	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00

Tableau-Based Automation for Typed Finite Sets

Alexander Anisimov

Advisors: Chrisian Doczkal, Gert Smolka Supervisor: Gert Smolka

> Saarland University Programming Systems Lab

September 11, 2015

Recap	Necessity of Cut-Rules	Completeness Proof	Implementation	Examples	Related Work	Summary
00000000	00	00000000	00	00	00	00

• Tableau-Based Automation for Typed Finite Sets

- 2 Necessity of Cut-Rules
- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System
- Implementation

5 Examples

6 Related Work

Recap ●0000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00		
Tableau-Based	Tableau-Based Automation for Typed Finite Sets							

• Tableau-Based Automation for Typed Finite Sets

- 2 Necessity of Cut-Rules
- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System
- Implementation
- 5 Examples
- 6 Related Work

Recap 0●000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00			
Tableau-Based	Tableau-Based Automation for Typed Finite Sets								
Langu	Languages of the Calcului								

Definition

set	$::= \dot{\emptyset} \mid x \mid \langle set \rangle \mid set \dot{\cup} set \mid set \dot{-} set \mid \dot{\mathcal{P}}(set) \mid \langle x \dot{\in} set \mid form \rangle$
rel	$::= set \in set set \in set set = set$
form	$::= \dot{\perp} \mid \textit{rel} \mid \dot{\neg}\textit{form} \mid \textit{form}\dot{\land}\textit{form} \mid \textit{form}\dot{\lor}\textit{form} \mid \textit{form}\dot{\rightarrow}\textit{form}$

- Minimal calculus⊆ Powerset extension⊆ Separation extension (by accumulation of the operators)
- A branch is a finite set of well-typed formulas
- \bullet A branch is closed if it contains $\dot{\perp}$ and open otherwise
- In the following: every relation we state is well-typed

Recap 00●00000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Tableau-Based	I Automation for Typed Fir	nite Sets				

Set Representation

Definition (fset)

Let T be a *choiceType*. Then (*fset* T) is the type of finite sets with elements of type T.

- *fset T* is again a choice type
- choice Types allow for an extensional set representation
- We can build stratified hierarchies of fsets

Definition (Level)

lv(s) := the number of toplevel *fset* constructors in the type of *s*

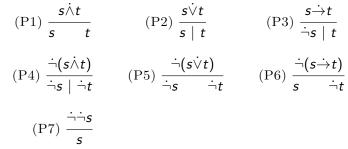
$$S_I(\Gamma) :=$$
 all sets s with $lv(s) = l$ occurring in Γ

 L_{Γ} := the highest populated level

Recap 000●0000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Tableau-Based	d Automation for Typed Fir	iite Sets				

Saturation Rules

Propositional rules:



Branch-closing rules:

(D1)
$$\frac{\dot{b} \quad \dot{\neg} b}{\dot{\perp}}$$
 (D2) $\frac{\dot{x \neq x}}{\dot{\perp}}$ (D3) $\frac{\dot{x \in \emptyset}}{\dot{\perp}}$

Recap 0000●000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Tableau-Based	d Automation for Typed Fir	nite Sets				
<u> </u>						

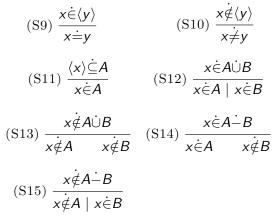
Saturation Rules

Regular saturation rules:

$$(S1) \frac{x \not\in A \qquad A \subseteq B}{x \not\in B} \qquad (S2) \frac{x \not\notin A \qquad B \subseteq A}{x \not\notin B}$$
$$(S3) \frac{A \not\notin B}{x_{AB} \not\in A \qquad x_{AB} \not\notin B} \qquad (S4) \frac{A \not= B}{A \subseteq B \qquad B \subseteq A}$$
$$(S5) \frac{A \not\neq B}{x_{AB} \not\in A \qquad x_{AB} \not\in B} \qquad (S6) \frac{x \not= y \qquad y \not\in A}{x \not\in A}$$
$$(S7) \frac{x \not= y \qquad y \not= z}{x \not= z} \qquad (S8) \frac{x \not= y}{y \not= x}$$

Recap 00000●00	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00		
Tableau-Based	Tableau-Based Automation for Typed Finite Sets							
Satura	tion Rules							

Regular saturation rules:



Recap 000000●0	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Tableau-Based	Automation for Typed Fir	nite Sets				
~						

Saturation Rules

Cut rules:
(C1)
$$\frac{X \in S_l(\Gamma) \quad Y \in S_l(\Gamma)}{X \doteq Y \mid X \neq Y}$$
 (C2) $\frac{x \in S_l(\Gamma) \quad A \in S_{l+1}(\Gamma)}{x \in A \mid x \notin A}$
(C3) $\frac{A \in S_l(\Gamma) \quad B \in S_l(\Gamma)}{A \subseteq B \mid A \notin B}$

Extension rules:

$$(Q1) \frac{A \dot{\in} \dot{\mathcal{P}}(B)}{A \dot{\subseteq} B} \quad (Q2) \frac{A \dot{\notin} \dot{\mathcal{P}}(B)}{x_{AB} \dot{\in} A \quad x_{AB} \dot{\notin} B}$$
$$(R1) \frac{y \dot{\in} \langle x \dot{\in} A \mid p \rangle}{y \dot{\in} A \quad p_{y}^{\times}} \quad (R2) \frac{y \dot{\notin} \langle x \dot{\in} A \mid p \rangle}{y \dot{\notin} A \mid \dot{\neg} p_{y}^{\times}}$$

 Recap
 Necessity of Cut-Rules
 Completeness Proof
 Implementation
 Examples
 Related Work
 Summary

 0000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Termination and Nontermination

The calculus with powerset extension terminates

- S(Γ) is the closure of sets that possibly can be generated in Γ
- $\mathcal{S}(\Gamma)$ is finite
- No literal is removed or added twice
- Finitely many possible relations between finitely many sets
- Number of literals is upper bounded by 6|S(Γ)|

The calculus with the separation extension diverges

$$F := \langle a \in A \mid B \notin \langle a \rangle \cup C \rangle$$

$$\begin{array}{c|c} x \in F, B \subseteq F \\ \hline x \in A, \ B \notin \langle x \rangle \cup C & (\text{R1}) \\ y \in B, \ y \notin \langle x \rangle \cup C & (\text{S3}) \\ y \in F & (\text{S1}) \\ y \in A, \ B \notin \langle y \rangle \cup C & (\text{R1}) \end{array}$$

Recap	Necessity of Cut-Rules	Completeness Proof	Implementation	Examples	Related Work	Summary
00000000	00	00000000	00	00	00	00

• Tableau-Based Automation for Typed Finite Sets

2 Necessity of Cut-Rules

- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System
- Implementation

5 Examples

6 Related Work

Recap 00000000	Necessity of Cut-Rules ●0	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Cut-Rules in						
<u> </u>						

The Minimal System

Example

The following branch cannot be closed without cut rules:

- No direct relation between A and B
- No direct relation between x and $\dot{A-B}$

 \Rightarrow cut rules needed for the minimal system to be complete

Recap 00000000	Necessity of Cut-Rules ○●	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Cut-Rules in						

The Powerset Extension

In the powerset extension, cut rules are needed significantly more often

Example

The following branch is representative for a large class of problems:

$$\begin{array}{c|c}
\dot{\mathcal{P}}(A) \subseteq \dot{\mathcal{P}}(B) \\
A \notin B \\
\hline A \notin \dot{\mathcal{P}}(A) & A \notin \dot{\mathcal{P}}(A) \\
A \notin \dot{\mathcal{P}}(B) & x_{AA} \notin A \\
A \subseteq B & x_{AA} \notin A \\
\dot{\bot} & \dot{\bot} \\
\end{array}$$

- No other rules to infer something from subset relations only
- No connecting relation between the levels lv(A) and $lv(\dot{\mathcal{P}}(A))$

Recap 00000000	Necessity of Cut-Rules 00	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Definition of (Completeness					

• Tableau-Based Automation for Typed Finite Sets

- 2 Necessity of Cut-Rules
- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System
- Implementation
- 5 Examples
- 6 Related Work

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00			
Definition of Completeness									
Model									

Definition (Variable Assignment)

A variable assignment is a function J of type

$$J: \forall I. \ vars_I(\Gamma) \rightarrow fset^I(D)$$

Definition (Model)

Let J be a variable assignment. We define the *model* induced by J as follows:

$$\hat{J}\emptyset := \emptyset$$

 $\hat{J}A := JA \text{ if } A \in vars_{I}(\Gamma) \text{ for some } I \in \mathbb{N}$
 $\hat{J}\langle x \rangle := \{\hat{J}x\}$
 $\hat{J}A \cup B := \hat{J}B \cup \hat{J}C$
 $\hat{J}A - B := \hat{J}B \setminus \hat{J}C$

Recap 00000000	Necessity of Cut-Rules 00	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00		
Definition of Completeness								

Definition (Satisfiability)

Let J be a variable assignment and \hat{J} the model induced by it.

$$J \models A \dot{\circ} B : \Leftrightarrow \hat{J} A \circ \hat{J} B$$

for $\circ \in \{ \dot{\in}, \dot{\notin}, \dot{\subseteq}, \dot{\subseteq}, \dot{\subseteq}, \dot{\neq} \}$ and \circ the corresponding semantic relation. We define satisfiability of formulas as follows:

$$J \models \neg s :\Leftrightarrow \neg J \models s$$
$$J \models s \land t :\Leftrightarrow J \models s \land J \models t$$
$$J \models s \lor t :\Leftrightarrow J \models s \lor J \models t$$
$$J \models s \lor t :\Leftrightarrow J \models s \lor J \models t$$

 Γ is called *satisfiable*, if there exists some J such that for all formulas $\phi \in \Gamma$ we have $J \models \phi$.

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00			
Definition of Completeness									
Completeness									

Definition (Saturated Branch)

A branch is saturated if none of the tableau rules is applicable.

Definition (Completeness)

A tableau system is complete, if every open saturated branch is satisfiable.

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Completeness	of the Minimal System					

1) Recap

- Tableau-Based Automation for Typed Finite Sets
- 2 Necessity of Cut-Rules
- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System
- Implementation

5 Examples

6 Related Work

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00		
Completeness of the Minimal System								
Set Interpretation								

Let Γ be an open saturated branch.

Definition (Interpretation)

$$D_{\Gamma} := S_0(\Gamma)/\doteq$$

$$\mathcal{I} : \quad \forall I \in \mathbb{N}. \ S_I(\Gamma) \to \textit{fset}^I(D_{\Gamma})$$

$$\mathcal{I}_I(X) := \begin{cases} [X]_{\doteq} & I = 0\\ \{\mathcal{I}_{I-1}(x) \mid x \in X \in \Gamma\} & I > 0 \end{cases}$$

For the interpretation to be well-defined we have to show the following $% \left({{{\mathbf{F}}_{\mathrm{s}}}^{\mathrm{T}}} \right)$

Lemma

 \doteq is an equivalence relation in Γ .

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Completeness	of the Minimal System					

'Model'-Property of the Interpretation ${\cal I}$

Lemma

Let
$$X, Y \in \mathcal{S}(\Gamma)$$
 and $\circ \in \{ \dot{\in}, \dot{\notin}, \dot{\subseteq}, \dot{\nsubseteq}, \dot{=}, \dot{\neq} \}$. Then,

 $\mathcal{I}X \circ \mathcal{I}Y \Leftrightarrow X \circ Y \in \Gamma.$

Proof by induction on I = Iv(Y).

$$\begin{aligned} \text{I.S.: } & I \to I + 1 = lv(Y) \\ (\dot{\in}) \quad ``\Rightarrow'' \text{Let } \mathcal{I}X \in \mathcal{I}Y. \\ & \Rightarrow \mathcal{I}X \in \{\mathcal{I}y \mid y \dot{\in} Y \in \Gamma\} \\ & \Rightarrow \exists y \in \mathcal{S}(\Gamma). \ y \dot{\in} Y \in \Gamma \land \mathcal{I}X = \mathcal{I}y \\ & \Rightarrow X \dot{=} y \in \Gamma \text{ by I.H.} \\ & \Rightarrow X \dot{=} y, y \dot{\in} Y \in \Gamma \Rightarrow X \dot{\in} Y \in \Gamma \text{ due to (S6)} \\ & ``\leftarrow'' \text{Let } X \dot{\in} Y \in \Gamma. \text{ Then, } \mathcal{I}X \in \{\mathcal{I}x \mid x \dot{\in} Y \in \Gamma\} = \mathcal{I}Y \end{aligned}$$

Recap 00000000	Necessity of Cut-Rules	Completeness Proof ○○○○○○○●○	Implementation 00	Examples 00	Related Work	Summary 00		
Completeness of the Minimal System								
Model								

Definition

We define $I := \mathcal{I}|_{vars(\Gamma)}$ to be our variable assignment and \hat{I} the corresponding model.

Lemma

a)
$$\mathcal{I}\dot{\emptyset} = \emptyset$$

b)
$$\langle x \rangle \in \mathcal{S}(\Gamma) \Rightarrow \mathcal{I} \langle x \rangle = \{\mathcal{I}x\}$$

c)
$$A \dot{\cup} B \in \mathcal{S}(\Gamma) \Rightarrow \mathcal{I}(A \dot{\cup} B) = \mathcal{I} A \cup \mathcal{I} B$$

d)
$$A - B \in \mathcal{S}(\Gamma) \Rightarrow \mathcal{I}(A - B) = \mathcal{I}A \setminus \mathcal{I}B$$

$$\Rightarrow \hat{I}|_{\mathcal{S}(\Gamma)} = \mathcal{I}$$

Recap 00000000	Necessity of Cut-Rules	Completeness Proof ○○○○○○○○●	Implementation 00	Examples 00	Related Work	Summary 00		
Completeness of the Minimal System								
Completeness Proof								

Theorem

The minimal system is complete.

Proof.

- $\bullet~\Gamma$ is open and saturated
- $\forall X, Y \in \mathcal{S}(\Gamma)$. $\mathcal{I}X \circ \mathcal{I}Y \Leftrightarrow X \circ Y \in \Gamma$

•
$$\hat{I}|_{\mathcal{S}(\Gamma)} = \mathcal{I}$$

- $\Rightarrow \quad \forall X, Y \in \mathcal{S}(\Gamma). \ \hat{l}X \circ \hat{l}Y \Leftrightarrow X \circ Y \in \Gamma$ $\Rightarrow \quad \forall \phi \in \Gamma. \ \hat{l} \models \phi$
- \Rightarrow Γ is satisfiable. \Box

Recap	Necessity of Cut-Rules	Completeness Proof	Implementation	Examples	Related Work	Summary
00000000	00	00000000	00	00	00	00

• Tableau-Based Automation for Typed Finite Sets

- 2 Necessity of Cut-Rules
- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System

Implementation

5 Examples

6 Related Work

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation •0	Examples 00	Related Work	Summary 00
Tablea	aux in Coq					

- A branch is realized as goal
 - Assumptions are interpreted as formulas
 - The conclusion is False
- Every rule is stated and proven as a lemma
- If the premisses of a rule are on the branch its conclusion can be posed and proven
- We branch by posing a disjunction and destructing it
- Boolean connectives are eliminated by tableau rules
- The rules are grouped by their structure
 - branch closing
 - non-branching
 - branching
 - cut rules

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation ○●	Examples 00	Related Work	Summary 00

Final Tactics

```
Ltac core :=
 repeat(
    genSubst; (* reflect equalities and call subst *)
    repeat nonbranching; (* all possible nb-rules *)
    try closebranch;
    genSubst; (* in case you generated new equalities *)
    try branching; (* exactly one branching rule *)
   try closebranch
  ).
Ltac fset dec :=
 preproc; (* normalize goal *)
 repeat(
   try closebranch;
    core;
   try cutrules (* apply exactly one cut rule *)
  ).
```

Ltac fset_nocut := preproc; try closebranch; core.

Recap	Necessity of Cut-Rules	Completeness Proof	Implementation	Examples	Related Work	Summary
00000000	00	00000000	00	00	00	00

• Tableau-Based Automation for Typed Finite Sets

- 2 Necessity of Cut-Rules
- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System

Implementation

5 Examples

6 Related Work

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples ●●	Related Work 00	Summary 00
Examp	oles I					

- The example for the necessity of cuts in the basic ruleset $A B \subseteq \dot{\emptyset} \rightarrow x \in A \rightarrow x \in B$ is solved instantaneously.
- The propositions $A \subseteq C \rightarrow B \subseteq C \rightarrow ((C - A) \cup (C - B)) \doteq (C - (A \cap B))$ $A \subseteq C \rightarrow B \subseteq C \rightarrow ((C - A) \cap (C - B)) \doteq (C - (A \cup B))$ are proved either in less than half a second.
- *P*(A)−⟨A⟩ ⊆ ∅ → A=∅
 requires application of cut rules and is solved in less than one second.

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples ●●	Related Work	Summary 00
Fyamr						

- The example for the importance of cut rules in the powerset extension
 Ṗ(A)⊆Ṗ(B) → A⊆B is solved in 2.73 seconds.
- The proposition
 P(A∪B)⊆*P*(A)∪*P*(B) → A⊆B∨B⊆A
 requires application of cut rules and is solved in about 45 seconds. A larger context may cause the tactic to run even longer.

Recap	Necessity of Cut-Rules	Completeness Proof	Implementation	Examples	Related Work	Summary
00000000	00	00000000	00	00	00	00

• Tableau-Based Automation for Typed Finite Sets

- 2 Necessity of Cut-Rules
- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System
- Implementation

5 Examples

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work ●●	Summary 00
Relate	d Work I					

- Domenico Cantone 1991: Decision procedures for elementary sublanguages of set theory: X. Multilevel syllogistic extended by the singleton and powerset operators.
 - Completeness of a fragment of set theory with unrestricted powerset operator
- Domenico Cantone, Calogero G. Zarba 1999: A Tableau-Based Decision Procedure for a Fragment of Set Theory Involving a Restricted Form of Quantification.
 - States that the decidability of the fragment of ZF set theory with unrestricted universal quantification is an open problem
 - Correspondence between universal quantification and set separations

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work ●●	Summary 00
Relate	d Work II					

- Benjamin Shults 1997: Comprehension and Description in Tableaux.
 - Efficient proof automation with separations
 - Different handling of extensionality
 - Usage of substitution
- Bernhard Beckert, Ulrike Hartmer 1998: A Tableau Calculus for Quantifier-Free Set Theoretic Formulae.
 - Termination and completeness proofs for a system similar to our minimal calculus

Recap	Necessity of Cut-Rules	Completeness Proof	Implementation	Examples	Related Work	Summary
00000000	00	00000000	00	00	00	00

• Tableau-Based Automation for Typed Finite Sets

- 2 Necessity of Cut-Rules
- 3 Completeness Proof
 - Definition of Completeness
 - Completeness of the Minimal System
- Implementation

5 Examples

6 Related Work

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary ●0
Outlin	e of the The	esis				

- Proof automation for boolean logic
 - Study of the technique proof by reflection
 - Implementation of a reflective boolean tautology solver
- Proof automation for typed finite sets
 - Theory: 3 tableau calculi
 - Minimal system: terminating and complete
 - Powerset extension: terminating
 - Separation extension: in general nonterminating
 - Practice: implementation of automation tactics for *fset* in Ssreflect
 - Shallow implementation of tableau saturation strategy
 - Tactics with and without cut rules
 - Possibility to give unfoldable definitions as argument

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary ○●
Possib	le Improvem	ent				

• Automation for boolean logic

- Improve implementation
- Use more efficient decision procedure
- Automation for typed finite sets
 - Avoid cut rules more efficiently
 - Find necessary rules for the completeness of the powerset extension
 - Find a 'harmless' subclass of the separation operator that doesn't diverge
 - Improve implementation
 - Formalize termination and conpleteness proofs in Coq

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Refere	nces I					

Samuel Boutin:

Using Reflection to Build Efficient and Certified Decision Procedures. TACS 1997: 515-529, Springer 1997

 Bernhard Beckert, Ulrike Hartmer: A Tableau Calculus for Quantifier-Free Set Theoretic Formulae.
 TABLEAUX 1998: 93-107, Springer 1998

Domenico Cantone:

Decision procedures for elementary sublanguages of set theory: X. Multilevel syllogistic extended by the singleton and powerset operators.

J. Autom. Reasoning 7:193-230, 1991, Springer 1991

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00
Refere	nces II					

Domenico Cantone, Rosa Ruggeri Cannata: Deciding set-theoretic formulae with the predicate 'finite' by a tableau calculus. Le Matematiche Vol 50, No 1 (1995)

 Domenico Cantone, Calogero G. Zarba:
 A New Fast Tableau-Based Decision Procedure for an Unquantified Fragment of Set Theory.
 FTP (LNCS Selection) 1998: 126-136, Springer 2000

Domenico Cantone, Calogero G. Zarba:

A Tableau-Based Decision Procedure for a Fragment of Set Theory Involving a Restricted Form of Quantification. TABLEAUX 1999: 97-112, Springer 1999

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00	
References III							

Domenico Cantone, Calogero G. Zarba, Rosa Ruggeri Cannata:

A Tableau-Based Decision Procedure for a Fragment of Set Theory with Iterated Membership.

J. Autom. Reasoning 34(1): 49-72 (2005), Springer 2005

📎 Adam Chlipala:

Certified Programming with Dependent Types (2014). http://adam.chlipala.net/cpdt/

Christian Doczkal:

Finite Sets over Countalbe Types in Ssreflect http://www.ps.uni-saarland.de/formalizations/fset.php

Recap 00000000	Necessity of Cut-Rules	Completeness Proof	Implementation 00	Examples 00	Related Work	Summary 00		
References IV								

- Alfredo Ferro, Eugenio G. Omodeo, Jacob T. Schwartz: Decision procedures for some fragments of set theory. CADE 1980: 88-96, Springer 1980
- Benjamin Shults: Comprehension and Description in Tableaux. 1997
 - Coq Development Team: Coq Documentation https://coq.inria.fr/documentation