

Operations on Prime Trees

not: PT → PT
not t = π(¬t)

and: PT×PT → PT
and(s,t) = π(s∧t)

Will see efficient algorithms

Constructors for PTs (ADT)

0: PT

1: PT

cond: Var×PT×PT → PT

cond(x,s,t) = π(x,s,t) provided x<FVs∪FVt

If s,t prime trees and x variable:

π(x,s,s) = s

π(x,s,t) = (x,s,t) if x<FVs∪FVt

All algorithms will be based on 0, 1, cond

Algorithm for not

• Based on the tautologies

¬0 = 1

¬1 = 0

¬(x,y,z) = (x,¬y,¬z)

• Orderedness preserved since no new variables

• Reducedness preserved since ¬ injective

Algorithm for and

• Based on the tautologies

(x,y,z) ∧ 0 = 0

(x,y,z) ∧ 1 = (x,y,z)

(x,y,z) ∧ (x,y’,z’) = (x, y∧y’, z∧z’)

(x,y,z) ∧ u = (x, y∧u, z∧u)

• Orderedness preserved since no new variables

• Reducedness preserved by cond

(only used if x < FVu)

Boolean Term → Prime Tree

trans: BT→ PT

trans 0 = 0

trans 1 = 1

trans x = cond (x,0,1)

trans (¬t) = not (trans t)

trans (s∧t) = and (trans s, trans t)

trans (s∨t) = or (trans s, trans t)

Minimal Graph Representation

• Every node describes a prime

tree

• Graph describes a subtree-

closed set of prime trees

• Graph minimal iff different

nodes describe different trees

x x

y

z1

0

Graph → Table

x x

y

z1

0

4
5

2

3

Number nodes of graph

Graph → Table

x x

y

z1

0
(x,2,3)5

(x,1,3)4

(y,1,2)3

(z,1,0)2

4
5

2

3

Graph → Table → Function

x x

y

z1

0
(x,2,3)5

(x,1,3)4

(y,1,2)3

(z,1,0)2

tab(i)i4
5

2

3

Graph minimal iff tab injective

Constant Time Realization of cond

cond(x,n,n’) =

if n=n’ then n

else if (x,n,n’) ∈ Dom(tab-1)
then tab-1 (x,n,n’)

else let n’’ = least number not in Dom tab

in tab := tab[n’’:=(x,n,n’)] ;

n’’

Implement tab-1 with hashing

