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Tableau-Based Automation for Typed Finite Sets

Languages of the Calcului

Definition

set ::= ∅̇ | x | 〈set〉 | set∪̇set | set−̇set | Ṗ(set) | 〈x∈̇set | form〉

rel ::= set∈̇set | set⊆̇set | set=̇set

form ::= ⊥̇ | rel | ¬̇form | form∧̇form | form∨̇form | form→̇form

Minimal calculus⊆ Powerset extension⊆ Separation extension
(by accumulation of the operators)

A branch is a finite set of well-typed formulas

A branch is closed if it contains ⊥̇ and open otherwise

In the following: every relation we state is well-typed
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Tableau-Based Automation for Typed Finite Sets

Set Representation

Definition (fset)

Let T be a choiceType. Then (fset T) is the type of finite sets with
elements of type T.

fset T is again a choice type

choiceTypes allow for an extensional set representation

We can build stratified hierarchies of fsets

Definition (Level)

lv(s) := the number of toplevel fset constructors in the type of s

Sl (Γ) := all sets s with lv(s) = l occurring in Γ

LΓ := the highest populated level
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Tableau-Based Automation for Typed Finite Sets

Saturation Rules

Propositional rules:

(P1)
s∧̇t

s t
(P2)

s∨̇t

s | t
(P3)

s→̇t

¬̇s | t

(P4)
¬̇(s∧̇t)

¬̇s | ¬̇t
(P5)

¬̇(s∨̇t)

¬̇s ¬̇t
(P6)

¬̇(s→̇t)

s ¬̇t

(P7)
¬̇¬̇s

s

Branch-closing rules:

(D1)
b ¬̇b

⊥̇
(D2)

x ˙6=x

⊥̇
(D3)

x∈̇∅̇
⊥̇
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Tableau-Based Automation for Typed Finite Sets

Saturation Rules

Regular saturation rules:

(S1)
x∈̇A A⊆̇B

x∈̇B
(S2)

x /̇∈A B⊆̇A

x /̇∈B

(S3)
A*̇B

xAB ∈̇A xAB /̇∈B
(S4)

A=̇B

A⊆̇B B⊆̇A

(S5)
A ˙6=B

xAB ∈̇A xBA∈̇B

xAB /̇∈B xBA /̇∈A
(S6)

x=̇y y ∈̇A

x∈̇A

(S7)
x=̇y y=̇z

x=̇z
(S8)

x=̇y

y=̇x
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Tableau-Based Automation for Typed Finite Sets

Saturation Rules

Regular saturation rules:

(S9)
x∈̇〈y〉
x=̇y

(S10)
x /̇∈〈y〉
x ˙6=y

(S11)
〈x〉⊆̇A

x∈̇A
(S12)

x∈̇A∪̇B

x∈̇A | x∈̇B

(S13)
x /̇∈A∪̇B

x /̇∈A x /̇∈B
(S14)

x∈̇A−̇B

x∈̇A x /̇∈B

(S15)
x /̇∈A−̇B

x /̇∈A | x∈̇B
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Tableau-Based Automation for Typed Finite Sets

Saturation Rules

Cut rules:

(C1)
X ∈ Sl (Γ) Y ∈ Sl (Γ)

X =̇Y | X ˙6=Y
(C2)

x ∈ Sl (Γ) A ∈ Sl+1(Γ)

x∈̇A | x /̇∈A

(C3)
A ∈ Sl (Γ) B ∈ Sl (Γ)

A⊆̇B | A*̇B

Extension rules:

(Q1)
A∈̇Ṗ(B)

A⊆̇B
(Q2)

A /̇∈Ṗ(B)

xAB ∈̇A xAB /̇∈B

(R1)
y ∈̇〈x∈̇A | p〉
y ∈̇A px

y

(R2)
y /̇∈〈x∈̇A | p〉
y /̇∈A | ¬̇px

y
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Tableau-Based Automation for Typed Finite Sets

Termination and Nontermination

The calculus with powerset
extension terminates

S(Γ) is the closure of sets
that possibly can be
generated in Γ

S(Γ) is finite

No literal is removed or
added twice

Finitely many possible
relations between finitely
many sets

Number of literals is upper
bounded by 6|S(Γ)|

The calculus with the separation
extension diverges

F := 〈a∈̇A | B*̇〈a〉∪̇C 〉

x∈̇F ,B⊆̇F

x∈̇A, B *̇ 〈x〉∪̇C (R1)

y ∈̇B, y /̇∈ 〈x〉∪̇C (S3)
y ∈̇F (S1)

y ∈̇A, B *̇ 〈y〉∪̇C (R1)
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Cut-Rules in

The Minimal System

Example

The following branch cannot be closed without cut rules:

A−̇B⊆̇∅̇
x∈̇A

x /̇∈B

x∈̇A−̇B x /̇∈A−̇B

x∈̇∅̇ x /̇∈A x∈̇B

⊥̇ ⊥̇ ⊥̇

No direct relation between A and B

No direct relation between x and A−̇B

⇒ cut rules needed for the minimal system to be complete
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Cut-Rules in

The Powerset Extension

In the powerset extension, cut rules are needed significantly more
often

Example

The following branch is representative for a large class of problems:

Ṗ(A)⊆̇Ṗ(B)

A*̇B

A∈̇Ṗ(A) A /̇∈Ṗ(A)

A∈̇Ṗ(B) xAA∈̇A

A⊆̇B xAA /̇∈A

⊥̇ ⊥̇
No other rules to infer something from subset relations only

No connecting relation between the levels lv(A) and lv(Ṗ(A))

13 / 38



Recap Necessity of Cut-Rules Completeness Proof Implementation Examples Related Work Summary

Definition of Completeness

1 Recap
Tableau-Based Automation for Typed Finite Sets

2 Necessity of Cut-Rules

3 Completeness Proof
Definition of Completeness
Completeness of the Minimal System

4 Implementation

5 Examples

6 Related Work

7 Summary

14 / 38



Recap Necessity of Cut-Rules Completeness Proof Implementation Examples Related Work Summary

Definition of Completeness

Model

Definition (Variable Assignment)

A variable assignment is a function J of type

J : ∀l . vars l (Γ)→ fset l (D)

Definition (Model)

Let J be a variable assignment. We define the model induced by J
as follows:

Ĵ ∅̇ := ∅
ĴA := JA if A ∈ vars l (Γ) for some l ∈ N

Ĵ〈x〉 := {Ĵx}
ĴA∪̇B := ĴB ∪ ĴC

ĴA−̇B := ĴB\ĴC
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Definition of Completeness

Definition (Satisfiability)

Let J be a variable assignment and Ĵ the model induced by it.

J |= A◦̇B :⇔ ĴA ◦ ĴB

for ◦̇ ∈ {∈̇, /̇∈, ⊆̇, *̇, =̇, ˙6=} and ◦ the corresponding semantic
relation. We define satisfiability of formulas as follows:

J |= ¬̇s :⇔ ¬J |= s

J |= s∧̇t :⇔ J |= s ∧ J |= t

J |= s∨̇t :⇔ J |= s ∨ J |= t

J |= s→̇t :⇔ J |= s → J |= t

Γ is called satisfiable, if there exists some J such that for all
formulas φ ∈ Γ we have J |= φ.

16 / 38



Recap Necessity of Cut-Rules Completeness Proof Implementation Examples Related Work Summary

Definition of Completeness

Completeness

Definition (Saturated Branch)

A branch is saturated if none of the tableau rules is applicable.

Definition (Completeness)

A tableau system is complete, if every open saturated branch is
satisfiable.
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Completeness of the Minimal System

Set Interpretation

Let Γ be an open saturated branch.

Definition (Interpretation)

DΓ := S0(Γ)/=̇

I : ∀l ∈ N. Sl (Γ)→ fset l (DΓ)

Il (X ) :=

{
[X ]=̇ l = 0

{Il−1(x) | x∈̇X ∈ Γ} l > 0

For the interpretation to be well-defined we have to show the
following

Lemma

=̇ is an equivalence relation in Γ.
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Completeness of the Minimal System

’Model’-Property of the Interpretation I

Lemma

Let X ,Y ∈ S(Γ) and ◦̇ ∈ {∈̇, /̇∈, ⊆̇, *̇, =̇, ˙6=}. Then,

IX ◦ IY ⇔ X ◦̇Y ∈ Γ.

Proof by induction on l = lv(Y ).

I.S.: l → l + 1 = lv(Y )

(∈̇) “⇒”Let IX ∈ IY .
⇒ IX ∈ {Iy | y ∈̇Y ∈ Γ}
⇒ ∃y ∈ S(Γ). y ∈̇Y ∈ Γ ∧ IX = Iy
⇒ X =̇y ∈ Γ by I.H.
⇒ X =̇y , y ∈̇Y ∈ Γ⇒ X ∈̇Y ∈ Γ due to (S6)

“⇐”Let X ∈̇Y ∈ Γ. Then, IX ∈ {Ix | x∈̇Y ∈ Γ} = IY
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Completeness of the Minimal System

Model

Definition

We define I := I|vars(Γ ) to be our variable assignment and Î the
corresponding model.

Lemma

a) I∅̇ = ∅
b) 〈x〉 ∈ S(Γ)⇒ I〈x〉 = {Ix}
c) A∪̇B ∈ S(Γ)⇒ I(A∪̇B) = IA ∪ IB

d) A−̇B ∈ S(Γ)⇒ I(A−̇B) = IA\IB

⇒ Î |S(Γ) = I
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Completeness of the Minimal System

Completeness Proof

Theorem

The minimal system is complete.

Proof.

Γ is open and saturated

∀X ,Y ∈ S(Γ). IX ◦ IY ⇔ X ◦̇Y ∈ Γ

Î |S(Γ) = I
⇒ ∀X ,Y ∈ S(Γ). Î X ◦ Î Y ⇔ X ◦̇Y ∈ Γ
⇒ ∀φ ∈ Γ. Î |= φ
⇒ Γ is satisfiable. 2
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Tableaux in Coq

A branch is realized as goal

Assumptions are interpreted as formulas
The conclusion is False

Every rule is stated and proven as a lemma

If the premisses of a rule are on the branch its conclusion can
be posed and proven

We branch by posing a disjunction and destructing it

Boolean connectives are eliminated by tableau rules

The rules are grouped by their structure

branch closing
non-branching
branching
cut rules
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Final Tactics

Ltac core :=
repeat (

genSubst ; (∗ r e f l e c t e q u a l i t i e s and c a l l s ub s t ∗)
repeat nonbranching ; (∗ a l l p o s s i b l e nb−r u l e s ∗)
try closebranch ;
genSubst ; (∗ i n ca s e you gene r a t ed new e q u a l i t i e s ∗)
try branching ; (∗ e x a c t l y one b ranch i ng r u l e ∗)
try closebranch

) .

Ltac fset_dec :=
preproc ; (∗ no rma l i z e goa l ∗)
repeat (

try closebranch ;
core ;
try cutrules (∗ app l y e x a c t l y one cut r u l e ∗)

) .

Ltac fset_nocut := preproc ; try closebranch ; core .
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Examples I

The example for the necessity of cuts in the basic ruleset
A−̇B⊆̇∅̇ → x∈̇A→ x∈̇B
is solved instantaneously.

The propositions
A⊆̇C → B⊆̇C → ((C −̇A)∪̇(C −̇B))=̇(C −̇(A∩̇B))
A⊆̇C → B⊆̇C → ((C −̇A)∩̇(C −̇B))=̇(C −̇(A∪̇B))
are proved either in less than half a second.

Ṗ(A)−̇〈A〉 ⊆̇ ∅̇ → A=̇∅̇
requires application of cut rules and is solved in less than one
second.
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Examples II

The example for the importance of cut rules in the powerset
extension
Ṗ(A)⊆̇Ṗ(B)→ A⊆̇B
is solved in 2.73 seconds.

The proposition
Ṗ(A∪̇B)⊆̇Ṗ(A)∪̇Ṗ(B)→ A⊆̇B∨̇B⊆̇A
requires application of cut rules and is solved in about 45
seconds. A larger context may cause the tactic to run even
longer.
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Related Work I

Domenico Cantone 1991: Decision procedures for elementary
sublanguages of set theory: X. Multilevel syllogistic extended
by the singleton and powerset operators.

Completeness of a fragment of set theory with unrestricted
powerset operator

Domenico Cantone, Calogero G. Zarba 1999: A
Tableau-Based Decision Procedure for a Fragment of Set
Theory Involving a Restricted Form of Quantification.

States that the decidability of the fragment of ZF set theory
with unrestricted universal quantification is an open problem
Correspondence between universal quantification and set
separations
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Related Work II

Benjamin Shults 1997: Comprehension and Description in
Tableaux.

Efficient proof automation with separations
Different handling of extensionality
Usage of substitution

Bernhard Beckert, Ulrike Hartmer 1998: A Tableau Calculus
for Quantifier-Free Set Theoretic Formulae.

Termination and completeness proofs for a system similar to
our minimal calculus
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Outline of the Thesis

Proof automation for boolean logic

Study of the technique proof by reflection
Implementation of a reflective boolean tautology solver

Proof automation for typed finite sets
Theory: 3 tableau calculi

Minimal system: terminating and complete
Powerset extension: terminating
Separation extension: in general nonterminating

Practice: implementation of automation tactics for fset in
Ssreflect

Shallow implementation of tableau saturation strategy
Tactics with and without cut rules
Possibility to give unfoldable definitions as argument
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Possible Improvement

Automation for boolean logic

Improve implementation
Use more efficient decision procedure

Automation for typed finite sets

Avoid cut rules more efficiently
Find necessary rules for the completeness of the powerset
extension
Find a ’harmless’ subclass of the separation operator that
doesn’t diverge
Improve implementation
Formalize termination and conpleteness proofs in Coq
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