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We present the first goal-directed decision procedure for hybrid PDL. The

procedure is based on a modular approach that scales from basic modal

logic with eventualities to hybrid PDL. The approach is designed so that

nominals and eventualities are treated orthogonally. To deal with the com-

plex programs of PDL, the approach employs a novel disjunctive program

decomposition. In arguing the correctness of our approach, we employ the

novel notion of support generalizing the standard notion of Hintikka sets.

1 Introduction

Propositional dynamic logic (PDL) [19, 23] is an expressive but decidable modal

logic initially introduced for reasoning about program correctness. It extends

basic modal logic with expressions called programs. Programs describe binary

relations on states, and are used to define modalities. Complex programs are

constructed from atomic programs with union, composition, and iteration (i.e.,

complex programs include regular expressions over atomic programs). Addition-

ally, there are special programs called tests that allow to restrict the domain or

range of a relation to states satisfying a certain formula. A particularly important

class of formulas in PDL are diamond formulas of the form 〈α∗〉ϕ, which hold

for a given state if they can reach a state satisfying the formula ϕ via a finite

iteration of the program α. Following a tradition in temporal logics [12, 14], we

call such formulas eventualities.

Due to the inductive nature of eventualities, PDL is not compact (consider

〈a∗〉¬p, [a]p, [a][a]p, . . . ). Still, the satisfiability problem for PDL is decidable

and EXPTIME-complete. Fischer and Ladner [19] establish the decidability of PDL

with a small model theorem, which states that every formula has a syntactic
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model obtained over a finite formula universe known as the Fischer-Ladner clo-

sure. They also show that the satisfiability problem for PDL is EXPTIME-hard.

Based on Fischer and Ladner’s model construction, Pratt [46] gives a deci-

sion procedure for PDL that runs in deterministic exponential time, thus estab-

lishing EXPTIME-completeness of the logic (see [23, 6, 32] for variants of Pratt’s

procedure with correctness proofs). The procedure starts with the set H of all

Hintikka sets over the Fischer-Ladner closure of the input formula and prunesH

by removing unsatisfiable sets until the remaining sets form a model satisfying

all of the sets. The input formula is then satisfiable if and only if it is contained

in one of the remaining sets. Pratt [47] devises a more practical version of the

abstract procedure in [46] that works with an AND-OR graph constructed from

the input formula. While initially developed for PDL, Pratt’s methods scale to

temporal logics as shown by Ben-Ari et al. [5], Wolper [55], and Emerson and

Halpern [15]. An alternative formulation of Pratt’s procedure [47] is given by

Nguyen and Szałas [44].

Although worst-case optimal, Pratt’s methods are not truly practical since

they always construct data structures whose size is exponential in that of the

input formula, and hence take exponential time. The first decision procedure

for PDL that is both practical and worst-case optimal is devised by Goré and

Widmann [20, 54]. Goré and Widmann’s procedure interleaves the construction

of the AND-OR graph with pruning. Unlike Pratt’s procedures, it is goal-directed.

By following the structure of the input formula, the procedure avoids computa-

tion steps that are redundant for determining the satisfiability of the formula.

This way, many formulas can be decided efficiently despite the high worst-case

complexity of the logic.

A different family of decision procedures for PDL is based on nondeterminis-

tic search for models as pioneered for modal logic by Kripke [40]. Such proce-

dures stepwise grow (a syntactic representation of) a candidate model by adding

states and transitions until the model satisfies the input formula. The first non-

deterministic procedure for (a variant of) test-free PDL is due to Baader [4]. To

check the satisfaction of eventualities, Baader develops a dedicated loop detec-

tion technique. Later, related procedures are also proposed for full PDL by De

Giacomo and Massacci [13], and by Abate et al. [1]. Unlike Goré and Widmann’s

procedure, the procedures in [4, 13, 1] have suboptimal complexity: Baader’s [4]

procedure can be seen to run in NEXPTIME, the procedure by Abate et al. [1]

requires 2EXPTIME, while de Giacomo and Massacci [13] claim NEXPTIME com-

plexity for their procedure (without proof). Despite being suboptimal, the pro-

cedures improve on Pratt’s procedures in terms of practical efficiency since they

are goal-directed.

In this paper, we devise the first goal-directed procedure for PDL extended
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with nominals. Nominals are predicates that hold for exactly one state. They

allow to reason about equality of states in a model and are the characteristic

feature of hybrid logic [3]. We call the extension of PDL with nominals hybrid

PDL (HPDL). Similarly to ordinary PDL, HPDL is EXPTIME-complete [49, 32].

The present procedure builds on an earlier procedure for a simpler hybrid

logic with eventualities [34] and thoroughly revises the procedure in [35]. A

variant of the procedure is studied by the first author in his PhD thesis [31].

Our procedure is based on nondeterministic search (similarly to [4, 13, 1])

rather than pruning as used by Pratt [46, 47] and Goré and Widmann [20, 54].

The reason for choosing nondeterministic search is that pruning crucially de-

pends on certain closure properties for models that do not hold in the presence

of nominals [31] (the problem of extending Goré and Widmann’s approach to

nominals is also noted in [54]). On the other hand, nondeterministic search

scales well to nominals, as is witnessed by diverse nondeterministic procedures

for hybrid logic [28, 7, 29, 50, 33, 11, 25].

Our procedure differs considerably from existing nondeterministic ap-

proaches to hybrid logic in how it represents the search space for models.

To deal with the equational constraints imposed by nominals, existing ap-

proaches [28, 7, 29, 50, 33, 11, 25] work with prefixed formulas and prefix-

based propagation rules. Our procedure adopts a representation that does not

involve prefixes. Instead, the procedure operates on sets of prefix-free formu-

las called clauses. The clausal representation yields a simple termination ar-

gument for our procedure that immediately follows from the finiteness of the

Fischer-Ladner closure [19]. Moreover, the clausal representation is essential for

our loop detection mechanism for eventualities. While variants of the clausal

representation are used by pruning-based procedures for PDL and temporal log-

ics [46, 47, 55, 15, 20, 32], our procedure is the first one to use clauses in combi-

nation with nondeterministic search.

In contrast to the procedures in [46, 32], which work with full Hintikka sets,

we define our clausal model representation based on the notion of support, first

introduced for a sublanguage of HPDL in [34]. This allows us to work with normal

clauses, which are Hintikka sets that contain only elementary formulas we call

literals. Similar to Hintikka sets, every normal clause can be seen as a state of

a syntactic model. The satisfaction of arbitrary clauses is reduced to that of

normal clauses via an abstract DNF computation. This eliminates the need for

auxiliary clauses as used by Goré and Widmann [20, 54] or Pratt [47] in his graph-

based procedure, which is important since auxiliary clauses cause problems for

non-deterministic search in the presence of eventualities.

The most significant technical innovation in the present paper compared to

our work in [34] is extending the notions of support and DNFs to full PDL. The
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main challenge here is posed by iterations of the form α∗ where α is a complex

program. Such iterations can cause a naive disjunctive formula decomposition

(as used, e.g., in [46, 47, 20, 54, 32]) to run into cycles. A simple example of such

a cycle is as follows:

〈a∗∗〉p

p 〈a∗〉〈a∗∗〉p

〈a〉〈a∗〉〈a∗∗〉p

〈a∗∗〉p ≡ p ∨ 〈a∗〉〈a∗∗〉p

≡ p ∨ 〈a〉〈a∗〉〈a∗∗〉p ∨ 〈a∗∗〉p

The graph on the left visualizes the decomposition of the formula 〈a∗∗〉p.

The edges issuing from a formulaϕ to formulasψ1,ψ2 indicate a decomposition

step reducing ϕ to ψ1 and ψ2 such that ϕ ≡ ψ1 ∨ψ2. After two decomposition

steps, the formula 〈a∗∗〉p reduces to itself. The recursive equivalence obtained

from the decomposition is shown on the right.

We deal with this complication by introducing a disjunctive decomposition

of regular programs, called a program DNF. We define support and clausal DNF

computation based on program DNFs. To compute program DNFs, we employ

a novel algorithm whose correctness is argued independently from the correct-

ness of clausal DNF computation or the overall procedure. This simplifies our

correctness arguments as compared to Pratt [47] or Widmann [54].

To reflect the semantics of nominals in the clausal setting, we introduce an

invariant that we call nominal coherence. Nominal coherence is maintained by a

technique that we call nominal completion. Nominal completion, first introduced

in [34], allows us to treat nominals in a way that is completely orthogonal to the

treatment of the other features of HPDL.

Rather than starting with the full language, we develop the procedure in

stages. We start with a procedure for the logic K∗ (an extension of basic modal

logic with eventualities) and stepwise extend it to more complex logics. This

way we can better explain how our approach deals with the individual syntactic

features of HPDL. After introducing the basic procedure for K∗, we consider its

extension to PDL without tests. After that, we study the implications of allowing

tests. Finally, we extend our approach to nominals, thus obtaining a decision

procedure for full HPDL.
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2 Formulas and Models

We begin by defining the syntax and semantics of HPDL. We assume a nonempty

set of atomic propositions and a nonempty set of actions. We denote atomic

propositions by the letters p and q, and actions by a and b. We partition the

set of atomic propositions into ordinary atomic propositions and a special kind

of atomic propositions called nominals. We denote nominals by the letters x

and y .

For simplicity of presentation, we restrict ourselves to formulas in negation

normal form (NNF). It is easily seen that every formula can be transformed into

an equivalent formula in NNF in linear time. We define programs and formulas

of HPDL by mutual recursion as follows:

α ::= a |ϕ | α+α | αα | α∗ programs

ϕ ::= p | ¬p |ϕ ∨ϕ |ϕ ∧ϕ | 〈α〉ϕ | [α]ϕ formulas

Note that in the definition, p ranges over both ordinary atomic propositions and

nominals. Also note that in the literature (e.g., in [19, 47, 23]) one often uses a

different notation for programs, writing α∪ β for α+ β, α;β for αβ, and ϕ? for

ϕ when ϕ acts as a program.

Formulas of the form 〈α〉ϕ are called diamond formulas and formulas [α]ϕ

are called box formulas. Programs of the form ϕ are called tests. We call dia-

mond formulas of the form 〈α∗〉ϕ eventualities.

Definition 2.1 A model M of HPDL consists of the following components:

• A nonempty set |M| of states. We call |M| the domain of M.

• A transition relation
a
-→M ⊆ |M| × |M| for every action a.

• A set Mp ⊆ |M| for every atomic proposition p. If p is a nominal, we addi-

tionally require Mp to be a singleton (i.e., |Mp| = 1).

We fix some notations for binary relations. Let →⊆ X ×X. Then

→0 := { (x,x) | x ∈ X } →n+1 := → ◦→n →∗ :=
⋃

n≥0

→n →+ := → ◦ →∗

The transition relations for complex programs and the denotation ϕM of a

formula ϕ in M are defined by mutual induction on the structure of formulas

and programs as follows:

α+β
-→M =

α
-→M ∪

β
-→M

α∗
-→M =

α
-→

∗
M

αβ
-→M =

α
-→M ◦

β
-→M

ϕ
-→M = { (w,w) | w ∈ϕM }
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pM = Mp

(¬ϕ)M = |M| \ϕM

(ϕ ∨ψ)M = ϕM ∪ψM

(ϕ ∧ψ)M = ϕM ∩ψM

(〈α〉ϕ)M = {v | ∃w : v
α
-→M w and w ∈ϕM }

([α]ϕ)M = {v | ∀w : v
α
-→M w implies w ∈ϕM }

We say two formulas ϕ and ψ are equivalent and write ϕ ≡ ψ if ϕM = ψM for

every model M. Some important equivalences are as follows:

〈ψ〉ϕ ≡ ψ∧ϕ [ψ]ϕ ≡ ∼ψ∨ϕ

〈α+ β〉ϕ ≡ 〈α〉ϕ ∨ 〈β〉ϕ [α+ β]ϕ ≡ [α]ϕ ∧ [β]ϕ

〈αβ〉ϕ ≡ 〈α〉〈β〉ϕ [αβ]ϕ ≡ [α][β]ϕ

〈α∗〉ϕ ≡ ϕ ∨ 〈α〉〈α∗〉ϕ [α∗]ϕ ≡ ϕ ∧ [α][α∗]ϕ

Note that in the equivalence for [ψ]ϕ we write ∼ϕ for the negation normal

form of ¬ϕ. We need this notation since, given a formula ϕ, ¬ϕ is in general

not negation normal and hence not a formula according to our grammar.

We say a state w ∈ |M| satisfies ϕ and write M,w ⊨ ϕ if w ∈ϕM. A model

M satisfies (or is a model of) a formula ϕ if ϕM is nonempty (or, equivalently,

if M,w ⊨ϕ for some state w ∈ |M|). A formula is satisfiable if it has a model.

A clause C is a finite set of formulas. In contrast to common practice, we

interpret clauses conjunctively: M,w ⊨ C :⇔ ∀ϕ ∈ C : M,w ⊨ ϕ. We allow

ourselves to write clauses in contexts that normally expect formulas. When oc-

curring in such a context, a clause C is interpreted as the formula
∧

ϕ∈Cϕ.

Formulas of the form p, ¬p, 〈a〉ϕ and [a]ϕ are called literals. Other formu-

las are called nonliteral. A clause C is called normal if

1. C contains only literals, and

2. C contains no complementary pair p, ¬p.

The request of a clause C w.r.t. an action a is defined as C�a := {ϕ | [a]ϕ ∈

C }. Intuitively, whenever a state satisfies C , all of its a-successors must sat-

isfy C�a .

We call a model M a clause model if the domain of M is a set of clauses.

Clause models can be seen as models where every state is annotated with a set

of formulas. In general, the states of a clause model will not satisfy all of their

annotations.

Definition 2.2 A clause model M is a demo if for every C ∈ |M| we have M, C ⊨

C .
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Constructs closely related to demos have been studied in the context of temporal

logics by Ben-Ari et al. [5] and by Emerson and Halpern [15] under the name

“Hintikka structures”.

Definition 2.3 A set A of formulas is syntactically closed if A is closed under

the following rules:

ϕ ∨ψ

ϕ, ψ

〈a〉ϕ

ϕ

〈ψ〉ϕ

ψ, ϕ

〈α+ β〉ϕ

〈α〉ϕ, 〈β〉ϕ

〈αβ〉ϕ

〈α〉〈β〉ϕ

〈α∗〉ϕ

ϕ, 〈α〉〈α∗〉ϕ

ϕ ∧ψ

ϕ, ψ

[a]ϕ

ϕ

[ψ]ϕ

∼ψ, ϕ

[α+ β]ϕ

[α]ϕ, [β]ϕ

[αβ]ϕ

[α][β]ϕ

[α∗]ϕ

ϕ, [α][α∗]ϕ

The least syntactically closed set containing a formula ϕ is called the syntactic

closure of ϕ.

The syntactic closure is a minor variant of the Fischer-Ladner closure [19,

23]. Unlike the Fischer-Ladner closure, the syntactic closure is not closed under

subformulas (e.g., p is not contained in the syntactic closure of [p]q). However,

we do have thatϕ is in the syntactic closure of [α]ϕ for all α andϕ, which yields

closure under subformulas in the absence of tests. Also, we do not generally

close under negation, restricting ourselves to the single negation necessary to

deal with formulas [ψ]ϕ. Still, the essential properties of the Fischer-Ladner

closure also hold in our case, in particular:

Proposition 2.4 ([23]) The syntactic closure of a formula ϕ is linear in the size

of ϕ (i.e., the number of symbols in the string representation of ϕ).

3 Basic Decision Procedure

We introduce our approach on the logic K∗. The logic K∗ is a sublogic of HPDL

that is obtained by assuming the set of nominals to be empty and restricting the

syntax of programs to actions a and iterated actions a∗.

Note that in K∗ we have only two types of diamond formulas: literals of the

form 〈a〉ϕ and nonliteral formulas 〈a∗〉ϕ (and analogously for box formulas).

We use the notations 〈a+〉ϕ := 〈a〉〈a∗〉ϕ and [a+]ϕ := [a][a∗]ϕ.

3.1 Support

In contrast to some of the related work [46, 5, 15, 32], where the formal develop-

ment is based on the notion of Hintikka sets [24, 5, 15, 6, 32], we will work with

normal clauses. To deal with nonliteral formulas, we will employ a mechanism

7



that we call support. Support extends a clause C to an, in a certain sense, maxi-

mal Hintikka set H such that C = {ϕ ∈ H | ϕ literal }. We define support based

on the following derivation rules.

ϕi

ϕ1 ∨ϕ2

i ∈ {1,2}
ϕ1 ϕ2

ϕ1 ∧ϕ2

ϕ

〈a∗〉ϕ

〈a+〉ϕ

〈a∗〉ϕ

ϕ [a+]ϕ

[a∗]ϕ

Applied to a clause C , the rules derive consequences of C .

Definition 3.1 A clause C supports a formulaϕ (notation C⊲ϕ) ifϕ is derivable

from C with the above rules.

For instance, let C = {p, [a+](p ∨ q)}. Then C ⊲ p ∨ q by the first rule, and

hence C ⊲ [a∗](p ∨ q) by the last rule. We extend support to clauses as follows:

C ⊲D :⇔ ∀ϕ ∈ D : C ⊲ϕ.

Note that there are no rules deriving literals. Therefore, for every literal ϕ we

have C ⊲ϕ if an only if ϕ ∈ C . In the following, two properties of support will

be essential:

Proposition 3.2 Let M,w ⊨ C and C ⊲ϕ. Then M,w ⊨ϕ.

Proposition 3.3 If M,w ⊨ ϕ, then there is a normal clause C such that C ⊲ ϕ

and M,w ⊨ C .

Both properties are easily shown by induction on ϕ.

3.2 Demo Sets

We now define a compact representation of demos as sets of normal clauses,

called demo sets.

Note that when applied to formulas of K∗, the syntactic closure rules from §2

produce formulas of K∗. We now fix an arbitrary finite, nonempty, syntactically

closed set F that we call the formula universe. We will use F as a parameter:

some of our definitions, including that of demo sets and the decision procedure,

will be restricted to formulas from F . This does not restrict the generality of our

results since for every formula ϕ we can compute a formula universe containing

ϕ whose cardinality is linear in the size of ϕ (Proposition 2.4).

Note also that support is compatible with the formula universe: Whenever

ϕ ∈ F and
A
ϕ is an instance of a derivation rule for support, we have A ⊆ F .

Let S be a set of clauses. We define:

• C
a
-→S D :⇔ C,D ∈ S and D ⊲C�a

• C
a∗
-→S D :⇔ C

a
-→

∗
S D
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Definition 3.4 A demo set is a nonempty set S ⊆ 2F of normal clauses that

satisfies the following property:

For every C ∈ S and every 〈α〉ϕ ∈ F such that C ⊲ 〈α〉ϕ

there is some clause D such that C
α
-→S D and D ⊲ϕ.

We call this property transition completeness.

Checking whether transition completeness in the form it is defined holds for

a set S may involve checking diamond formulas from F that are not present in

S (but are supported by a clause in S). The following alternative characterization

allows us to check transition completeness by looking only at diamond formulas

that occur in S.

Lemma 3.5 A clause set S is transition-complete if and only if for every C ∈ S

we have:

1. If 〈a〉ϕ ∈ C then there is some D such that C
a
-→S D and D ⊲ϕ.

2. If 〈a+〉ϕ ∈ C then there are some D, E such that C
a
-→S D

a∗
-→S E and E ⊲ϕ.

Proof The equivalence follows by induction on 〈α〉ϕ in the definition of transi-

tion completeness together with the following observations:

1. C ⊲ 〈a〉ϕ if and only if 〈a〉ϕ ∈ C .

2. C ⊲ 〈a∗〉ϕ if and only if C ⊲ϕ or 〈a+〉ϕ ∈ C . �

We now show that every demo set yields a demo. Every nonempty clause set

S ⊆ 2F induces a clause model MS as follows:

|MS| = S

a
-→MS =

a
-→S

MSp = {C ∈ S | p ∈ C }

We show that MS is a demo whenever S is a demo set.

Lemma 3.6 Let S be a set of normal clauses, {C,D} ⊆ S, C ⊲[α]ϕ, and C
α
-→S D.

Then D ⊲ϕ.

Proof If α = a, the claim is immediate by the definition of
a
-→S. If α = a∗, there

is some n ≥ 0 such that C
a
-→
n
S D. The claim follows by induction on n. �

Lemma 3.7 Let S be a demo set. Then MS is a demo.
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Proof We show that MS, C ⊨ ϕ for every C ∈ S and every ϕ such that C ⊲ ϕ

by induction on ϕ. The propositional cases are straightforward. The cases for

ϕ = 〈α〉ψ and ϕ = [α]ψ follow by transition completeness and Lemma 3.6,

respectively, together with the observation that
α
-→MS =

α
-→S for every α. �

By Lemma 3.7 and Proposition 3.2 we conclude that a formula ϕ ∈ F is satis-

fiable whenever there is a demo set S ⊆ 2F that contains a clause supporting ϕ.

3.3 Disjunctive Normal Forms

Our decision procedure will construct demos for normal clauses. Hence we need

an algorithm that for a general clause yields an equivalent disjunction of normal

clauses.

Definition 3.8 A disjunctive normal form (DNF) of a clause C is a finite set

{C1, . . . , Cn} of normal clauses such that:

1. C ≡ C1 ∨ · · · ∨ Cn

2. For every normal clause D:

D ⊲C ⇐⇒ Ci ⊆ D for some i ∈ {1, . . . , n}

Example 3.9

• The set {{p1, p2, q}, {p1, p2, 〈a+〉q}} is a DNF of {p1 ∧ p2, 〈a∗〉q}.

• The set {{〈a+〉p, [a+]〈a+〉p}} is a DNF of C = {〈a∗〉p, [a∗]〈a+〉p}. To see

(1), observe that 〈a∗〉p ≡ p ∨ 〈a+〉p, [a∗]〈a+〉p ≡ 〈a+〉p ∧ [a+]〈a+〉p, and

hence C ≡ (p ∨ 〈a+〉p) ∧ 〈a+〉p ∧ [a+]〈a+〉p ≡ 〈a+〉p ∧ [a+]〈a+〉p. For (2),

note that every normal clause supporting C must include {〈a+〉p, [a+]〈a+〉p}

in order to support [a∗]〈a+〉p. On the other hand, the literal 〈a+〉p suffices

to support 〈a∗〉p.

A second DNF of C is {{p, 〈a+〉p, [a+]〈a+〉p}, {〈a+〉p, [a+]〈a+〉p}}. �

Proposition 3.10 If S is a DNF of C and D ∈ S, then D ⊲C .

Proof The claim is a straightforward consequence of condition (2) for DNFs. �

By the definition of DNFs, given a clause C and a DNF S of C , C is satisfiable if

and only if so is a clause in S. We will now show that for every clause C ∈ F one

can compute a DNF S of C such that S ⊆ 2F . Thus, do decide arbitrary formulas

it suffices to have a decision procedure for normal clauses.
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3.4 Computing DNFs

The decision procedure treats DNF computation as a black box in that it simply

assumes the existence of an algorithm for computing a DNF for every clause.

There are many ways to compute DNFs. We present a conceptually simple solu-

tion that admits simple and reasonably efficient implementations.

The basic idea is to base the computation of DNFs directly on the inductive

definition of support. Observe that the rules defining support can be turned into

tableau rules by reading them backwards:

ϕ1 ∨ϕ2

ϕ1 | ϕ2

ϕ1 ∧ϕ2

ϕ1, ϕ2

〈a∗〉ϕ

ϕ | 〈a+〉ϕ

[a∗]ϕ

ϕ, [a+]ϕ

To compute a DNF of a clause C , we first develop C into a complete tableau.

Consider, for instance, the clause C = {(p ∨ q) ∧ 〈a∗〉¬p}. Figure 1 shows a

complete tableau for C . The second and third line are obtained by applying

the rule for conjunctions to the first line. Applying the respective rules to the

second and third line splits the tableau into four branches. The leftmost branch

(C ∪ {p ∨ q, 〈a∗〉¬p,p,¬p}) contains a complementary pair of literals (p, ¬p).

We call branches with complementary literals closed. Branches containing no

complementary literals are called open. To indicate that the leftmost branch is

closed, we mark the branch with the symbol ⊗.

The literals of each open branch of a complete tableau form a normal clause.

All clauses obtained this way from a complete tableau for a clause C can be

shown to form a DNF of C (as demonstrated in Fig. 1). Since the tableau rules are

compatible with the syntactic closure conditions, every DNF obtained with the

rules from a clause C ⊆ F is guaranteed to contain only formulas from F .

It remains to argue why every clause has a finite complete tableau, or, in

other words, why the tableau construction terminates. This follows since the

conclusions of every rule are either literals (and there are no rules for literals) or

proper subformulas of its premise.

3.5 Clause Graphs

Our procedure decides the satisfiability of a normal clause by searching for a

demo that contains the clause. It stepwise expands a clause model starting from

the input clause by adding clauses and transitions until the underlying clause set

is transition-complete. To simplify checking for transition completeness, we rep-

resent transitions explicitly by labeled edges that we call links. In other words,

we work on graphs that have clauses as nodes and links as edges. Our procedure

will add new clauses and links until there is exactly one outgoing link for every
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(p ∨ q)∧ 〈a∗〉¬p

p ∨ q

〈a∗〉¬p

p q

¬p 〈a+〉¬p ¬p 〈a+〉¬p

⊗

Resulting DNF: {{p, 〈a+〉¬p}, {q,¬p}, {q, 〈a+〉¬p}}

Figure 1: A complete tableau for {(p ∨ q)∧ 〈a∗〉¬p}

〈a+〉p, [a+]([a+]¬p ∨ q)

〈a+〉p,¬p, [a+]¬p, [a+]([a+]¬p ∨ q)

(

〈a+〉p
〈a+〉p

)

(

〈a+〉p
〈a+〉p

)

〈a+〉p, [a+]([a+]¬p ∨ q)

p, q, [a+]([a+]¬p ∨ q)

(

〈a+〉p
p

)

Figure 2: Two clause graphs

diamond formula in every clause. This suffices to guarantee transition complete-

ness for ordinary diamonds. For eventualities, we must additionally ensure the

existence of fulfilling paths validating condition (2) of Lemma 3.5. As long as the

graph contains no more than one link per diamond formula (a condition we call

functionality), this reduces to checking the graph for the absence of a certain

kind of loops (the “bad cycles” from [4]).

Graphs can be represented as shown in the example in Fig. 2 (the left

graph stems from a failed attempt to find a demo containing the clause

{〈a+〉p, [a+]([a+]¬p ∨ q)} while the right graph yields such a demo). A link

from a clause C to a clause D labeled with the pair
(

〈a〉ϕ
ψ

)

corresponds to an

a-transition that establishes the satisfaction of 〈a〉ϕ in C . The formula ψ in the

annotation is used to track the fulfillment of eventualities. So, an annotation

of the form
(

〈a+〉ϕ
ϕ

)

indicates that D fulfills 〈a+〉ϕ in C by satisfying ϕ (rather

than 〈a+〉ϕ). Note that the two graphs in Fig. 2 contain only normal clauses as

nodes (e.g., there is no node {〈a∗〉p, [a∗]([a+]¬p ∨ q)}). In this respect they

differ from the data structures in [47, 1, 20, 54]. This difference is essential for

the correctness of our approach (see §3.8.2).

We define links as tuples C
(

〈a〉ϕ
ψ

)

D satisfying certain additional conditions.

Given a clause C of a graph G and a diamond formula 〈a〉ϕ ∈ C for which

G contains no outgoing link, our procedure will compute some clause D and

12



formula ψ and extend G by D and C
(

〈a〉ϕ
ψ

)

D. How is D selected?

Clearly, whenever 〈a〉ϕ ∈ C and C is satisfied by a model M, M must also

satisfy C�a ;ϕ. Hence, every DNF D of C�a ;ϕ, must contain a normal clause

satisfied by M. An intuitive idea would be to select D from the set of candidates

provided by some DNF of C�a ;ϕ. This, however, turns out to be insufficient

for correctness (see the discussion in §3.8.1). Specifically, we need to refine

the computation of D for diamond formulas of the form 〈a+〉ϕ. Rather than

selecting D from a DNF of C�a ; 〈a∗〉ϕ, we will first decompose 〈a∗〉ϕ intoϕ and

〈a+〉ϕ (which is justified since 〈a∗〉ϕ ≡ ϕ∨〈a+〉ϕ), and then select D from the

union of a DNF of C�a ;ϕ and a DNF of C�a ; 〈a+〉ϕ.

Formally, we realize this via an auxiliary notion that we call diamond decom-

position.

Definition 3.11 The diamond decomposition Dϕ of a formula ϕ is defined as

follows:

1. D(〈a∗〉ϕ) = {ϕ, 〈a+〉ϕ}

2. Dϕ = {ϕ} if ϕ is not of the form 〈a∗〉ψ

Note that above and in the following, we use higher-order-style notation for func-

tion application, which does not require putting parentheses around arguments.

In particular, we do not distinguish betweenDϕ andD(ϕ). Parentheses are only

used to improve readability (like with D(〈a∗〉ϕ) above) or to resolve ambiguity.

Also note that whenever ψ ∈ Dϕ, we have {ψ} ⊲ ϕ. Moreover, we have

Dϕ ⊆ F whenever ϕ ∈ F . We write X ;x for X ∪ {x}.

Definition 3.12 A link is a tuple C
(

〈a〉ϕ
ψ

)

D such that:

1. C and D are normal clauses,

2. 〈a〉ϕ ∈ C ,

3. ψ ∈ Dϕ,

4. D is an element of a DNF of C�a ;ψ.

Note that by the definition of DNFs, for every link C
(

〈a〉ϕ
ψ

)

D we have D ⊲C�a ;ψ.

We call links of the form C
(

〈a+〉ϕ
〈a+〉ϕ

)

D delegating and links of the form C
(

〈a+〉ϕ
ϕ

)

D

fulfilling. Note that every link C
(

〈a+〉ϕ
ψ

)

D is either delegating or fulfilling.

Definition 3.13 A (clause) graph G is a set of normal clauses and links such that

{C,D} ⊆ G whenever CξD ∈ G.

Figure 2 shows a graphical representation of two graphs: one

consisting of the clauses C1 = {〈a+〉p, [a+]([a+]¬p ∨ q)}, C2 =

{〈a+〉p,¬p, [a+]¬p, [a+]([a+]¬p ∨ q)} and the links C1

(

〈a+〉p
〈a+〉p

)

C2, C2

(

〈a+〉p
〈a+〉p

)

C2,

and one consisting of C1, C3 = {p,q, [a+]([a+]¬p∨q)}, and the link C1

(

〈a+〉p
p

)

C3.
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3.6 Demo Graphs

A demo graph is a syntactic representation of a demo as a clause graph. We will

define demo graphs so that their clauses form a demo set. The links of a demo

graph will allow us to reduce the conditions in Lemma 3.5 to more primitive

conditions that are easier to check algorithmically. With Proposition 3.10 we

obtain:

Proposition 3.14 If {C,D} ⊆ S and C
(

〈a〉ϕ
ψ

)

D is a link, then C
a
-→S D and D ⊲ψ.

Thus, a link C
(

〈a〉ϕ
ψ

)

D ensures that D is an a-successor of C in any clause set

containing C and D. Since D also supports ϕ, D satisfies the first condition of

Lemma 3.5 for 〈a〉ϕ ∈ C . More importantly, finite sequences of links can be

seen as certificates for the fulfillment of eventualities, i.e., the second condition

of Lemma 3.5. We define a path for 〈a+〉ϕ to be a nonempty sequence

(C1

(

〈a+〉ϕ
〈a+〉ϕ

)

C2)(C2

(

〈a+〉ϕ
〈a+〉ϕ

)

C3) . . . (Cn−2

(

〈a+〉ϕ
〈a+〉ϕ

)

Cn−1)(Cn−1

(

〈a+〉ϕ
ψ

)

Cn)

of links. A path of the above form is called a run for 〈a+〉ϕ in C if C1 = C and

ψ =ϕ, and a loop for 〈a+〉ϕ if C1 = Cn and ψ = 〈a+〉ϕ.

With Proposition 3.14, it easily follows that a run for some 〈a+〉ϕ ∈ C consti-

tutes a certificate for the fulfillment of 〈a+〉ϕ ∈ C according to Lemma 3.5.

A graph G is functional if C
(

ϕ
ψ

)

D ∈ G and C
(

ϕ
ψ′

)

D′ ∈ G implies D = D′ and

ψ = ψ′. A graph G realizes a diamond formula 〈a〉ϕ ∈ C if C
(

〈a〉ϕ
ψ

)

D ∈ G for

some ψ and D. Note that the graphs in Fig. 2 are functional and realize every

diamond formula.

Definition 3.15 A graph G is a demo graph if G is finite, functional, realizes

every diamond formula, and contains no loops.

Proposition 3.16 Let G be a demo graph and 〈a+〉ϕ ∈ C ∈ G. Then G contains

a unique run for 〈a+〉ϕ in C .

Proof The existence of a run for every 〈a+〉ϕ ∈ C ∈ G follows from G being

finite, realizing every diamond formula and containing no loops. The uniqueness

of runs follows from the functionality of G (which is given by the assumption that

G is a demo graph). �

Proposition 3.17 The clauses of a demo graph form a demo set.

Proof Let G be a demo graph and S the set of its clauses. To show that S is a

demo set it suffices to establish the two conditions of Lemma 3.5. Condition (1)

follows with Proposition 3.14 since G realizes every diamond formula. Condi-

tion (2) follows with Proposition 3.14 and Proposition 3.16. �
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Input: a normal clause C0 ⊆ F

Variable: G := {C0}

Invariant: G functional and loop-free

while G does not realize every 〈a〉ϕ ∈ C ∈ G do

1. pick 〈a〉ϕ ∈ C ∈ G such that G does not realize 〈a〉ϕ in C

2. choose ψ ∈ Dϕ

3. pick DNF S of C�a ;ψ

4. if S 6= 0 then choose D ∈ S else backtrack

5. G := G ;D ;C
(

〈a〉ϕ
ψ

)

D

6. if G contains a loop then backtrack

Return: – satisfiable if while-loop terminates regularly

– unsatisfiable if while-loop terminates through backtracking

Note: pick is a “don’t care” decision (no backtracking needed) and choose is a

“don’t know” decision (backtracking needed).

Figure 3: Decision procedure for K∗

3.7 Decision Procedure

Figure 3 defines a decision procedure for K∗. The procedure is defined for

normal input clauses, the extension to arbitrary clauses being straightforward

(see §3.3). Given an initial clause C0 ⊆ F , the procedure tries to extend C0 to a

demo graph by adding clauses and links until the resulting graph G realizes all of

its diamond formulas. The functionality and loop-freeness of G are maintained

as invariants of the construction. In case the while loop terminates successfully,

the invariants together with the negated loop condition imply that G is a demo

graph containing C0. Hence, the procedure returns “satisfiable”. The failure to

realize a diamond formula is resolved by backtracking to the last “don’t know”1

choice point. If there is no choice point to backtrack to, the procedure terminates

returning “unsatisfiable”.

The procedure terminates on all inputs under the assumption that the DNF

computed for a clause C ∈ F contains only formulas from F . This assumption

can be fulfilled as shown in §3.4. We then obtain:

1. {C | C ∈ G } ⊆ 2F

2. |{CξD | CξD ∈ G }| ≤ |F| · 22·|F|

Thus, the size of G is exponentially bounded in |F|. From this, termination of

1 We use the terms “don’t care” and “don’t know” as they are defined in [37], §5.
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the procedure follows in a straightforward way since the “don’t know” choice

points in steps 2 and 4 are finitely branching.

The correctness of the procedure in case of success follows by Proposi-

tion 3.17 and Lemma 3.7. It remains to argue that the procedure succeeds for

every satisfiable clause. Our argument employs a measure function for clauses

that we call distance.

Let M be a model, C a clause, ϕ a formula and a an action. The a-distance

from C to ϕ in M is defined as follows:

δaMCϕ := min{n ∈ N | ∃v,w : M, v ⊨ C and v
a
-→
n
Mw and M,w ⊨ϕ }

where min0 = ∞ and n <∞ for all n ∈ N. This definition of δaM is inspired by an

analogous construction in Baader’s [4] correctness proof for (a syntactic variant

of) test-free PDL. As an immediate consequence of the definition we obtain:

Proposition 3.18 δaMCϕ <∞ if and only if M satisfies C ; 〈a∗〉ϕ.

Note also that δaMCϕ ≤ δaMDϕ whenever C ⊆ D.

A modelM satisfies a link C
(

〈a+〉ϕ
〈a+〉ϕ

)

D if the following conditions are satisfied:

1. δaMCϕ > 0 =⇒ δaMCϕ > δ
a
MDϕ

2. δaMDϕ > 0

A model satisfies a graph G if it satisfies all clauses and all delegating links of G.

Proposition 3.19 Satisfiable graphs contain no loops.

Proof Let G be a graph and M a satisfying model. Suppose, for contradiction,

G contains a loop (C1

(

〈a+〉ϕ
〈a+〉ϕ

)

C2) . . . (Cn
(

〈a+〉ϕ
〈a+〉ϕ

)

C1) (n ≥ 1). Since every clause of

the loop occurs as the target of a link satisfied by M, we have δaMCiϕ > 0 for

every i ∈ [1, n]. Consequently, δaMC1ϕ > δ
a
MC2ϕ > · · · > δ

a
MCnϕ > δ

a
MC1ϕ.

Contradiction. �

Clearly, every graph constructed by the procedure is functional since the pro-

cedure never adds links for diamond formulas that are already realized. Hence,

by Proposition 3.19, the procedure succeeds on a satisfiable clause C0 if it can

extend C0 to a satisfiable graph that realizes all of its diamond formulas. Since

the procedure terminates, this is the case if one can always choose ψ and D (in

steps 2 and 4) so that the resulting extension of G is satisfiable. This is possible

by the following lemma.

Lemma 3.20 Let G be a graph satisfied by a model M and let 〈a〉ϕ ∈ C ∈ G.

Then there is some ψ ∈ Dϕ such that for every DNF S of C�a ;ψ there is a clause

D ∈ S such that M satisfies G ;D ;C
(

〈a〉ϕ
ψ

)

D.
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Proof Unless ϕ has the form 〈a∗〉ϕ′, the claim reduces to showing that M sat-

isfies some clause in every DNF of C�a ;ϕ. This easily follows with condition (1)

for DNFs since M satisfies C and hence C�a ;ϕ.

So, suppose ϕ has the form 〈a∗〉ϕ′. Then M satisfies C�a ; 〈a∗〉ϕ′, i.e., M

satisfies C�a ;ϕ′ or M satisfies C�a ; 〈a+〉ϕ′.

Suppose M satisfies C�a ;ϕ′. Then for every DNF S of C�a ;ϕ′ there is a clause

D ∈ S such that M satisfies D (condition (1) for DNFs). Hence, M satisfies

G ;D ;C
(

〈a+〉ϕ′

ϕ′

)

D. The claim follows since ϕ′ ∈ D(〈a∗〉ϕ′).

Finally, supposeM does not satisfy C�a ;ϕ′. ThenM satisfies C�a ; 〈a+〉ϕ′. Let

S be a DNF of C�a ; 〈a+〉ϕ′ and let D be a clause in S such that δaMDϕ
′ is minimal.

By condition (1) for DNFs, we have δaMDϕ
′ = δaM(C

�
a ; 〈a+〉ϕ′)ϕ′, and hence M

satisfies D (by Proposition 3.18).

We complete the proof by showing thatM satisfies C
(

〈a+〉ϕ′

〈a+〉ϕ′

)

D. SinceM does

not satisfy C�a ;ϕ′, we have δaMDϕ
′ ≥ δaMC

�
aϕ

′ > 0.

Suppose δaMCϕ
′ > 0. We have to show that δaMCϕ

′ > δaMDϕ
′. Note that

δaMCϕ
′ > 1 since otherwise M would satisfy C�a ;ϕ′, contradicting our assump-

tion. Also, δaMCϕ
′ < ∞ (by Proposition 3.18 since 〈a+〉ϕ′ ∈ C). Hence, there

are some u,v,w such that M, u ⊨ C , u
a
-→M v

a
-→
δaMCϕ

′−1

M w, and M,w ⊨ ϕ′.

Clearly,M, v ⊨ C�a ; 〈a+〉ϕ′, and hence there is a clause E ∈ S such thatM, v ⊨ E.

Then δaMEϕ
′ ≤ δaMCϕ

′ − 1. Since D is chosen from S such that δaMDϕ
′ is mini-

mal, we have δaMCϕ
′ > δaMEϕ

′ ≥ δaMDϕ
′. �

By the above observations we conclude:

Theorem 3.21 The procedure in Fig. 3 terminates for every input clause C and

returns “satisfiable” if and only if C is satisfiable.

3.8 Remarks

3.8.1 Diamond Decomposition

Since 〈a∗〉ϕ ≡ ϕ ∨ 〈a+〉ϕ, it is easy to see that if S is a DNF of C ;ϕ and S′ is a

DNF of C ; 〈a+〉ϕ, then S∪S′ is a DNF of C ; 〈a∗〉ϕ. This raises the question why,

given some 〈a+〉ϕ ∈ C , we chooseψ ∈ D(〈a∗〉ϕ) in step 2 of the procedure and

then compute a DNF of C�a ;ψ rather than omitting step 2 and simply computing

a DNF of C�a ; 〈a∗〉ϕ. Of course, we would then have problems selecting a target

formula for the link in step 5, but this can be solved by adapting the definition

of links following [34].

The real problem is that the resulting procedure may fail on satisfiable clauses

depending on the choice of the DNF in step 3. For instance, consider the satisfi-

able clause C = {〈a+〉p, [a+]〈a+〉p}. The modified procedure running with C as

input may then pick {C} as a DNF of C�a ; 〈a∗〉p and hence end up with the graph
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G = {C,C
(

〈a+〉p
〈a+〉p

)

C}, which contains a loop. Since G is the only graph that can be

constructed with the picked DNF, the procedure fails to construct a demo graph

and returns “unsatisfiable”.

To make the procedure succeed on every satisfiable clause, we need to ensure

that for every 〈a〉ϕ ∈ C ∈ G, we can add a link C
(

〈a〉ϕ
ψ

)

D (for some D) for every

ψ ∈ Dϕ that is consistent with C�a . Intuitively, ifϕ is of the form 〈α〉ϕ′, it must

be possible to add a link for every possible action sequence denoted by α. This

requirement will be made precise when we discuss full PDL.

While the required property can be achieved by restricting DNFs to satisfy

additional conditions (as done in [34]), the conditions would unnecessarily re-

strict us in our methods for computing DNFs. In particular, the tableau-based

computation method suggested in §3.4 is not compatible with such restrictions.

Besides giving us full freedom in computing DNFs, the solution chosen in this

paper better separates propositional reasoning from the modal reasoning steps

necessary to deal with eventualities.

3.8.2 Non-normal Clauses

Both Pratt [47] and Goré and Widmann [20] base their procedures on graphs that

contain non-normal clauses. Such clauses can be used to represent intermediate

steps in the computation of a DNF and thus potentially increase information

reuse.

Our approach does not employ such auxiliary clauses. Adding them naively

leads to problems. The reason is that we search for demo graphs that are re-

quired to be functional. When is a graph with non-normal clauses functional? A

natural definition is that the functionality condition for normal clauses remains

as is while non-normal clauses are restricted to at most one successor (i.e., one

way to continue the DNF computation). Indeed, one can show that without even-

tualities, this setup is an adequate basis for a decision procedure. In particular,

we have that a (not necessarily normal) clause is satisfiable if and only if it is

contained in a functional demo graph with non-normal clauses.

With eventualities, however, such graphs cannot represent a demo for every

satisfiable clause. To see this, consider the graph G in Fig. 4. The unlabeled

links represent a DNF computation for the clause {〈a∗〉p, 〈a∗〉¬p,ϕ} while the

labeled links realize diamond formulas. Note that all diamond formulas in nor-

mal clauses are realized. Moreover, all clauses of G except {p,¬p,ϕ} are sat-

isfiable. Still, G contains no functional subgraph that fulfills every eventuality

(i.e., contains a run for every eventuality). Every subgraph of G fulfilling all of its

eventualities would have to contain both outgoing links from the topmost clause,

which contradicts functionality.

18



ϕ = �+(〈a∗〉p ∧ 〈a∗〉¬p)

〈a∗〉p, 〈a∗〉¬p, ϕ

p, 〈a∗〉¬p, ϕ 〈a+〉p, 〈a∗〉¬p, ϕ

p, 〈a+〉¬p, ϕ p, ¬p, ϕ 〈a+〉p, ¬p, ϕ 〈a+〉p, 〈a+〉¬p, ϕ

(

〈a+〉¬p
〈a∗〉¬p

)

(

〈a+〉p
〈a∗〉p

)

(

〈a+〉p
〈a∗〉p

)

(

〈a+〉¬p
〈a∗〉¬p

)

Figure 4: A graph with non-normal clauses

We conclude that DNF computation is crucial to our approach. It cannot be

replaced by propositional reasoning on auxiliary, non-normal clauses as used

in [47, 20] without giving up either the functionality requirement or the unique-

ness of clauses in a clause graph.

4 Regular Programs

We now extend our approach to test-free PDL. While the set of nominals is still

assumed to be empty, we extend the syntax of programs to allow program union

(α + β), concatenation (αβ), and iteration (α∗). In other words, we allow as pro-

grams arbitrary regular expressions over actions.

The most challenging part of extending our approach from the simple pro-

gram syntax of K∗ to regular programs is finding suitable notions of support

and DNF. We base both notions on a DNF-like decomposition of regular pro-

grams, which we call a program DNF.

4.1 Program Equivalence

Being regular expressions, programs describe regular languages over actions.

Regular languages provide a complementary view on the semantics of programs.

Every action string a1 . . . an in the regular language Lα denoted by a program

α can be interpreted as the composition of the transition relations
ai
-→M. The

interpretation of α is then the union of the interpretations of all strings in Lα.

This view will be essential in arguing the correctness of our approach.
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We now provide a brief summary of the relevant concepts from the theory of

regular languages. A string is a finite sequence of actions a1 . . . an where n ≥ 0.

We denote the empty string by ε. The letters σ and τ range over strings. A

language L is a set of strings. We define L · L′ := {στ | σ ∈ L, τ ∈ L′ }. Given a

language L we define:

L0 := {ε} Ln+1 := L · Ln L∗ :=
⋃

n∈N

Ln

To every program α we inductively assign a language Lα:

La := {a} L(α+ β) := Lα∪Lβ L(αβ) := Lα · Lβ L(α∗) := (Lα)∗

We write α ≡ β if Lα = Lβ.

As with K∗, we want a DNF of a clause C to give us a set of normal clauses

{C1, . . . , Cn} such that C ≡ C1 ∨ · · · ∨ Cn. For PDL, this raises the question

of how to compute the literals corresponding to diamond formulas 〈α〉ϕ and

box formulas [α]ϕ for arbitrary regular programs α. We answer the question

by introducing a disjunctive decomposition of programs. Intuitively, given an

arbitrary program α, we compute a set {α1, . . . , αn} of simpler programs such

that α ≡ α1 + · · · + αn. From this it easily follows that 〈α〉ϕ ≡ 〈α1〉ϕ ∨ · · · ∨

〈αn〉ϕ for every formula ϕ (and dually for boxes).

The approach sketched is not compatible with the syntactic closure condi-

tions. As with K∗, we fix a finite, nonempty, syntactically closed formula uni-

verse F (this is possible since the syntactic closure rules from §2 applied to

formulas of test-free PDL produce formulas of test-free PDL). In general we can-

not guarantee that 〈α〉ϕ ∈ F implies 〈β〉ϕ ∈ F for every β in a decomposition

of α. To stay in F , we generalize our approach and work with finite sequences

of programs η = β1: . . . :βm (m ≥ 0). Intuitively, η is equivalent to the program

β1 . . . βm obtained by composing all of the programs in η. Hence, we will allow

ourselves to write sequences in places where one would normally expect a pro-

gram, interpreting a sequence β1: . . . :βm as the corresponding program β1 . . . βm.

Let η = α1: . . . :αn for some n ≥ 0. We define Lη as follows:

• Lη = {ε} if n = 0,

• Lη = Lα1 · . . . · Lαn if n > 0.

Thus, we have L(α1: . . . :αn) = L(αn . . . αn).

We denote the empty program sequence with λ. Given a program α and

sequences η = α1: . . . :αn, θ = β1: . . . :βm, we write α:η (η:θ) for the sequence

α:α1: . . . :αn (α1: . . . :αn:β1: . . . :βm). We call a sequence η normal if η = λ or

η = a:α1: . . . :αn for some action a and programs α1, . . . , αn (n ≥ 0).

Definition 4.1 A DNF of a program α is a finite set {η1, . . . , ηn} of normal pro-

gram sequences such that α ≡ η1 + · · · + ηn (or, equivalently, Lα = Lη1 ∪ · · · ∪
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Lηn). A DNF of a program sequence η is a set D of program sequences such

that η/D is derivable by the following rules:

λ/{λ}

D DNF of α

α/D

α/D λ ∉D

α:η/{θ:η | θ ∈ D}

α/D η/E λ ∈ D

α:η/{θ:η | θ ∈ D, θ 6= λ } ∪ E

As a straightforward consequence of the definition we obtain:

Proposition 4.2 Let {η1, . . . , ηn} be a DNF of a program sequence η. Then:

1. Every sequence in {η1, . . . , ηn} is normal.

2. η ≡ η1 + · · · + ηn.

Proof We show both claims by induction on the derivation of η/{η1, . . . , ηn}. We

distinguish four cases:

• n = 1 and η = η1 = λ. Then both claims are immediate.

• η = α and {η1, . . . , ηn} is a DNF of α. Then both claims are immediate by

definition of program DNFs.

• η = α:η′, α/D, λ ∉ D, and {η1, . . . , ηn} = {θ:η′ | θ ∈ D} for some D. By

the inductive hypothesis, every sequence in D is normal and α ≡ ΣD. Since

λ ∉D and the elements ofD are normal, they all have the form a:θ (for some

a and θ). Consequently, every ηi has the form a:θ:η′. In particular, every ηi is

normal. Claim (2) follows from α ≡ ΣD and the equivalence (α1+· · ·+αn)β ≡

α1β+· · ·+αnβ (which holds for every α1, . . . , αn, β) since a program sequence

β1: . . . :βm is interpreted the same as the composition β1 . . . βm.

• η = α:η′, α/D, η′/E, λ ∈ D, and {η1, . . . , ηn} = {θ:η′ | θ ∈ D} ∪ E for some

D, E. By the inductive hypothesis, the sequences in D and E are normal,

α ≡ ΣD, and η′ ≡ ΣE. Since the sequences in D are normal, so are the

sequences in {θ:η′ | θ ∈ D, θ 6= λ } by the same argument as in the preceding

case. Claim (1) follows since also the sequences in E are normal. Claim (2)

follows from α ≡ ΣD, η′ ≡ ΣE, and the observation that whenever α ≡ α1 +

· · · + αm + ε and β ≡ β1 + · · · + βn, we have αβ ≡ α1β + · · · + αmβ + β ≡

α1β+ · · · +αmβ+ β1 + · · · + βn. �

Let η = α1: . . . :αn. We use the notation 〈η〉ϕ := 〈α1〉 . . . 〈αn〉ϕ. The nota-

tion [η]ϕ is defined analogously. We say a sequence η is contained in a set of

formulas if so is the formula 〈η〉ϕ or [η]ϕ for some ϕ. We will now show that

for every program sequence contained in F one can compute a DNF all of whose

sequences are contained in F .
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4.2 Computing Program DNFs

We now present an algorithm that, given a program sequence η, computes a DNF

of η. A key feature of the algorithm is that the computed DNFs are compatible

with the syntactic closure conditions for formulas.

Definition 4.3 The decomposition closure Aη of a program sequence η is the

least set that contains η and is closed under the following rules:

α1 +α2:η

αi:η
i ∈ {1,2}

α1α2:η

α1:α2:η

α∗:η

η

α∗:η

α:α∗:η

The decomposition closure is compatible with the syntactic closure of formulas

in the following sense:

Proposition 4.4 Let θ ∈Aη. Then for every formulaϕ, 〈θ〉ϕ is contained in the

syntactic closure of 〈η〉ϕ and [θ]ϕ is contained in the syntactic closure of [η]ϕ.

Proof It suffices to check that whenever
η
θ is an instance of a derivation rule,

〈θ〉ϕ ([θ]ϕ) is contained in the syntactic closure of 〈η〉ϕ ([η]ϕ). We show

the statement for 〈η〉ϕ ([η]ϕ follows analogously) by distinguishing four cases

corresponding to the four derivation rules:

•
α1+α2:η
αi:η

where i ∈ {1,2}. Then 〈α1 + α2:η〉ϕ = 〈α1 + α2〉〈η〉ϕ, 〈α1:η〉ϕ =

〈αi〉〈η〉ϕ, and the claim follows since both 〈α1〉〈η〉ϕ and 〈α2〉〈η〉ϕ are con-

tained in the syntactic closure of 〈α1 +α2〉〈η〉ϕ (see Definition 2.3).

•
α1α2:η
α1:α2:η . Then 〈α1α2:η〉ϕ = 〈α1α2〉〈η〉ϕ, 〈α1:α2:η〉ϕ = 〈α1〉〈α2〉〈η〉ϕ, and

the claim follows since 〈α1〉〈α2〉〈η〉ϕ is contained in the syntactic closure of

〈α1α2〉〈η〉ϕ.

•
α∗:η
η . Then 〈α∗:η〉ϕ = 〈α∗〉〈η〉ϕ and the claim follows since 〈η〉ϕ is con-

tained in the syntactic closure of 〈α∗〉〈η〉ϕ.

•
α∗:η
α:α∗:η . Then 〈α∗:η〉ϕ = 〈α∗〉〈η〉ϕ, 〈α:α∗:η〉ϕ = 〈α〉〈α∗〉〈η〉ϕ, and the claim

follows since 〈α〉〈α∗〉〈η〉ϕ is contained in the syntactic closure of 〈α∗〉〈η〉ϕ.

�

Thus, for every η in F and every θ ∈ Aη, θ is contained in F . In particular, it

follows that the decomposition closure of every program sequence is finite.

Given a program sequence η, we obtain a DNF of η by taking the normal

sequences in the decomposition closure of η. In the rest of the section we will

show that this approach is correct. We define:

Anη := {θ ∈Aη | θ normal }
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We show that Anη is a DNF of η in two steps. First, we show that
⋃

{Lθ | θ ∈

Anη } = Lη and thus, Anη is a DNF of η if η is a single program. In the second

step we generalize the result to arbitrary sequences.

So, our first task is to show
⋃

{Lθ | θ ∈ Anη } = Lη. The inclusion from left

to right is immediate with the following lemma:

Lemma 4.5 If θ ∈Aη then Lθ ⊆ Lη.

Proof By induction on the derivation of θ ∈Aη. The claim is immediate if θ = η.

Otherwise, we distinguish four cases.

Let α1+α2:η′ ∈Aη and θ = αi:η′ for i ∈ {1,2}. By the inductive hypothesis,

we then have L(α1 + α2:η′) ⊆ Lη. The claim follows since L(αi:η′) ⊆ L(α1 +

α2:η′) (as L(αi:η′) ⊆ L(α1:η′)∪L(α2:η′) = L(α1:η′ +α2:η′) = L(α1 +α2:η′)).

Let α1α2:η′ ∈ Aη and θ = α1:α2:η′. By the inductive hypothesis, we then

obtain L(α1α2:η′) ⊆ Lη, and the claim follows since L(α1:α2:η′) = L(α1α2:η′).

Let α∗:η′ ∈ Aη and θ = η′. By the inductive hypothesis, we have L(α∗:η′) ⊆

Lη, and the claim follows since ε ∈ L(α∗) and hence L(η′) ⊆ L(α∗:η′).

Let α∗:η′ ∈ Aη and θ = α:α∗:η′. By the inductive hypothesis, we have

L(α∗:η′) ⊆ Lη, and the claim follows since L(αα∗) ⊆ L(α∗) and hence

L(α:α∗:η′) = L(αα∗) · Lη′ ⊆ L(α∗) · Lη′ = L(α∗:η′). �

For the inclusion from right to left, observe that whenever θ ∈ Aη we have

Aθ ⊆Aη and Anθ ⊆Anη. Moreover:

Lemma 4.6 If θ ∈Aη then θ:η′ ∈A(η:η′) for every sequence η′.

Proof By induction on the derivation of θ ∈ Aη. If θ = η, then θ:η′ = η:η′ and

hence, trivially, θ:η′ ∈A(η:η′). Otherwise, we distinguish four cases.

Let θ = αi:θ′ for some i ∈ {1,2} and α1 + α2:θ′ ∈ Aη. By the inductive

hypothesis, we then have α1 +α2:θ′:η′ ∈A(η:η′). Hence αi:θ
′:η′ ∈A(η:η′).

Let θ = α1:α2:θ′ where α1α2:θ′ ∈ Aη. By the inductive hypothesis, we then

have α1α2:θ′:η′ ∈A(η:η′). Hence α1:α2:θ′:η′ ∈A(η:η′).

Let θ = θ′ for some α∗:θ′ ∈ Aη. By the inductive hypothesis, we have

α∗:θ′:η′ ∈A(η:η′). Hence θ′:η′ ∈A(η:η′).

Finally, let θ = α:α∗:θ′ where α∗:θ′ ∈ Aη. By the inductive hypothesis, we

have α∗:θ′:η′ ∈A(η:η′). Hence α:α∗:θ′:η′ ∈A(η:η′). �

We are now ready to show the remaining inclusion.

Lemma 4.7 Lη ⊆
⋃

{Lθ | θ ∈Anη }

Proof Let η = α1: . . . :αn. If n = 0, then Anη = {η} and the claim is trivial.

Otherwise, we show ∀σ ∈ Lη : σ ∈ Lθ for some θ ∈ Anη by lexicographic
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induction on n and α1. Let σ ∈ Lη. Then σ = σ1 . . . σn such that σi ∈ Lαi for

every i ∈ [1, n]. We distinguish four cases depending on the shape of α1.

Let α1 = a. Then the claim is trivial since An(a:α2: . . . :αn) = {a:α2: . . . :αn}.

Let α1 = β + γ. Then σ ∈ L(β:α2: . . . :αn) ∪ L(γ:α2: . . . :αn), and the claim

follows by the inductive hypothesis since An(β:α2: . . . :αn),An(γ:α2: . . . :αn) ⊆

Anη.

Let α1 = βγ. Then σ1 = σβσγ such that σβ ∈ Lβ and σγ ∈ Lγ. Moreover,

β:γ:α2: . . . :αn ∈Aη. We distinguish two subcases.

• Let σβ = ε. By the inductive hypothesis, we have ε ∈ Lθ for some θ ∈

Anβ. Consequently, since θ is normal, it is empty. Hence, γ:α2: . . . :αn ∈ Aη

(Lemma 4.6). By the inductive hypothesis, we have σ = σγσ2 . . . σn ∈ Lη′ for

some η′ ∈An(γ:α2: . . . :αn). The claim follows.

• Let σβ = aτ . By the inductive hypothesis, we have aτ ∈ Lθ for some

θ ∈ Anβ. Consequently, since θ is normal, it has the form a:β1: . . . :βm.

Then σ = σβσγσ2 . . . σn ∈ L(a:β1: . . . :βm:γ:α2: . . . :αn). The claim follows

with Lemma 4.6.

Finally, let α1 = β∗. We distinguish two subcases.

• Let σ1 = ε. By the inductive hypothesis, σ = σ2 . . . σn ∈ Lθ for some θ ∈

An(α2: . . . :αn). The claim follows since α2: . . . :αn ∈Aη.

• Let σ1 = aτ . W.l.o.g., τ = τ1τ2 such that aτ1 ∈ Lβ and τ2 ∈ Lβ∗. By the

inductive hypothesis, we have aτ1 ∈ Lθ for some θ ∈ Anβ. Consequently,

since θ is normal, it has the form a:β1: . . . :βm. Then σ = aτ1τ2σ2 . . . σn ∈

L(a:β1: . . . :βm:η). The claim follows with Lemma 4.6 since β:η ∈Aη. �

It remains to argue that Anη constitutes a DNF for every η. This follows by

induction on the length of η with the following proposition:

Proposition 4.8

1. Aλ = {λ}.

2. If λ ∉Aα then A(α:η) = {θ:η | θ ∈Aα }.

3. If λ ∈Aα then A(α:η) = {θ:η | θ ∈Aα, θ 6= λ } ∪Aη.

Proof Claim (1) is immediate by the definition ofA. For (2) and (3), the inclusion

from right to left follows with Lemma 4.6. For the other inclusion, we show that

every θ ∈A(α:η) is contained in {θ:η | θ ∈Aα } ({θ:η | θ ∈Aα, θ 6= λ }∪Aη)

by induction on the derivation of θ ∈A(α:η). �

The presented method for computing program DNFs is related to

Brzozowski’s [10] derivative-based approach to constructing finite automata

from regular expressions and its extension by Antimirov [2]. We conclude the
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section by comparing the three approaches. While Brzozowski’s construction

yields deterministic automata, Antimirov’s partial derivatives yield nondeter-

ministic automata. Brzozowski establishes that the number of derivatives of

every regular expression is finite modulo associativity, commutativity and idem-

potence of program union, from which he obtains finiteness of the resulting

automata. This finiteness result is strengthened by Antimirov, who shows that

the number of syntactically distinct partial derivatives of a regular expression

is bounded by the length of the expression. Our method is particularly close

to Antimirov’s partial derivative computation in that it yields nondeterministic

automata (a program DNF is allowed to contain more than one sequence that

begins with the same action) and in that we obtain a strong finiteness result

for our construction. In our case, however, the finiteness result directly follows

from the finiteness of the syntactic closure [19]. Thus, our approach estab-

lishes a connection between Fischer and Ladner’s finiteness result in [19] and

Antimirov’s bound in [2]. Since our approach extends to tests, it also generalizes

some of Antimirov’s results.

Despite the similarities, our approach has a number of important technical

differences to Brzozowski and Antimirov. Their constructions iterate over all ac-

tions, computing a derivative (or a set of partial derivatives) for each action. Our

approach, on the other hand, immediately computes normal programs, which

can be seen as pairs of an action and a corresponding partial derivative. Ac-

tions whose (partial) derivatives denote the empty language are not considered

in the first place, which may yield better performance on regular expressions

with many different actions. At the same time, our approach is conceptually

simpler than the algorithms of Brzozowski and Antimirov. In particular, our

algorithm requires no auxiliary functions.

4.3 Support and Clausal DNFs

Definition 4.9 We write C ⊲ϕ and say C supports ϕ if ϕ is derivable from the

formulas in C with the following rules:

ϕi

ϕ1 ∨ϕ2

i ∈ {1,2}
ϕ1 ϕ2

ϕ1 ∧ϕ2

〈η〉ϕ

〈α〉ϕ
η contained in a DNF of α

[η1]ϕ . . . [ηn]ϕ

[α]ϕ
{η1, . . . , ηn} DNF of α

Note that, just as for K∗ (Definition 3.1), the premises of every rule are either

literals or proper subformulas of the conclusion of the rule.

We need to show that our new definition of support has the right semantic

properties, i.e., satisfies Propositions 3.2 and 3.3. To show both propositions we
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need to establish a semantic equivalence between the premises and the conclu-

sion of each of the above derivation rules. For conjunctions and disjunctions this

is straightforward. For diamond and box formulas we need to lift the equivalence

of program sequences given by the program DNF to the semantic equivalence of

formulas.

Intuitively, action strings are a restricted class of programs. Hence, we can

interpret them as relations on states in the same way we do it for programs. We

capture this intuition formally by defining the relations
σ
-→M as follows:

v
ε
-→M w ⇐⇒ v = w

v
aσ
-→M w ⇐⇒ ∃u : v

a
-→M u and u

σ
-→M w

Proposition 4.10 v
στ
-→M w ⇐⇒ ∃u : v

σ
-→M u and u

τ
-→M w

Proof Straightforward induction on σ . �

Consistently with our interpretation of program sequences, given some η =

α1: . . . :αn, we define
η
-→M such that

η
-→M = { (w,w) | w ∈ |M|} if n = 0 and

η
-→M =

α1...αn
-→M otherwise. The correspondence between the transition relation of

a program sequence η and the interpretation of strings in Lη is captured by the

following proposition.

Proposition 4.11

1. v
η
-→M w ⇐⇒ ∃σ ∈ Lη : v

σ
-→M w

2. M, v ⊨ 〈η〉ϕ ⇐⇒ ∃σ ∈ Lη∃w : v
σ
-→M w and M,w ⊨ϕ

3. M, v ⊨ [η]ϕ ⇐⇒ ∀σ ∈ Lη∀w : v
σ
-→M w implies M,w ⊨ ϕ

Proof Claims (2) and (3) follow from (1) by the definition of satisfaction. For (1),

let η = α1: . . . :αn. Both directions of the equivalence are immediate if n = 0.

Otherwise, the claims are shown by lexicographic induction on n and α1, using

a case distinction on the shape of α1. For the direction from left to right, we

assume v
η
-→M w and show the existence of σ ∈ Lη such that v

σ
-→M w. For

the other direction, we assume σ ∈ Lη and v
σ
-→M w and show v

η
-→M w. The

details are straightforward. �

With Proposition 4.11 we can finally show the desired equivalences for diamond

and box formulas:

Proposition 4.12 Let D be a DNF of η. Then:

1. M,w ⊨ 〈η〉ϕ ⇐⇒ ∃θ ∈ D : M,w ⊨ 〈θ〉ϕ

2. M,w ⊨ [η]ϕ ⇐⇒ ∀θ ∈ D : M,w ⊨ [θ]ϕ
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Proof The claims follow with Propositions 4.11 and 4.10. �

Proposition 3.2 now follows from Proposition 4.12 and the semantic equiva-

lences for conjunctions and disjunctions by induction on the derivation of sup-

port. Proposition 3.3 is shown similarly.

The definition of DNFs for clauses remains the same as in §3.3 (Definition 3.8;

now w.r.t. the new definition of support). Thus, Proposition 3.10 remains valid.

Note that one could restrict the rules for 〈α〉ϕ and [α]ϕ to programs α that are

not actions without changing the induced support relation. The restricted rules

can be turned into tableau rules for computing DNFs following the approach

in §3.4.

Remark 4.13 One may wonder why we do not base support on the following set

of rules that are directly induced by the equivalences in §2.

ϕi

ϕ1 ∨ϕ2

i ∈ {1,2}
ϕ1 ϕ2

ϕ1 ∧ϕ2

〈αi〉

〈α1 +α2〉ϕ
i ∈ {1,2}

[α1]ϕ [α2]ϕ

[α1 +α2]ϕ

〈α1〉〈α2〉ϕ

〈α1α2〉ϕ

[α1][α2]ϕ

[α1α2]ϕ

ϕ

〈α∗〉ϕ

〈α〉〈α∗〉ϕ

〈α∗〉ϕ

ϕ [α][α∗]ϕ

[α∗]ϕ

The problem with the rules is that the induced notion of support is too weak

to ensure that every satisfiable formula is supported by a satisfiable normal

clause (Proposition 3.3). For instance, consider ϕ = [a∗∗]p. It is easy to see

that ϕ is not derivable by the above rules from any normal clause and hence has

no support. One consequence of this is that we can no longer guarantee that

every clause has a DNF. Consider, for instance, C = {ϕ}. Since ϕ is not sup-

ported by any normal clause, neither is C . Hence, by Proposition 3.10, the only

possible DNF of C is 0. This, however, contradicts condition (1) for DNFs since C

is satisfiable. �

4.4 Demo Sets

We now show how to adapt the definition of demo sets and the relevant proofs

from §3.2 to account for regular programs and the new notion of support. Let
a
-→S be defined as before. We extend the definition to complex programs as

follows:

α+β
-→S =

α
-→S ∪

β
-→S

αβ
-→S =

α
-→S ◦

β
-→S

α∗
-→S =

α
-→

∗
S

The notions of transition completeness and demo sets (Definition 3.4) adapt

without changes to their formulation. Also, the definition of MS remains un-

changed. Note that since

27



a
-→MS =

a
-→S for every action a, we obtain

α
-→MS =

α
-→S for every program

α. We define the relations
σ
-→S and

η
-→S from

α
-→S analogously to how

σ
-→M and

η
-→M are defined from

α
-→M and obtain

σ
-→S =

σ
-→MS and

η
-→S =

η
-→MS .

To obtain Lemma 3.6, we need an additional step:

Lemma 4.14 Let S be a set of clauses, {C,D} ⊆ S, C ⊲ [η]ϕ, and C
σ
-→S D for

some σ ∈ Lη. Then D ⊲ϕ.

Proof We proceed by lexicographic induction on the length of σ and the deriva-

tion of C ⊲ [η]ϕ. We do a case distinction on η. If η = λ the claim is immediate.

Otherwise, η has the form α1:η′. We do a case distinction on the shape of α1. If

α1 is an action, then [η]ϕ ∈ C , σ has the form aσ ′, and the claim follows by the

inductive hypothesis for σ ′. If α1 is not an action, then there is some DNF D of

α1 and some θ ∈ D such that σ ∈ L(θ:η′) and C ⊲ [θ][η′]ϕ. The claim follows

by the inductive hypothesis for σ and [θ][η′]ϕ. �

From this and Proposition 4.11 (1), we obtain Lemma 3.6 in its original formula-

tion. Also, the formulation and the proof of Lemma 3.7 remain unchanged.

Since
σ
-→S =

σ
-→MS and

η
-→S =

η
-→MS , Proposition 4.11 (1) holds for

η
-→S and

σ
-→S. With this, Lemma 3.5 adapts as follows:

Lemma 4.15 A clause set S is transition-complete if and only if for every 〈η〉ϕ ∈

C ∈ S there is some D ∈ S such that C
η
-→S D and D ⊲ϕ.

Proof For the direction from left to right, we show the following generalization.

If S is transition-complete, C ∈ S, and C ⊲ 〈η〉ϕ, then there is some D ∈ S such

that C
η
-→S D and D ⊲ϕ. The strengthened claim easily follows by induction on

the length of η.

For the other direction, we show that for every C ∈ S and every formula 〈α〉ϕ

such that C ⊲ 〈α〉ϕ there is some D such that C
α
-→S D and D ⊲ ϕ by case

analysis on the shape of α. If α is an action, we have 〈α〉ϕ ∈ C and the claim

is immediate by the assumption. Otherwise, we have C ⊲ 〈θ〉ϕ for some normal

sequence θ. If θ is empty, the claim follows with Proposition 4.11 (1) for
η
-→S

since C
ε
-→S C and C ⊲ ϕ. Otherwise, we have 〈θ〉ϕ ∈ C and the claim follows

with Proposition 4.11 (1) for
η
-→S from the assumption. �

4.5 Demo Graphs

What happens to clause graphs and demo graphs? To answer this, we first need

to provide a new definition of links.

Definition 4.16 A link is a tuple C
(

〈a〉〈η〉ϕ
〈θ〉ϕ

)

D such that:
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1. C and D are normal clauses,

2. ϕ is not a diamond formula,

3. 〈a〉〈η〉ϕ ∈ C ,

4. θ is an element of a DNF of η,

5. D is an element of a DNF of C�a ; 〈θ〉ϕ.

Example 4.17

• Let C = {〈a〉(p1 ∨ p2), [a]q, r}. The tuples C
(

〈a〉(p1∨p2)
p1∨p2

)

{p1, q} and

C
(

〈a〉(p1∨p2)
p1∨p2

)

{p2, q} are links according to the above definition, where ϕ =

p1 ∨ p2 and η = θ = λ.

• The tuples {〈a+〉p}
(

〈a+〉p
p

)

{p} and {〈a+〉p}
(

〈a+〉p
〈a+〉p

)

{〈a+〉p} are links. We have

ϕ = p, η = a∗, and θ ∈ {λ, a:a∗} ({λ, a:a∗} is a DNF of a∗).

• Let C = {〈a〉〈(b+c)d∗〉〈e〉p}. Then the tuples C
(

〈a〉〈(b+c)d∗〉〈e〉p
〈b〉〈d∗〉〈e〉p

)

{〈b〉〈d∗〉〈e〉p}

and C
(

〈a〉〈(b+c)d∗〉〈e〉p
〈c〉〈d∗〉〈e〉p

)

{〈c〉〈d∗〉〈e〉p} are links. We have ϕ = p,

η = (b + c)d∗:e, and θ ∈ {b:d∗:e, c:d∗:e} ({b:d∗:e, c:d∗:e} is a DNF of

(b + c)d∗:e). �

We call a link delegating if it has the form C
(

〈a〉ϕ
〈b〉ψ

)

D and fulfilling if it has the

form C
(

〈a〉ϕ
ψ

)

D where ψ is not a diamond formula. Clause graphs are defined as

in §3.5 relatively to the new definition of links.

Clearly, Proposition 3.14 holds for the new definition of links. Functionality

and realization are defined as before. A path for 〈a〉ϕ in G is now a nonempty

sequence

(C1

(

〈a1〉ϕ1

〈a2〉ϕ2

)

C2)(C2

(

〈a2〉ϕ2

〈a3〉ϕ3

)

C3) . . . (Cn−2

(

〈an−2〉ϕn−2

〈an−1〉ϕn−1

)

Cn−1)(Cn−1

(

〈an−1〉ϕn−1

ψ

)

Cn)

of links in G such that 〈a1〉ϕ1 = 〈a〉ϕ. A path of the above form is called a

run for 〈a〉ϕ in C if C1 = C and ψ is not a diamond formula (i.e., if the last

link of the path is fulfilling). The path is called a loop for 〈a〉ϕ if C1 = Cn and

ψ = 〈a1〉ϕ1 = 〈a〉ϕ.

As before (Definition 3.15), a clause graph G is a demo graph if G is finite,

functional, realizes every diamond formula, and contains no loops. Proposi-

tion 3.16 is adapted as follows.

Proposition 4.18 Let G be a demo graph and 〈a〉ϕ ∈ C ∈ G. Then G contains a

unique run for 〈a〉ϕ in C .

Proof For existence of runs, suppose G contains no run for 〈a〉ϕ in C . To obtain

a contradiction, it suffices to show that G has a path for 〈a〉ϕ that originates in

C and has length n for every n ∈ N. Since both G and F are finite, and since
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G contains no run for 〈a〉ϕ in C , G then has a path that contains a fragment

(C1

(

〈a1〉ϕ1

〈a2〉ϕ2

)

C2)(Cm−1

(

〈am−1〉ϕm−1

〈am〉ϕm

)

Cm) such that C1 = Cm and 〈a1〉ϕ1 = 〈am〉ϕm,

contradicting the assumption that G has no loops.

The existence of arbitrarily long paths for 〈a〉ϕ from C is argued inductively.

The existence of a path of length 1 is immediate by the assumption that 〈a〉ϕ

realizes every diamond formula. Now suppose G has a path for 〈a〉ϕ of length

n originating in C , and let Cn−1

(

〈b〉〈η〉ψ
〈θ〉ψ

)

Cn be the last link of the path, where ψ

is not a diamond formula. Since G contains no run for 〈a〉ϕ in C , 〈θ〉ψ must

be a diamond formula, and hence θ is nonempty. Moreover, since θ is contained

in a DNF of η, θ is normal. Hence, θ has the form c:θ′, i.e., 〈θ〉ψ = 〈c〉〈θ′〉ψ.

In particular, 〈θ〉ψ is a literal, and thus contained in Cn (since Cn comes from a

DNF of Cn−1
�
b ; 〈θ〉ψ). Since G realizes every diamond formula, there is a link of

the form Cn
(

〈c〉〈θ′〉ψ
ψ′

)

D, and hence a path for 〈a〉ϕ in C of length n+ 1.

Uniqueness once again follows from the assumed functionality of G. Suppose

〈a〉ϕ in C has two distinct runs, i.e., two runs that differ in at least one link. For

the first distinct pair of links C1

(

ϕ1

ψ1

)

D1 and C2

(

ϕ2

ψ2

)

D2 in the two runs we must

have C1 = C2 and ϕ1 = ϕ2 (since the preceding fragments of the two runs are

identical). Hence, we have ϕ1 6=ϕ2 or D1 6= D2, contradicting functionality. �

The clauses of a demo graph form a demo set (Proposition 3.17), which is

now shown via Lemma 4.15 in place of Lemma 3.5. The auxiliary condition of

Lemma 4.15 is established by induction on the length of runs in the demo graph

with the following lemma:

Lemma 4.19 If D is a DNF of η and θ ∈ D, then 〈θ〉ϕ⊲ 〈η〉ϕ for all ϕ.

Proof By induction on the length of η. If η = λ, then θ = λ. Hence 〈θ〉ϕ =

〈η〉ϕ =ϕ and the claim is immediate.

If η = α:η′ for some α and (possibly empty) η′, then 〈η〉ϕ = 〈α〉〈η′〉ϕ and

D = {η1:η′ | η1 ∈ E1, η1 6= λ } ∪ E2 where E1 is a DNF of α and E2 is a DNF of

η′ if λ ∈ E1, and otherwise E2 = 0. We distinguish two cases. If θ ∈ {η1:η′ |

η1 ∈ E1, η1 6= λ }, then 〈θ〉ϕ = 〈η1〉〈η′〉ϕ where η1 ∈ E1, and the claim follows

by the definition of support.

If θ ∈ E2, then λ ∈ E1, and hence, by the definition of support, it suffices

to show 〈θ〉ϕ ⊲ 〈η′〉ϕ (since 〈η′〉ϕ = 〈λ〉〈η′〉ϕ). The claim 〈θ〉ϕ ⊲ 〈η′〉ϕ is

immediate by the inductive hypothesis since E2 is a DNF of η′. �

4.6 Decision Procedure

The decision procedure for PDL is defined in Fig. 5. The overall working princi-

ple of the procedure remains the same as for K∗. The main change compared
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Input: a normal clause C0 ⊆ F

Variable: G := {C0}

Invariant: G functional and loop-free

while G does not realize every 〈a〉ϕ ∈ C ∈ G do

1. pick 〈a〉〈η〉ϕ ∈ C ∈ G such that

• ϕ is not a diamond formula

• G does not realize 〈a〉〈η〉ϕ in C

2. pick DNF D of η

3. choose θ ∈ D

4. pick DNF S of C�a ; 〈θ〉ϕ

5. if S 6= 0 then choose D ∈ S else backtrack

6. G := G ;D ;C
(

〈a〉〈η〉ϕ
〈θ〉ϕ

)

D

7. if G contains a loop then backtrack

Return: – satisfiable if while-loop terminates regularly

– unsatisfiable if while-loop terminates through backtracking

Figure 5: Decision procedure for test-free PDL

to the procedure for K∗ is the use of a program DNF instead of the diamond

decomposition in the selection of the target formula for a link.

The termination of the procedure follows by the same argument as for K∗

assuming that DNFs for programs and clauses do not leave the formula universe.

As before, a successful termination of the while loop implies that G is a demo

graph containing the initial clause C0, which in turn implies that C0 is satisfiable.

To argue that the procedure succeeds on all satisfiable inputs, we need to gener-

alize our semantic argument for K∗. We begin with the notion of distance, which

we generalize as follows.

Let M be a model, C a clause, η a program sequence, and ϕ a formula. We

define the η-distance from C to ϕ in M as follows:

δ
η
MCϕ := min{ |σ | | σ ∈ Lη and

∃v,w : M, v ⊨ C and v
σ
-→M w and M,w ⊨ϕ }

where we write |σ | for the length of σ . Proposition 3.18 generalizes as follows.

Proposition 4.20 δ
η
MCϕ <∞ if and only if M satisfies C ; 〈η〉ϕ.
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We no longer need to distinguish between delegating and fulfilling links for

link satisfaction. We say a model M satisfies a link C
(

〈η〉ϕ
〈θ〉ϕ

)

D (where ϕ is not

a diamond formula) if δ
η
MCϕ > δ

θ
MDϕ. Note that every fulfilling link C

(

〈a〉ϕ
ϕ

)

D

between two clauses C,D that are satisfied by a model M is also satisfied by M

since in every such case δaMCϕ = 1 > 0 = δλMDϕ. A model satisfies a graph if it

satisfies all of its clauses and links.

Proposition 3.19 can be shown to hold in its original form with minor adapta-

tions to the proof. Lemma 3.20 is reformulated as follows.

Lemma 4.21 Let G be a graph satisfied by a model M and let 〈a〉〈η〉ϕ ∈ C ∈ G

where ϕ is not a diamond formula. Then for every DNF D of η there is some

θ ∈ D such that for every DNF S of C�a ; 〈θ〉ϕ there is some D ∈ S such that M

satisfies G ;D ;C
(

〈a〉〈η〉ϕ
〈θ〉ϕ

)

D.

The lemma is shown by a straightforward adaptation of the argument for

Lemma 3.20. We conclude that the procedure in Fig. 5 decides the satisfiabil-

ity of normal clauses for test-free PDL.

5 Tests

What happens when we add tests? As it turns out, tests require no fundamen-

tal changes to our approach. However, many arguments and algorithms need

to be generalized. The main technical difficulty in adding tests concerns pro-

gram DNFs. Since programs are no longer ordinary regular expressions, the reg-

ular string semantics underlying our definitions and algorithms for test-free PDL

needs to be generalized. The changes have an impact on the definition of sup-

port and clausal DNFs. Moreover, since in the presence of tests the definitions

of formulas and programs become mutually recursive, we need to generalize our

proof of demo satisfiability. Rather than repeating the entire development in §4

for the case with tests, we only detail the changes to the setup of §4 that are

necessary to deal with tests.

5.1 Program Equivalence

Since regular languages do not account for tests, we define a more general se-

mantics. This semantics is an adaptation of the language-theoretic model of

Kleene algebras with tests [39], initially introduced independently of Kleene al-

gebras with tests by Kaplan [36].

A guarded string is a finite sequence C0a1C1 . . . anCn where n ≥ 0, a1, . . . , an

are actions, and C0, C1, . . . , Cn are clauses. The clauses of a guarded string rep-

resent constraints on states that are expressed by tests. The letters σ and τ
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now range over guarded strings and ω ranges over partial guarded strings that

may be empty, have the form a1C1 . . . anCn (when following a guarded string) or

the form C1a1 . . . Cnan (when preceding a guarded string). The length |σ | of a

guarded string σ = C0a1C1 . . . anCn is n. A language is now a set of guarded

strings. Let L, L′ be languages and C be a clause. We define the following nota-

tion:

⌈C⌉ := {D | D a clause, C ⊆ D }

L · L′ := {ωCω′ |ωC ∈ L, Cω′ ∈ L′ }

L0 := ⌈0⌉

The notations Ln+1 and L∗ are defined from L0 and L · L′ as before. To every

program α we assign a language Lα as follows:

La := {CaD | C,D clauses } L(α+ β) := Lα∪Lβ

Lϕ := ⌈{ϕ}⌉ L(αβ) := Lα · Lβ

L(α∗) := (Lα)∗

As before, we write α ≡ β if Lα = Lβ.

Example 5.1

• L(pq) = Lp · Lq = ⌈{p}⌉ ∩ ⌈{q}⌉ = ⌈{p,q}⌉ = {C | {p,q} ⊆ C }

Note in particular the equality Lp ·Lq = ⌈{p}⌉∩⌈{q}⌉. It stems from the fact

that for languages consisting entirely of strings of length 0 language concate-

nation reduces to intersection.

• L((pa)∗¬p) = {C0aC1 . . . aCn | n ≥ 0, p ∈ C0 ∩ · · · ∩ Cn−1, ¬p ∈ Cn } �

In the absence of tests, we defined a DNF of a program α as a finite set of nor-

mal program sequences {η1, . . . , ηn} such that α ≡ η1+· · ·+ηn. With tests, this

definition is no longer adequate since programs with tests cannot generally be

represented as sets of normal programs (e.g., there is no set of normal programs

{η1, . . . , ηn} such that p ≡ η1 + · · · + ηn). We solve the problem by generalizing

the notion of a program DNF.

We define a guarded sequence as a pair Cη where C is a clause and η a

program sequence. We call a guarded sequence Cη normal if η is normal. A

guarded sequence Cη is contained in a set of formulas A if at least one of the

following conditions holds:

• There is some ϕ such that 〈η〉ϕ ∈ A and C ⊆ A.

• There is some ϕ such that [η]ϕ ∈ A and {∼ψ | ψ ∈ C } ⊆ A.

We define L(Cη) := ⌈C⌉ · Lη. Note that for every program sequence

α1: . . . :αm and formulas ϕ1, . . . ,ϕn we have L({ϕ1, . . . ,ϕn}α1: . . . :αm) =
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L(ϕ1: . . . :ϕn:α1: . . . :αm). Thus, when written in a place where one would nor-

mally expect a program sequence or a program, a guarded sequence can be in-

terpreted accordingly.

The definition of DNFs for programs and program sequences is generalized

as follows.

Definition 5.2 A DNF of a program α is a finite set {C1η1, . . . , Cnηn} of normal

guarded sequences such that:

1. α ≡ C1η1 + · · · + Cnηn.

2. Every formula from C1 ∪ · · · ∪ Cn is contained in α.

A DNF of a program sequence η is a set D of guarded program sequences such

that η/D is derivable by the following rules:

λ/{0λ}

D DNF of α

α/D

α/D η/E

α:η/{C(θ:η) | Cθ ∈ D, θ 6= λ } ∪ { (C ∪D)θ | Cλ ∈ D, Dθ ∈ E }

As in the test-free case, we easily obtain that whenever {C1η1, . . . , Cnηn} is a

DNF of η, all of the guarded sequences in {C1η1, . . . , Cnηn} are normal and η ≡

C1η1 + · · · + Cnηn.

Example 5.3 Let η = pa∗:qb∗ and let D = {{p}a:a∗:qb∗, {p,q}λ, {p,q}b:b∗}.

We can show that D is a DNF of η as follows. First, we observe that

{{p}λ, {p}a:a∗} is a DNF of pa∗ and {{q}λ, {q}b:b∗} is a DNF of qb∗. Hence

pa∗/{{p}λ, {p}a:a∗} and qb∗/{{q}λ, {q}b:b∗} by the second derivation rule.

Consequently

η = pa∗:qb∗/{{p}a:a∗:qb∗} ∪ {{p,q}λ, {p,q}b:b∗} = D

by the third derivation rule. Also note that for every set E such that η/E we have

η:λ/{Cθ:λ | Cθ ∈ E, θ 6= λ } ∪ { (C ∪ 0)λ | Cλ ∈ E } = E

since λ/{0λ}. �

We will now show that for every program sequence we can compute a DNF in

a way that is compatible with the syntactic closure.
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5.2 Computing Program DNFs

Our approach for computing program DNFs in the presence of tests directly

generalizes our approach in the test-free case. The decomposition closure is

adapted as follows.

Definition 5.4 The decomposition closure Aη of a program sequence η is the

least set of guarded sequences that contains 0η and is closed under the following

rules:

C(ϕ:η)

(C ;ϕ)η

C(α1 +α2:η)

C(αi:η)
i ∈ {1,2}

C(α1α2:η)

C(α1:α2:η)

C(α∗:η)

Cη

C(α∗:η)

C(α:α∗:η)

By the following generalization of Proposition 4.4, decomposition closure is

compatible with the syntactic closure and property (2) of program DNFs.

Proposition 5.5 Let Cθ ∈Aη and let ϕ be a formula. Then:

1. Every formula in C is contained (as a subformula) in η.

2. Every formula in C ; 〈θ〉ϕ is contained in the syntactic closure of 〈η〉ϕ.

3. Every formula in {∼ψ | ψ ∈ C } ; [θ]ϕ is contained in the syntactic closure

of [η]ϕ.

The proposition is shown similarly to Proposition 4.4.

As in the test-free case, one can show that the normal guarded sequences in

the decomposition closure of a program sequence η constitute a DNF of η. The

proof is a straightforward generalization of the argument in §4.2.

5.3 Support and Clausal DNFs

Definition 5.6 We write C ⊲ϕ and say C supports ϕ if ϕ is derivable from

the formulas in C with the rules for conjunctions and disjunctions from Defini-

tion 4.9 together with the following two rules:

ψ1 . . . ψn 〈η〉ϕ

〈α〉ϕ
{ψ1, . . . ,ψn}η contained in a DNF of α

ψ1 . . . ψn

[α]ϕ
{C1η1, . . . , Cnηn} DNF of α, ψi ∈ {∼ψ | ψ ∈ Ci } ; [ηi]ϕ

Once again, we need to show the validity of Propositions 3.2 and 3.3. This can

be done by suitably extending the corresponding argument in §4.3. We begin by
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adapting the definition of
σ
-→M to guarded strings:

v
C
-→M w ⇐⇒ v = w and M, v ⊨ C

v
Caσ
-→M w ⇐⇒ M, v ⊨ C and ∃u : v

a
-→M u and u

σ
-→M w

By the definition, the clauses of a guarded string σ act as constraints on the

states of a model M connected by
σ
-→M. In particular, we observe:

Proposition 5.7

1. v
CωD
-→ M w ⇐⇒ v

0ωD
-→M w and M, v ⊨ C

2. v
CωD
-→ M w ⇐⇒ v

Cω0
-→M w and M,w ⊨ D

Proposition 4.10 adapts as follows.

Proposition 5.8 If v
ωCω′

-→M w ⇐⇒ ∃u : v
ωC
-→M u and u

Cω′

-→M w

The formulation of Proposition 4.11 remains unchanged. Its proof once again

reduces to showing claim (1) since (2) and (3) follow from (1) and the definition

of satisfaction for diamonds and boxes. The two directions of (1) are shown by

induction on α using Proposition 5.7, Proposition 5.8, and the observation that

for every program α and every ωCω′ ∈ Lα, we have ωDω′ ∈ Lα whenever

C ⊆ D.

As a consequence of Proposition 4.11, we obtain:

Proposition 5.9 Let D be a DNF of η. Then:

1. M,w ⊨ 〈η〉ϕ ⇐⇒ ∃Cθ ∈ D : M,w ⊨ C and M,w ⊨ 〈θ〉ϕ

2. M,w ⊨ [η]ϕ ⇐⇒ ∀Cθ ∈ D : M,w ⊨ ∼C or M,w ⊨ [θ]ϕ

where we write M,w ⊨ ∼C as a shortcut for ∃ψ ∈ C : M,w ⊨ ∼ψ.

Proof We show (1) (the proof of (2) is analogous). For the direction from left

to right, suppose M,w ⊨ 〈η〉ϕ. By Proposition 4.11 (2), there is some σ =

C0a1C1 . . . anCn ∈ Lη and some v such that w
σ
-→M v and M, v ⊨ ϕ. Since

D is a DNF of η, we have η ≡ ΣD, and hence D contains some normal guarded

sequence Cθ such that σ ∈ L(Cθ). Since θ is of the form λ or a:θ, we must have

C0 ∈ ⌈C⌉ and τ = 0a1C1 . . . anCn ∈ Lθ. On the other hand, by Proposition 5.7 (1),

we have M,w ⊨ C0 and w
τ
-→M v . Taken together, w

τ
-→M v , M, v ⊨ ϕ and

τ ∈ Lθ imply M,w ⊨ 〈θ〉ϕ by Proposition 4.11 (2). Moreover, since M,w ⊨ C0

and C0 ∈ ⌈C⌉ (i.e., C ⊆ C0), we have M,w ⊨ C . The claim follows.

For the direction from right to left, suppose M,w ⊨ C and M,w ⊨ 〈θ〉ϕ

where Cθ ∈ D. By Proposition 4.11 (2), there is some τ = C0a1C1 . . . anCn ∈ Lθ

and some v such that w
τ
-→M v and M, v ⊨ ϕ. Since M,w ⊨ C , we then have

w
σ
-→M v where σ = (C ∪ C0)a1C1 . . . anCn. Clearly, σ ∈ ⌈C⌉ · Lθ = L(Cθ), and

hence σ ∈ Lη. The claim follows by Proposition 4.11 (2). �
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Proposition 3.2 follows by induction on the derivation of support. For Propo-

sition 3.3, we additionally observe that, by property (2) of program DNFs, every

premise of a derivation rule for support is literal or strictly smaller than the

conclusion.

The definition of clausal DNFs remains the same as in §3.3 (Definition 3.8),

and hence Proposition 3.10 remains valid. If we restrict the rules for 〈η〉ϕ and

[η]ϕ to non-normal η (which does not change the support relation), the cor-

responding tableau rules can be used to compute clausal DNFs following the

approach in §3.4 (termination of the tableau construction follows from property

(2) of program DNFs).

5.4 Demo Sets

We adapt our setup to account for tests following [32]. To define demo sets, we

extend the definition of
α
-→S to tests such that

ϕ
-→S= { (C,C) | C ∈ S, C ⊲ ϕ }.

Once again, we fix a finite, nonempty, syntactically closed formula universe F

that now contains formulas of PDL. With this, transition completeness and demo

sets are defined as before (Definition 3.4).

Unlike before, we no longer have
α
-→MS =

α
-→S for every program α. To see

this, consider S = {{p}} and suppose ϕ = (p ∧ q) ∨ (p ∧ ¬q) ∈ F . Then

{p}
ϕ
-→MS {p} but not {p}

ϕ
-→S {p} since {p} ⋫ ϕ. However, we can still show

the following lemma.

Lemma 5.10 Let α be a program and let MS, C ⊨ ϕ for all tests ϕ contained in

α and all C ∈ S such that C ⊲ϕ. Then
α
-→S ⊆

α
-→MS .

Proof Suppose C
α
-→S D. We show C

α
-→MS D by induction on α. If α = a, the

claim is immediate since, by definition,
a
-→MS =

a
-→S. If α = ϕ, then D = C and

C ⊲ϕ. Since ϕ is contained in α, by assumption we have MS, C ⊨ ϕ, and hence

C
ϕ
-→MS D. The inductive cases are straightforward, so we show only α = α∗1 . If

α = α∗1 , we have C
α1
-→
n
S D for some n ≥ 0, and hence C

α1
-→
n
MS
D by the inductive

hypothesis. The claim follows. �

Lemma 4.14 now has to be formulated with respect to
σ
-→MS rather than

σ
-→S.

Moreover, it requires an additional assumption:

Lemma 5.11 Let S be a set of clauses, {C,D} ⊆ S, C ⊲ [η]ϕ, and C
σ
-→MS D for

some σ ∈ Lη. Moreover, let MS, C
′ ⊨ ψ for every C′ ∈ S and every formula ψ

such that C′ ⊲ψ and ∼ψ is contained in η. Then D ⊲ϕ.

Proof We proceed by lexicographic induction on the length of σ and the deriva-

tion of C ⊲ [η]ϕ and do a case distinction on the shape of η. If η = λ or η = α1:η′
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where α1 is an action, the argument proceeds as in the proof of Lemma 4.14. If

α1 is not an action, then there is some DNF D of α1 and C′θ ∈ D such that

σ ∈ L(C′(θ:η′)) and C supports some formula in {∼ψ | ψ ∈ C′ } or [θ][η′]ϕ.

We now show that C⊲[θ][η′]ϕ. Suppose, for contradiction, C⊲∼ψ for some

ψ ∈ C′. By property (2) of program DNFs, ψ is contained in η and hence, by our

assumption, MS, C ⊨ ∼ψ. This contradicts C
σ
-→MS D since σ ∈ L(C′(θ:η′)).

Once we have C ⊲ [θ][η′]ϕ the claim follows by the inductive hypothesis for

σ and [θ][η′]ϕ since σ ∈ L(C′(θ:η′)) ⊆ L(θ:η′). �

We conclude the following adaptation of Lemma 3.6:

Lemma 5.12 Let S be a set of clauses, {C,D} ⊆ S, C ⊲ [α]ϕ, and C
α
-→MS D.

Moreover, let MS, C
′ ⊨ ψ for every C′ ∈ S and every formula ψ such that C′ ⊲ψ

and ∼ψ is contained in α. Then D ⊲ϕ.

Proof By Proposition 4.11 (1), there is some σ ∈ Lα such that C
σ
-→MS D. The

claim follows by Lemma 5.11 (which applies as programs are program sequences

of length 1). �

The proof of Lemma 3.7 (whose formulation remains unchanged) now pro-

ceeds with Lemmas 5.10 and 5.12 by induction on a modified notion of the size

ofϕ (notation |ϕ|), which is defined as usual with the exception that |¬p| = |p|.

Since this implies |∼ϕ| = |ϕ| for allϕ, the additional assumption in Lemma 5.12

follows by the inductive hypothesis.

Finally, Lemma 4.15 requires no changes to its formulation and its proof pro-

ceeds similarly to before.

5.5 Demo Graphs

The definition of clause graphs (Definition 3.13) remains unchanged except for

links, which must be adapted to the new definition of DNFs. We do so by chang-

ing properties (4) and (5) in Definition 4.16 as follows:

4. there is a clause C′ such that C′θ is an element of a DNF of η and

5. D is an element of a DNF of C�a ∪ C
′ ; 〈θ〉ϕ.

The definitions of paths, runs, loops, and demo graphs adapt without changes

to their formulation. Also, Propositions 4.18 and 3.17 remain valid (the proof of

Proposition 4.18 requires no changes and the proof of Proposition 3.17 adapts

in a straightforward way).
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Input: a normal clause C0 ⊆ F

Variable: G := {C0}

Invariant: G functional and loop-free

while G does not realize every 〈a〉ϕ ∈ C ∈ G do

1. pick 〈a〉〈η〉ϕ ∈ C ∈ G such that

• ϕ is not a diamond formula

• G does not realize 〈a〉〈η〉ϕ in C

2. pick DNF D of η

3. choose C′θ ∈ D

4. pick DNF S of C�a ∪ C
′ ; 〈θ〉ϕ

5. if S 6= 0 then choose D ∈ S else backtrack

6. G := G ;D ;C
(

〈a〉〈η〉ϕ
〈θ〉ϕ

)

D

7. if G contains a loop then backtrack

Return: – satisfiable if while-loop terminates regularly

– unsatisfiable if while-loop terminates through backtracking

Figure 6: Decision procedure for PDL

5.6 Decision Procedure

The decision procedure (Fig. 6) remains the same as in the test-free case (Fig. 5)

except for steps 3 and 4 of the while-loop, which are adapted to the new defini-

tion of DNFs. The correctness of the procedure is argued as before. The defini-

tion of η-distance remains unchanged (except that σ now ranges over guarded

strings and the notations |σ | and
σ
-→M are defined as in §5.1 and §5.3, respec-

tively). Proposition 4.20 follows analogously to before. The definitions of link

and graph satisfaction, as well as the proof of Proposition 3.19 are unchanged

compared to §4.6 while Lemma 4.21 adapts to reflect the changes in the decision

procedure:

Lemma 5.13 Let G be a graph satisfied by a model M and let 〈a〉〈η〉ϕ ∈ C ∈ G

where ϕ is not a diamond formula. Then for every DNF D of η there is some

C′θ ∈ D such that for every DNF S of C�a ∪ C
′ ; 〈θ〉ϕ there is some D ∈ S such

that M satisfies G ;D ;C
(

〈a〉〈η〉ϕ
〈θ〉ϕ

)

D.

The proof of the lemma adapts without problems.
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6 Nominals

Finally, we consider the full language with nominals. Our setup allows us to in-

corporate nominals with only minor extensions of the decision procedure. When

adding new clauses to the graph, the procedure now has to complete them by

additional formulas induced by the presence of nominals. We call this technique

nominal completion. The goal of nominal completion is to maintain an additional

invariant on clause graphs that we call nominal coherence. Nominal coherence

ensures the existence of clauses that serve as canonical representatives for nom-

inals in the construction of a demo set from a demo graph.

Our approach differs from existing approaches to dealing with nominals [28,

7, 29, 50, 33, 11, 25] in that once a clause or a link has been added to the graph,

it remains unchanged in all extensions of the graph. This simplifies the pre-

sentation and allows us to adapt our correctness arguments from the previous

sections to HPDL in a straightforward way.

Once again, we proceed incrementally. We point out the changes necessary

to the definitions in §5 to account for nominals and argue the correctness of the

adapted system.

6.1 Nominal Coherence and Nominal Completion

The notions of demo sets and demo graphs must now account for the special

semantics of nominals. We fix F to be a finite, nonempty, syntactically closed

set of formulas of HPDL (see §2). Demo sets are now defined as nonempty sets

of normal clauses that are transition-complete and, for every nominal x ∈ F ,

contain at most one clause C such that x ∈ C . With this additional constraint in

place, it is easily seen that every demo set describes a model of all of its clauses.

Formally, the proof of this fact (Lemma 3.7) proceeds analogously to the case

without nominals (§5.4) except for the following modifications:

Given a demo set S, we observe that S′ = S ∪ {{x} |

x does not occur in any clause in S } is a demo set that contains exactly one

clause for every nominal. Moreover, since every model of S′ is a model of S,

to show S satisfiable it suffices to construct a model of S′. Hence, we restrict

Lemma 3.7 to demo sets that contain exactly one clause per nominal. The

proof of Lemma 3.7 requires two additional base cases for nominals, which are

straightforward if the demo set contains exactly one clause per nominal.

The definitions of clause graphs (Definition 3.13), functionality and realiza-

tion are unchanged. For demo graphs (Definition 3.15), we introduce an addi-

tional constraint that we call nominal coherence.

Definition 6.1 A graph G is nominally coherent if for every nominal x ∈ C ∈ G
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there is a greatest clause containing x, i.e., a clauseD ∈ G such that∀E ∈ G : x ∈

E =⇒ E ⊆ D.

Given a nominal x, we see the greatest clause containing x, whose existence is

asserted by nominal coherence, as a canonical representative of the state corre-

sponding to x.

Definition 6.2 The nominal completion CG of a clause C w.r.t. a graph G is

defined as follows:

CG := C ∪
⋃

{D ∈ G | C ∩D contains a nominal }

If G is nominally coherent, nominal completion w.r.t. G maps every clause in G

that contains a nominal x to the unique greatest clause for x in G.

Proposition 6.3 Let G be a clause graph, M be a model of all the clauses in G,

and w ∈ |M|. Then for every clause C we have M,w ⊨ C ⇐⇒ M,w ⊨ CG.

Proof The direction from right to left is immediate. The other direction follows

by the semantics of nominals. �

Corollary 6.4 Let G be a clause graph and M be a model of all the clauses in G.

If C is a normal clause satisfied by M, then so is CG.

Proposition 6.5 A graph G is nominally coherent if and only if CG ∈ G for every

C ∈ G.

Proof For the direction from left to right, let x ∈ C ∈ G and let D be the greatest

clause in G containing x, whose existence is guaranteed by nominal coherence.

By the maximality of D and the definition of nominal completion, we have D =

CG. The claim follows.

For the other direction, we proceed by contradiction. Suppose G is not nomi-

nally coherent but CG ∈ G holds for every C ∈ G. Since G is not nominally coher-

ent, there is a nominal x and two distinct clauses C,D ∈ G such that x ∈ C ∩D

but C and D are both maximal in G. Then C ⊊ C ∪ D ⊆ CG. But since CG ∈ G,

neither C nor G can be maximal in G. Contradiction. �

Proposition 6.6 If G is nominally coherent, then (CG)G = CG for every clause C .

Proof The inclusion CG ⊆ (CG)G is immediate. For the other inclusion, the claim

follows by a straightforward case analysis. �
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C1 : 〈a+〉p, [a](x ∧¬p), [b]x, 〈b〉[a]¬p

C2 : x, 〈a+〉p, ¬p C4 : x, [a]¬p

C5 : x, 〈a+〉p, ¬p, [a]¬p

C3 : p C6 : 〈a+〉p, ¬p

(

〈a+〉p
〈a+〉p

)

(

〈p〉[a]¬p
[a]¬p

)

(

〈a+〉p
p

)

(

〈a+〉p
〈a+〉p

)

(

〈a+〉p
p

)

Figure 7: A demo graph

The core of a clause graph G is the set CoreG := {C ∈ G | CG = C }. In

other words, the core consists of all clauses that cannot be extended by nominal

completion. If G is nominally coherent, the clauses in CoreG that contain nomi-

nals are precisely the greatest clauses whose existence is guaranteed by nominal

coherence. By Propositions 6.5 and 6.6, if G is nominally coherent, then for ev-

ery clause C ∈ G we have CG ∈ CoreG. So, every clause in G is subsumed by a

larger clause in CoreG, and hence every model that satisfies CoreG will satisfy

all clauses in G. In the case without nominals, we defined demo graphs so that

the set of all their clauses forms a demo set. Now we define demo graphs so that

their core forms a demo set. To ensure that CoreG is a demo set, we only need

to consider links departing from clauses in CoreG. Provided G is nominally co-

herent, every such link CξD can now be interpreted as a transition from C(= CG)

to DG.

To account for this, we define a path for 〈a〉ϕ in G as a nonempty sequence

(C1

(

〈a1〉ϕ1

〈a2〉ϕ2

)

C2)(C
G
2

(

〈a2〉ϕ2

〈a3〉ϕ3

)

C3) . . . (C
G
n−2

(

〈an−2〉ϕn−2

〈an−1〉ϕn−1

)

Cn−1)(C
G
n−1

(

〈an−1〉ϕn−1

ψ

)

Cn)

of links in G such that 〈a1〉ϕ1 = 〈a〉ϕ. A path of the above form is called a run

for 〈a〉ϕ in C if C1 = C and ψ is not a diamond formula. The path is called a

loop for 〈a〉ϕ if C1 = C
G
n and ψ = 〈a1〉ϕ1 = 〈a〉ϕ. Note that while we define

paths, runs and loops for arbitrary graphs, the notions become truly meaningful

only for nominally coherent graphs.

For instance, consider the graph G in Fig. 7. The graph consists of six

clauses (C1 – C6) and five links. Clauses C2, C4 and C5 share a nominal:

x. Moreover, we have C
G
2 = C

G
4 = C

G
5 = C5 (we use a dashed arrow from

42



C2 and C4 to C5 to indicate that C
G
2 = C

G
4 = C5). Therefore, G is nomi-

nally coherent. Both diamond formulas in C1 have runs in G: the run for

〈p〉[a]¬p consists of the single link C1

(

〈b〉[a]¬p
[a]¬p

)

C4 while the run for 〈a+〉p is

(C1

(

〈a+〉p
〈a+〉p

)

C2)(C5

(

〈a+〉p
〈a+〉p

)

C6)(C6

(

〈a+〉p
p

)

C3). Note that (C1

(

〈a+〉p
〈a+〉p

)

C2)(C2

(

〈a+〉p
p

)

C3)

is not a path since its second link departs from C2 rather than C
G
2 = C5. Finally,

note that CoreG = {C1, C3, C5, C6}.

Lemma 6.7 Let G be a clause graph and C,D be two clauses in CoreG. If C ∩D

contains a nominal, then C = D.

Proof If x ∈ C ∩D for some x, then D ⊆ CG = C and C ⊆ DG = D. �

Definition 6.8 A clause graph G is a demo graph if G is finite, functional, nomi-

nally coherent, realizes every diamond formula in CoreG, and contains no loops.

Note that the graph G in Fig. 7 is a demo graph. So is the graph G′ = G \

{C2

(

〈a+〉p
p

)

C3}: since C2 ∉ CoreG = CoreG′, G′ does not need to realize 〈a+〉p

in C2.

Proposition 4.18 is adapted as follows.

Proposition 6.9 Let G be a demo graph and 〈a〉ϕ ∈ C for some clause C ∈

CoreG. Then G contains a unique run for 〈a〉ϕ in C .

Proof The existence of runs follows from the absence of loops and the finiteness

of G if one can show that every path in G that is not a run can be extended by

a link. So, let C
(

〈a〉ϕ
〈b〉ψ

)

D be the last link of a path in G. Since G realizes every

diamond formula in its core and 〈b〉ψ ∈ D, it suffices to show DG ∈ CoreG,

which follows with Propositions 6.5 and 6.6. The uniqueness of runs follows

from the functionality of G. �

Proposition 3.17 decomposes into the following two propositions. Taken to-

gether, the propositions ensure that every demo graph G gives rise to a model

that satisfies all of the clauses in G.

Proposition 6.10 Let G be a nominally coherent graph. Then for every clause

C ∈ G there is some D ∈ CoreG such that C ⊆ D.

Proof The claim follows with Propositions 6.5 and 6.6. �

Proposition 6.11 The core of a demo graph is a demo set.

Proof Transition completeness follows with Proposition 6.9 by the same rea-

soning as in the test-free case (see §5.5). The uniqueness of clauses for every

nominal follows with Lemma 6.7. �
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Input: a normal clause C0 ⊆ F

Variable: G := {C0}

Invariant: G functional, loop-free, and nominally coherent

while G does not realize every 〈a〉ϕ ∈ C ∈ CoreG do

1. pick 〈a〉〈η〉ϕ ∈ C ∈ CoreG such that

• ϕ is not a diamond formula

• G does not realize 〈a〉〈η〉ϕ in C

2. pick DNF D of η

3. choose C′θ ∈ D

4. pick DNF S of C�a ∪ C
′ ; 〈θ〉ϕ

5. if S 6= 0 then choose D ∈ S else backtrack

6. if DG not normal then backtrack

7. G := G ;D ;C
(

〈a〉〈η〉ϕ
〈θ〉ϕ

)

D ;DG

8. if G contains a loop then backtrack

Return: – satisfiable if while-loop terminates regularly

– unsatisfiable if while-loop terminates through backtracking

Figure 8: Decision procedure for HPDL

6.2 Decision Procedure

The decision procedure for HPDL is defined in Fig. 8. The changes compared to

the procedure for PDL are limited to step 6 (which is new) and step 7. Moreover,

the graph G satisfies nominal coherence as an additional invariant. Whenever the

procedure extends G by a link CξD, it ensures that nominal coherence is main-

tained by adding the clause DG (step 7). Since G contains only normal clauses,

prior to addingDG, the procedure checks ifDG is normal (step 6). Note that since

DG is a union of normal clauses, it is normal if and only if it does not contain

a complementary pair of literals. So, the conditional in step 6 effectively checks

for the absence of pairs p,¬p. The preservation of nominal coherence is then

ensured by the following lemma:

Lemma 6.12 Let G be a nominally coherent graph and let C be a normal clause

such that CG is normal. Then G ;C ;CG is nominally coherent.

Proof Let G′ = G ;C ;CG. By Proposition 6.5, it suffices to show (CG)G
′
∈ G′. This
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follows from the nominal coherence of G since (CG)G
′
= (CG)G = CG (Proposi-

tion 6.6). �

The graph G in Fig. 7 results from a possible run of the decision procedure

on C1. In the first iteration of the while-loop, the procedure picks the formula

〈a+〉p ∈ C1 and the DNF D = {λ, a:a∗} of a∗, then chooses 0(a:a∗) ∈ D, picks

the DNF {C2} of C1
�
a∪0 ; 〈a+〉p = {x∧¬p, 〈a+〉p}, and chooses C2 ∈ {C2}. Since

C
G
2 = C2 is normal, the procedure extends G by C2 and C1

(

〈a+〉p
〈a+〉p

)

C2. In the second

iteration of the loop, the procedure realizes 〈a+〉p ∈ C2 by extending G by C3

and the link from C2 to C3. Thereafter, the procedure realizes 〈p〉[a]¬p ∈ C1

by extending G by C4, the link from C1 to C4, and C5 = C
G
4 = C2 ∪ C4. The

procedure concludes by realizing 〈a+〉p ∈ C5 (introducing C6 and the link from

C5 to C6) and, finally, 〈a+〉p ∈ C6 (introducing the link from C6 to C3). Since G

realizes every diamond formula in CoreG, the procedure terminates returning

“satisfiable”.

The correctness of the procedure is argued similarly to before. Termination is

guaranteed since the size of G is bounded in the cardinality of F . The invariants

together with the negated loop condition imply that G is a demo graph, and is

hence satisfiable by Proposition 6.11 and Lemma 3.7.

It remains to argue that the procedure succeeds for every satisfiable clause.

For this we follow our chain of reasoning from before. The definitions of δ
η
M

and link satisfaction remain unchanged. Proposition 6.3 yields the following

corollary.

Corollary 6.13 If M satisfies all clauses of G, then for every clause C , formula

ϕ and program sequence η we have δ
η
MCϕ = δ

η
MC

Gϕ.

With this corollary, the proof of Proposition 3.19 adapts in a straightforward

way. The formulation and proof of Lemma 5.13 remain unchanged. In addition,

we now have to justify that for every clause D chosen according to Lemma 5.13,

DG is normal and satisfied by M. Both claims follow by Corollary 6.4.

7 Beyond HPDL

An interesting avenue for future research is extending the present approach to

more expressive logics. A possible first step is looking at extensions of (H)PDL

that are obtained by enriching the language of programs by additional con-

structs like converse, program intersection, or (atomic) program complemen-

tation. Unfortunately, extending our framework to any of these logics is a non-

trivial task. In the case of PDL with program intersection (IPDL), the difficulty is

already suggested by the fact that IPDL is 2EXPTIME-complete [41]. In its present
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form, our framework is geared towards NEXPTIME procedures. To obtain pro-

cedures of higher complexity, one would either have to significantly change the

demo search strategy or to modify the notion of a clause so as to allow for a

larger state space. For a more concrete problem with IPDL, consider the clause

C = {〈a〉p, 〈b〉p, [a ∩ b]¬p} (note that there is no obvious way to decompose

[a ∩ b]¬p into a Boolean combination of literals). Since C�a = C�b (regardless

of how we extend the notion of request to program intersection), we will only

produce one successor of C for both 〈a〉p and 〈b〉p. A model of C , however,

needs distinct successors for the two diamond formulas. Looking from another

perspective, we could say that our approach relies on stability of satisfaction

under filtration in the style of [42, 19] (see also [6]), which does not hold in the

presence of program intersection.

The same applies to program complementation. Consider, for instance, the

clause C = {〈a〉p, 〈ā〉p}, where ā denotes the complement of a. Then M where

|M| = {u,v,w},
a
-→M = {(u,v)},

b
-→M = {(u,w)} and Mp = {v,w} is a model

of C (assuming v and w are distinct) but the filtration of M (with respect to {p})

is not a model of C .

Unlike program intersection and complementation, the extension of PDL

by converse preserves stability of satisfaction under filtration (see, e.g., [32]).

Still, converse poses a problem for our nondeterministic demo search strat-

egy. Consider the clause C = {〈a〉(〈a〉〈a〉([a−][a−]p ∨ [a−][a−]q) ∧ ¬p),

〈a〉(〈a〉〈a〉([a−][a−]p ∨ [a−][a−]q) ∧ ¬q)} where a− denotes the converse of

a. While C is satisfiable, it is not obvious how to find a demo for C in our frame-

work. Expansion of C yields the graph

C

C1 : 〈a〉〈a〉([a−][a−]p ∨ [a−][a−]q), ¬p

C2 : 〈a〉〈a〉([a−][a−]p ∨ [a−][a−]q), ¬q

C3 : 〈a〉([a−][a−]p ∨ [a−][a−]q)

C4 : [a−][a−]p

(

〈a〉(〈a〉〈a〉([a−][a−]p∨[a−][a−]q)∧¬p)
〈a〉〈a〉([a−][a−]p∨[a−][a−]q)∧¬p

)

(

〈a〉(〈a〉〈a〉([a−][a−]p∨[a−][a−]q)∧¬q)
〈a〉〈a〉([a−][a−]p∨[a−][a−]q)∧¬q

)

(

〈a〉〈a〉([a−][a−]p∨[a−][a−]q)
〈a〉([a−][a−]p∨[a−][a−]q)

)

(

〈a〉〈a〉([a−][a−]p∨[a−][a−]q)
〈a〉([a−][a−]p∨[a−][a−]q)

)

(

〈a〉([a−][a−]p∨[a−][a−]q)
[a−][a−]p∨[a−][a−]q

)

where the only “don’t know” choice occurs in the computation of C4, in which the

disjunct [a−][a−]p is chosen over [a−][a−]q. Since C4 will be an a-successor of

C3 in the clause model induced by the graph, C3 needs to be extended by [a−]p
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(either by replacing C3 by a larger clause or adding an extended copy of C3).

Then, however, both C1 and C2 need to be extended by p, which will render C1

unsatisfiable. Symmetrically, choosing C4 = {[a−][a−]p} will lead to a conflict in

C2. To solve the problem, it seems necessary to have a mechanism which allows

to introduce two separate copies of C3, one for C1 and one for C2. This way, one

can select {[a−][a−]q} as a descendant of C1 and {[a−][a−]p} as a descendant

of C2 without violating functionality. Possibly, this can be achieved by adapting

some of the ideas in [21, 54] to the nondeterministic setting.

A possibly more promising direction is extending our approach to temporal

logics. We expect that the present framework can be adapted to both linear

temporal logic [45, 43] and computation tree logic [12, 14] using ideas from [9].

In particular, such an extension would require devising a mechanism for tracking

the fulfillment of several, possibly conflicting eventualities at the same time.

Also, the correspondence between a demo graph and a model would become

less immediate. Instead of building the model directly from the clauses of the

graph, one would have to rely on a model construction in the style of [15, 14].

To deal with nominals in the presence of universal eventualities as they occur

in CTL (i.e., formulas of the form AFϕ or A(ϕUψ)), more serious modifications

of the approach seem to be necessary. In particular, one can no longer rely on

model constructions in [15, 14] since they can introduce multiple copies of a

state, which is not generally compatible with the semantics of nominals.

Possible extensions to even more expressive temporal logics like (hybrid)

CTL* [16] or µ-calculus [38] seem far more challenging and require further in-

vestigation. Inspiration for this can be drawn from both automata-theoretic

approaches [17, 8] and existing goal-directed calculi [48, 30] for nominal-free

versions of the logics.

8 Concluding Remarks

We presented a modular, extensible approach to deciding modal logics with even-

tualities ranging from K∗ to HPDL. Our approach for the first time yields goal-

directed decision procedures for logics combining nominals and eventualities.

In particular, we for the first time obtain a goal-directed procedure for HPDL.

Our approach is designed in such a way that the machinery needed to deal with

nominals is completely decoupled from the treatment of eventualities.

Similarly to existing approaches to hybrid logics [28, 7, 29, 50, 33, 11, 25], we

base our procedure on nondeterministic search. Unlike existing approaches to

logics with nominals, all of which employ prefixes, our approach is prefix-free.

Moreover, it relies on a particularly simple “blocking strategy” for termination:

before adding a clause C to a graph G, an implementation of our procedure

47



would have to check if C is already contained in G so as to make sure that G

remains a set. Unlike with existing approaches, which explicitly restrict their

respective calculi to achieve termination, the set containment check is implicit in

the formulation of our procedure.

To account for the semantics of nominals, we introduce an additional rep-

resentation invariant on clause graphs that we call nominal coherence, as well

as a technique called nominal completion that we use to maintain the invariant.

Also new to the present approach is the notion of support, which generalizes the

ideas behind Hintikka sets as used, e.g., in [46, 32].

New and crucial to our approach is the separation of demo search into a

nondeterministic construction of demo graphs from normal clauses and a DNF

computation that reduces arbitrary clauses to normal clauses. This separation

is essential for the completeness of our search strategy, which differs from the

strategies used by pruning-based procedures in that we restrict the search to de-

mos containing only one outgoing edge per diamond formula and clause. We call

this property functionality. Functionality greatly simplifies checking the fulfill-

ment of eventualities, reducing it to simple reachability checking. In a prefixed

setting, this kind of reachability checking was first employed by Baader [4]. In

the automata-theoretic setting, ideas similar to functionality were exploited by

Emerson and Sistla [18] to reduce the blowup associated with determinization

(see also [17]).

Initially conceived for the basic hybrid logic with eventualities [34], our ap-

proach scales to PDL and HPDL. The key adaptation necessary to treat regular

programs as they occur in PDL concerns the definitions of support and DNFs.

The treatment of nominals, on the other hand, is completely unaffected by the

transition from K∗ to PDL.

While we provide straightforward algorithms for computing clausal DNFs and

program DNFs, the overall procedure does not depend on the details of these

algorithms. This makes it possible to implement the DNF computation by dif-

ferent, possibly more efficient algorithms than the ones provided in the paper

without having to reprove the correctness of the overall procedure.

For all logics considered in the paper, the size of the clause graph constructed

by our procedures is exponentially bounded in the input, which yields a NEXP-

TIME bound on the worst-case complexity of the procedures. This is suboptimal

since all of the logics have an EXPTIME-complete decision problem [6, 49, 32]. In

fact, in [32] a worst-case optimal procedure for HPDL with converse and differ-

ence modalities is presented that directly extends Pratt’s procedure in [46]. How-

ever, the procedure in [32] is not goal-directed (and hence not practical) since its

treatment of nominals relies on brute-force enumeration of nominally coherent

subsets (of which there are exponentially many in the size of the input). The

48



procedures in the present paper, on the other hand, have the potential to dis-

play acceptable performance on practical problems. Indeed, in the absence of

eventualities the procedures reduce to variants of state-of-the-art tableau-based

decision procedures for hybrid logic such as those described in [28, 7, 33]. While

generally not worst-case optimal, such procedures are easy to implement and

have considerable potential for optimization [27, 53]. They provide a basis for

a number of systems (e.g., [52, 51, 26, 22]), some of which have been success-

fully applied in practical settings. While recent extensions of the pruning-based

approach by Goré and Widmann [20, 21] yield efficient and worst-case optimal

decision procedures, it is presently not known how to extend their approach to

nominals so that worst-case optimality is retained [21, 31]. Thus, devising effi-

cient and worst-case optimal decision procedures for modal logics with nominals

and eventualities remains an open problem.
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