢A

Γ ⊢A ∆,B ⊢C

Γ,∆,A⊸ B ⊢C

Γ,A ⊢ B

Γ ⊢A⊸ B

Γ,A ⊢C

Γ,A& B ⊢C

Γ,B ⊢C

Γ,A& B ⊢C

Γ ⊢A Γ ⊢ B

Γ ⊢A& B

Γ,A ⊢ B

Γ, !A ⊢ B

Γ ⊢ B

Γ, !A ⊢ B

Γ, !A, !A ⊢ B

Γ, !A ⊢ B

! Γ ⊢ B
! Γ ⊢ !B

Figure 1. The SILL sequent calculus.

The reduction of MM to entailment in Intuitionistic Linear
Logic (ILL) [15] implements the method presented in [25] and
fully described in [26]. The undecidability of (I)LL was first
established in [29] and a rich literature followed [19, 20, 28],
but [25] singled out the elementary fragment of ILL (eILL)
together with a short proof of undecidability by reducing
the termination of two counters Minsky machines.

Here we present the reduction of termination of arbitrary
MM (with n counters) and we verify it in Coq. The proof
consists first of the reduction ofMM to entailment in eILL,
and then the proof of the (faithful) embedding of eILL into
ILL. The latter proof actually takes place in the {&,⊸, !} cut-
free fragment of ILL, i.e. we do not need the {⊗, ⊕,⊥,⊤, 1}
logical connectives nor the cut rule to build the embedding.

As a way to limit the technical material we need to present,
we only introduce the {&,⊸, !} fragment in this paper. How-
ever, the Coq code contains the proof of the embedding of
eILL into the whole ILL.5 Hence from now on, we will abus-
ively denote ILL for its restriction to the {&,⊸, !} fragment.

The syntax of (the {&,⊸, !} fragment of) ILL is described
by the BNF-grammar A ::= v | A & A | A⊸ A | !A where
v belongs to a countably infinite set of logical variables. A
sequent is a pair denoted Γ ⊢A composed of a multiset Γ of
formulæ and a single formula A on the right of the ⊢ sign.
The sequent calculus SILL is described in Fig. 1. In the last
rule, ! Γ denotes ! Γ := !A1, . . . , !An when Γ = A1, . . . ,An .
Using SILL, we define the entailment relation: the hypotheses
in Γ entail A when Γ ⊢A has a derivation in SILL.

8.1 eILL Reduces to ILL
ILL contains a sub-fragment called elementary Intuitionistic
Linear Logic (eILL) first spotted in [25]. It is not a syntactic
fragment at the level of formulæ, but it is a syntactic fragment
at the level of sequents. A sequent in eILL is a sequent of
ILL of the form ! Σ, Γ ⊢ u, where Γ is a multiset composed
of logical variables only and u is a unique logical variable.
On the contrary, Σ is composed of formulæ called command
5This means that our method proves the embedding of eILL into both
the {&,⊸, !} fragment and the whole ILL. However, we do not show or
formalise the embedding of the fragment into the whole: it involves a proof
of either cut-elimination, or a larger phase semantics development.

https://uds-psl.github.io/ill-undecidability/Undecidability.Mm.mm_comp.html#bsm_mm_spec
https://uds-psl.github.io/ill-undecidability/Undecidability.BSM_MM.html#BSM_MM_HALTING
https://uds-psl.github.io/ill-undecidability/Undecidability.Ll.ill.html#S_ill
https://uds-psl.github.io/ill-undecidability/Undecidability.Ll.ill.html#S_ill
https://uds-psl.github.io/ill-undecidability/Undecidability.Ll.eill.html#G_eill
https://uds-psl.github.io/ill-undecidability/Undecidability.Ll.eill.html#G_eill
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formulæ [26] of the form (u ⊸ v)⊸ w , u ⊸ (v ⊸ w) and
(u &v)⊸w where u, v andw are logical variables. So eILL
sequents have a very simple/flat syntactic structure.

! Σ,u ⊢ u
Ax

! Σ, Γ,u ⊢v

! Σ, Γ ⊢w
(u ⊸ v)⊸w ∈ Σ

! Σ, Γ ⊢ u ! Σ,∆ ⊢v

! Σ, Γ,∆ ⊢w
u ⊸ (v ⊸w) ∈ Σ

! Σ, Γ ⊢ u ! Σ, Γ ⊢v
! Σ, Γ ⊢w

(u &v)⊸w ∈ Σ

Figure 2. The GeILL goal-directed sequent calculus.

Although entailment in eILL could be described by SILL,
for the purpose of reducing MM, it is more conveniently
described by the goal directed rules of GeILL in Fig. 2. The
reason is that they directly encodeMM small-step semantics
as shall be explained in Section 8.2. Notice however that
while sequents of eILL are stable under (backwards applica-
tion of) the rules of GeILL, they are not stable under the rules
of SILL, which means that proof-search from an eILL sequent
in SILL might produce sequents which do not belong to eILL.

Given a commutative monoid (M, •, ϵ), for any X ,Y ⊆ M ,
we define the point-wise extension by X • Y := {x • y | x ∈

X ∧ y ∈ Y } and its linear adjunct as X −−• Y := {k ∈ M |

{k} • X ⊆ Y } providing a residuated monoidal structure on
the powerset M → P. Given any semantic interpretation
[[·]] ⊆ M of logical variables, we extend it inductively to ILL
via trivial phase semantics:

[[A& B]] := [[A]] ∩ [[B]]
[[A⊸ B]] := [[A]] −−• [[B]]

[[!A]] := {ϵ} ∩ [[A]]

and to multisets by [[A1, . . . ,An]] := [[A1]] • · · · • [[An]]. An
ILL sequent Γ ⊢A is valid in that interpretation if [[Γ]] ⊆ [[A]].
A sequent is valid in a commutative monoid (M, •, ϵ) if it is
valid for any trivial interpretation [[·]] ⊆ M in that monoid.

Theorem 8.1. The three following results hold:
1. If derivable in GeILL, ! Σ, Γ ⊢ u is also derivable in SILL;
2. An ILL sequent derivable in SILL is valid in every com-

mutative monoid;
3. Let n be greater than the number of logical variables of

Σ, Γ. If ! Σ, Γ ⊢u is valid in the free commutative monoid
(Nn,+, ®0) then ! Σ, Γ ⊢ u is derivable in GeILL.

Notice that trivial phase semantics is also sound for the
whole ILL, not just the (&,⊸, !)-fragment ILL or eILL. But it
is only complete for eILL, not for the (&,⊸, !)-fragment nor
for the whole ILL because the interpretation of the bang ! is
too restricted compared to general phase semantics [26].
As is conventional in this paper, we also denote by eILL

(resp. ILL) the entailment problem in eILL (resp. ILL): for a
given sequent of eILL (resp. ILL), does it have a derivation in
GeILL (resp. SILL)? Then we can show the following reduction:

Theorem 8.2. eILL ⪯ ILL.

Proof. The reduction is just the identity map: a sequent
of eILL has a derivation in GeILL if and only if it has one
in SILL and this is a direct consequence of Theorem 8.1. □

8.2 MM Reduces to eILL
We show how to faithfully encodeMM-termination by en-
tailment in GeILL. For this, we describe how to transform a n
registers MM-program P and a vector v : Nn into an eILL-
sequent, s.t. the GeILL-entailment of the sequent simulates
the predicate (1, P) // (1,v)⇝ (0, ®0).
We fix n and P = [ρ1; . . . ; ρl ]. Let us partition the count-

ably infinite set of logical variables into disjoint sets

{x0, . . . , xn−1} ⊎ {x0, . . . , xn−1} ⊎ {q0,q1, . . .}.

Let us describe the eILL-sequent ! Σ, Γv ⊢ q1 simulating
(1, P) // (1,v)⇝ (0, ®0). We start with the formulæ in Σ. For
every labelled instruction i : ρi of (1, P), we add one or two
command formulæ in Σ according to:

i : INC p ⇝ (xp ⊸ qi+1)⊸ qi
i : DEC p j ⇝ xp ⊸ (qi+1 ⊸ qi ) and (xp & qj )⊸ qi .

In addition, we add the following 1 + n2 command formulæ
to Σ independently of P . These just depend on n:

{(q0 ⊸ q0)⊸ q0} ⊎ {(x i ⊸ x i )⊸ x i | i < n}
⊎ {x j ⊸ (x i ⊸ x i ) | i , j < n}.

We define the multiset Γv := {v[0].x0, . . . ,v[n − 1].xn−1}
where p.xi means repeating p times xi in the multiset. We
show the following reduction.

Lemma 8.3. We have (1, P) // (i,v) ⇝ (0, ®0) if and only if
the sequent ! Σ, Γv ⊢ qi is provable in GeILL.

Proof. We show the only if part by structural induction on
the predicate (1, P) // (i,v) ≻∗ (0, ®0). In the base case we
have i = 0 and v = ®0 and we check ! Σ, ∅ ⊢ q0:

Ax
! Σ,q0 ⊢ q0

(q0 ⊸ q0)⊸ q0 ∈ Σ
! Σ, ∅ ⊢ q0

If the last rule is

INC p // (i,v) ≻ s (1, P) // s ≻∗ (0, ®0)

(1, P) // (i,v) ≻∗ (0, ®0)

then s = (i + 1,v + 1.xp ) and we build the following proof

. . .

! Σ, Γv , xp ⊢ qi+1
(xp ⊸ qi+1)⊸ qi ∈ Σ

! Σ, Γv ⊢ qi

where the top dots symbolize a sub-proof corresponding to
the induction hypothesis. Notice that (xp ⊸ qi+1)⊸ qi was
explicitly added to Σ to encode instruction i : INC p.

https://uds-psl.github.io/ill-undecidability/Undecidability.Ll.eill.html#G_eill_sound
https://uds-psl.github.io/ill-undecidability/Undecidability.Ll.ill.html#ll_tps_sound
https://uds-psl.github.io/ill-undecidability/Undecidability.Ll.eill.html#G_eill_complete_bound
https://uds-psl.github.io/ill-undecidability/Undecidability.EILL_ILL.html#EILL_ILL_PROVABILITY
https://uds-psl.github.io/ill-undecidability/Undecidability.Ll.eill_mm.html#G_eill_mm
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We do the same for i : DEC p j. If the last rule is

DEC p j // (i,v) ≻ s (1, P) // s ≻∗ (0, ®0)

(1, P) // (i,v) ≻∗ (0, ®0)

then there are two cases depending on whether the value of
v at coordinate p is 0 or not. If v[p] , 0 then v = w + 1.xp ,
Γv = Γw , xp and s = (i + 1,w) and we build the following
proof using the induction hypothesis for the top-right dots:

Ax
! Σ, xp ⊢ xp

. . .

! Σ, Γw ⊢ qi+1
xp ⊸ (qi+1 ⊸ qi ) ∈ Σ

! Σ, Γw , xp ⊢ qi
The case where v[p] = 0 is a bit more complicated. In that

case, xp < Γv and we have s = (j,v). We build the proof as:

. . .
xp < Γv

! Σ, Γv ⊢ xp

. . .

! Σ, Γv ⊢ qj
(xp & qj )⊸ qi ∈ Σ

! Σ, Γv ⊢ qi

where the top-right dots represent the induction hypothesis.
For the top-left dots, we build a proof that can only succeed
when Γv does not contains any occurrence of xp , implement-
ing a zero-test by proof-search. Forq , p < n, we can remove
the occurrence of xq in ∆, xq using xp as a goal:

Ax
! Σ, xq ⊢ xq

. . .

! Σ,∆ ⊢ xp
xq ⊸ (xp ⊸ xp ) ∈ Σ

! Σ,∆, xq ⊢ xp
As Γv is only composed of variables xq with q , p, we repeat
the previous step until Γv becomes empty and we end up
with ! Σ, ∅ ⊢ xp which is then proved by

Ax
! Σ, xp ⊢ xp

(xp ⊸ xp )⊸ xp ∈ Σ
! Σ, ∅ ⊢ xp

This conclude the only if part of the argument.
The if part is obtained using soundness of trivial phase

semantics (see Theorem 8.1). To simplify notations, we de-
note by (®x0, . . . , ®xn−1) the canonical basis of (Nn,+, ®0), i.e.
we write Nn = N.®x0 ⊕ · · · ⊕ N.®xn−1 and the correspondence
xi ⇌ ®xi induces a monoid isomorphism between the multis-
ets generated by {x0, . . . , xn−1} and (Nn,+, ®0). We define the
following interpretation of logical variables in (Nn,+, ®0):

[[xi ]] := {®xi } [[x i ]] := {®xi }
⊥ = {w | w[i] = 0}

[[qi ]] := {w ∈ Nn | (1, P) // (i,w)⇝ (0, ®0)}

and we show that ®0 ∈ [[σ ]] for any σ ∈ Σ. Hence the identity
[[! Σ]] = {®0} holds. Writingv = α1.®x1+ · · ·+αn .®xn we deduce
[[Γv ]] = [[α1.x1, . . . ,αn .xn]] = α1.{®x1} + · · ·+αn .{®xn} = {v}.
As a consequence, we get [[! Σ, Γv ]] = [[! Σ]] + [[Γv ]] = {v}.
Thus, if ! Σ, Γv ⊢ qi has a proof in GeILL, by soundness of

trivial phase semantics we deduce v ∈ [[! Σ, Γv ]] ⊆ [[qi ]], i.e.
the computation (1, P) // (i,v)⇝ (0, ®0) terminates. □

This allows us to conclude:

Theorem 8.4. MM ⪯ eILL.

9 Conclusion
Our formalisation consists of about 5200 lines of code. Around
200 loc are needed for the definition and reductions concern-
ing PCP. The generic compiler needs 1500 loc. We have 1600
loc for the BSM section, 900 loc for the MM section, and
1000 loc for the ILL section.

Related work. There is not much related work concerning
formalised undecidability proofs. Forster, Heiter, and Smolka
[10] reduce the halting problem for Turing machines via
string rewriting systems to PCP and further on to problems
concerning context-free grammars.

Forster, Kirst and Smolka [11] reduce PCP to validity, sat-
isfiability and provability in both classical and intuitionistic
first-order logic (FOL). They have undecidability proofs not
requiring intermediate steps, in striking contrast to the in-
volved formalisations needed to complete our reduction.6
They also include the notion of enumerability, connect (non)-
enumerability with (un)decidability and give enumerability
proofs for PCP and provable formulas.
With regard to the formalisation of models of compu-

tations, there is slightly more related work, starting with
a proof of the smn theorem by Zammit [40]. Forster and
Smolka [14] formalise the call-by-value λ-calculus as model
of computation in Coq. They constructively develop the
standard theory of computation, but only consider undecid-
ability problems related to the λ-calculus.

Larchey-Wendling [23] formalises another standardmodel
of computation, that of µ-recursive functions, which are
shown to be representable by guarded Coq-terms. In par-
ticular, total µ-recursive predicates Nk → N → P can be
constructively reified into functions of type Nk → N.
Asperti and Ricciotti [1] formalise multi-tape Turing ma-

chines in the proof assistant Matita and construct a universal
Turing machine. Ciaffaglione [6] formalises Turing machines
in Coq using coinductive definitions and proves the halting
problem to be undecidable. Vinogradova [38] gives an ab-
stract discussion of undecidability using Turing categories.
Norrish [32] formalises computability theory based on

the full λ-calculus in HOL. Xu, Zhang, and Urban [39] form-
alise Turing machines in Isabelle/HOL, prove the undecid-
ability of the halting problem and give a universal Turing
machine based on a translation from partial recursive func-
tions. Ramos et al. [33] formalise the undecidability of the
halting problem of a simple functional language in PVS.
6As it is highly expressive, FOL can directly express a characteristic formula
for PCP. On the opposite side, directly giving a characterising ILL formula
is quite infeasible, making intermediate steps crucial.

https://uds-psl.github.io/ill-undecidability/Undecidability.MM_EILL.html#MM_HALTING_EILL_PROVABILITY
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Forster and Kunze [12] present a framework to extract
Coq functions to the call-by-value λ-calculus from [14] in
a verified way. We could use this framework to prove the
computability of all reductions explicitly, allowing for the
assumption of non-constructive axioms, but thereby com-
mitting to a fixed model of computation.

Futurework. We envision a library of undecidable problems
in Coq. The library should contain basic problems that can
be used for further reductions, like PCP, BSM,MM, andHalt
as well as advanced problems with non-trivial proofs like
ILL. We want to add the µ-recursive functions from [23], the
halting problem for the call-by-value λ-calculus from [14],
and more computational models, like for instance the WHILE
language used by Jones [18]. Other basic problems that can
serve as stepping stones for other reductions include tiling
problems from e.g. Berger [2].
Formalising Hilbert’s 10th problem — the undecidability

of diophantine equations, — could be a challenge, e.g. fol-
lowing [17]. Finally, concerning linear logic, there are still
fragments where the decidability status is unclear or debated:
the entailment of multiplicative and exponential linear logic
(MELL) was claimed to be decidable in [3] but this proof and
hence the result is highly contested, see e.g. [9, footnote 1]
and [36, footnote 4] and [24]. We hope that using the library,
future research in this direction can be formalised.
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