Decision Trees and Tantolosy Thoorem	Decision Tras if $x=0$ then if $y=0$ then 0 else if $2=0$ then 1 else 0 else if $2=0$ then 1 else 0
G. Smolken 5-7 May 9+11, 2005	$\underbrace{\text { a }}_{\bar{x} y_{\overline{2}}^{\bar{x}}(\bar{y} 0+y(\bar{z} 1+20))}$
Decision trees can be represented as terms	Formal definition of decision trees $\begin{aligned} & \left(0, t_{0}, t_{1}\right) \stackrel{\operatorname{det}}{=} \bar{s}_{0}+s t_{1} \\ & t \in D T \subseteq B T=0111(x, t, t) \end{aligned}$
sud that the tree and the term describe the same B. function	Terms of the form (o, tor, t_{0}) are called conditimals [Liowenheim 1910] $\begin{aligned} & B H \vdash(0, x, y)=x \\ & B A \vdash(1, x, y)=y \end{aligned}$

Signifient Variables of terms

$$
\begin{aligned}
& \text { Proof of Canomiay Th } \\
& \text { Fix } \mathcal{L} \text { : nontrivial B.al } \\
& \sigma \in \sum_{y}=B U \rightarrow \mathcal{L} B \\
& \forall t \in B T \cdot \mathcal{L} t \in(B U \rightarrow
\end{aligned}
$$

$$
\text { The } 6 \mathrm{rem}
$$

$$
\begin{aligned}
\forall n, t & \in P T \quad \forall \text { nontriuie B.aly } Z \\
& 0 \neq t \Rightarrow W s \neq Z t
\end{aligned}
$$

satishis

$$
\therefore 0=4
$$

$$
\left.A_{s}\right)
$$

$$
\infty
$$

$$
y=
$$

$$
\begin{aligned}
\mathscr{L}\left(x, t_{0}, t_{1}\right) \sigma & =\mathscr{L} t_{0} \sigma \quad \text { if } \sigma x=\mathscr{L}_{0} \\
=\mathscr{L} t_{1} \sigma & \text { if } \sigma x=\mathcal{L}_{1}
\end{aligned}=\begin{aligned}
& \text { ince } B A \vdash\left(0, t_{0}, t_{1}\right)=t_{0} \text { and } \\
& B A H\left(1, t_{0}, t_{1}\right)=t_{1}
\end{aligned}
$$

Operations on Prime Trees

not: PT \rightarrow PT
not $t=\pi(\neg t)$
and: PT×PT \rightarrow PT
and $(\mathrm{s}, \mathrm{t})=\pi(\mathrm{s} \wedge \mathrm{t})$
Will see efficient algorithms

Algorithm for not

- Based on the tautologies

$$
\begin{aligned}
& \neg 0=1 \\
& \neg 1=0 \\
& \neg(x, y, z)=(x, \neg y, \neg z)
\end{aligned}
$$

- Orderedness preserved since no new variables
- Reducedness preserved since \neg injective

Constructors for PTs (ADT)

0: PT
1: PT
cond: Var×PT×PT $\rightarrow \mathrm{PT}$
$\operatorname{cond}(\mathrm{x}, \mathrm{s}, \mathrm{t})=\pi(\mathrm{x}, \mathrm{s}, \mathrm{t}) \quad$ provided $\mathrm{x}<\mathrm{FVs} \cup F \mathrm{Ft}$
If s, t prime trees and x variable:

```
\pi(x,s,s)=s
\pi(x,s,t)=(x,s,t) if }x<FVs\cupFV
```

All algorithms will be based on 0,1 , cond

Algorithm for and

- Based on the tautologies
$(x, y, z) \wedge 0=0$
$(x, y, z) \wedge 1=(x, y, z)$
$(x, y, z) \wedge\left(x, y^{\prime}, z^{\prime}\right)=\left(x, y \wedge y^{\prime}, z \wedge z^{\prime}\right)$
$(x, y, z) \wedge u=(x, y \wedge u, z \wedge u) \quad$ (only used if $x<F V u)$
- Orderedness preserved since no new variables
- Reducedness preserved by cond

Algorithms for $v, \rightarrow, \infty, \ldots$ are analog to algorithm for M.
In partiontar, the following are tautologies
for every binary operation 0 :

- $(x, y, z) \circ\left(x, y^{\prime}, z^{\prime}\right)=\left(x, y \circ y^{\prime}, 2 \circ z^{\prime}\right)$
. $(x, y, 2) \circ u=(x, y o u, 20 u)$
(because 0 can be expressed with Λ and \longrightarrow)

Boolean Term \rightarrow Prime Tree

trans: $\mathrm{BT} \rightarrow \mathrm{PT}$
trans $0=0$
trans $1=1$
trans $\mathrm{x}=$ cong $(\mathrm{x}, 0,1)$
trans $(\neg \mathrm{t})=$ not (trans t$)$
trans $(\mathrm{s} \wedge \mathrm{t})=$ and ((trans s , trans t)
trans (set) $=$ or (trans s, trans t)

Minimal Graph Representation

- Every node describes a prime tree
- Graph describes a subtreeclosed set of prime trees
- Graph minimal iff different nodes describe different trees

Binary decision diagrams (DDs)

Graph \rightarrow Table

2	$(z, 1,0)$
3	$(y, 1,2)$
4	$(x, 1,3)$
5	$(x, 2,3)$

Number nodes of graph

Graph \rightarrow Table

Constant Time Realization of cond

```
cond(x,n,n') =
    if n=n' then n
    else if (x,n,n') \in Dom(tab-1)
        then tab-1 (x,n,n')
        else let n" = least number not in Dom tab
            in tab := tab[n'":=(x,n,n')] ;
            n"
```

Implement tab- ${ }^{-1}$ with hashing

