Löb's Theorem in Coq

First Bachelor Seminar Talk

Janis Bailitis

Universität des Saarlandes Advisors: Dr. Yannick Forster, Dr. Dominik Kirst Supervisor: Prof. Dr. Gert Smolka Programming Systems Lab

April 30, 2024

Problem (Henkin, 1952)

- Assume sufficiently strong formal system, e.g. Peano arithmetic
- There is a sentence S expressing own provability

Question: S independent or provable?

- Kreisel 1953: It depends on provability predicate
 - Only inspected restricted set of provability predicates
- Löb 1955: S is provable
 - ► But for a strong notion of provability predicate

Provability

Intuitively, $\operatorname{Prov}(x)$ expresses provability in T if for all φ , $T \vdash \varphi \leftrightarrow T \vdash \operatorname{Prov}(\overline{\varphi})^{12}$

Theorem (Löb's theorem, 1955)

Let Prov(x) express provability in *T*. For all sentences φ , we have

 $(\mathcal{T} \vdash \mathsf{Prov}(\overline{\varphi}) \xrightarrow{\cdot} \varphi) \rightarrow (\mathcal{T} \vdash \varphi).$

- Generalises Gödel's second incompleteness theorem
- Relevant beyond pure logic
 - Program verification: Assume property holding later, i.e. at a lower step index
- Agda-mechanisation by Gross et al. 2016
 - ► Using Curry-Howard and quines

¹This is the notion Kreisel used in 1953. ²We assume that $\overline{\varphi}$ is some encoding of φ as term.

Intuitively, $\operatorname{Prov}(x)$ expresses provability in T if for all φ , $T \vdash \varphi \leftrightarrow T \vdash \operatorname{Prov}(\overline{\varphi})^{12}$

Theorem (Löb's theorem, 1955)

Let Prov(x) express provability in T. For all sentences φ , we have

$(T \vdash \mathsf{Prov}(\overline{\varphi}) \xrightarrow{\cdot} \varphi) \to (T \vdash \varphi).$

- Intuitive notion: Too weak
- Sufficiently strong formulae \rightarrow high technical overhead
- Can we do this more abstractly?
 - ► Löb isolated abstract axioms
 - ► Assuming them, proof is mechanical and short; also in Coq

¹This is the notion Kreisel used in 1953. ²We assume that $\overline{\varphi}$ is some encoding of φ as term.

Löb's axioms

We use Peano arithmetic (PA).

Löb's axioms (cf. [BBJ07], slightly more general)

Suppose Prov(x) : \mathbb{F} , and φ, ψ any sentence. Prov(x) is a modality satisfying

- **necessitation** if $PA \vdash \varphi$ implies $PA \vdash Prov(\overline{\varphi})$
- the modal fixed point theorem if for any F(x) : \mathbb{F} we find τ : \mathbb{F} such that $PA \vdash \tau \leftrightarrow F(Prov(\overline{\tau}))$
- internal necessitation if $\mathsf{PA} \vdash \mathsf{Prov}(\overline{\varphi}) \xrightarrow{\cdot} \mathsf{Prov}(\overline{\mathsf{Prov}}(\overline{\varphi}))$
- the distributivity law if $\mathsf{PA} \vdash \mathsf{Prov}(\overline{\varphi} \to \overline{\psi}) \to \mathsf{Prov}(\overline{\varphi}) \to \mathsf{Prov}(\overline{\psi})$
- Goal: Use Church's Thesis for arithmetic $(CT_{PA})^1$
 - ► Gives more abstract formula
 - Investigate which axioms hold

¹Formalised for first-order arithmetic by Hermes and Kirst 2022, proven consistent by Kirst and Peters 2023.

Defining a provability candidate

Axiom (CT_{PA})

Let $f : \mathbb{N} \to \mathbb{N}$ be a function. There is a formula $\varphi(x, y)$ such that for all $n : \mathbb{N}$ we have $\mathsf{PA} \vdash \dot{\forall} x. \ \varphi(\overline{n}, x) \leftrightarrow x \equiv \overline{f n}.$

Lemma (Weak representability, cf. [HK23])

Suppose $P : \mathbb{N} \to \mathbb{P}$ is enumerable. There is a formula $\varphi(x)$ such that for all $n : \mathbb{N}$ we have $P \ n \leftrightarrow \mathsf{PA} \vdash \varphi(\overline{n}).$

Now inspect $\lambda \varphi$. PA $\vdash \varphi$, enumerable by [FKS19]

Corollary

We find a formula $\operatorname{Prov}(x)$ such that for all $\varphi : \mathbb{F}$ we have $\operatorname{PA} \vdash \varphi \leftrightarrow \operatorname{PA} \vdash \operatorname{Prov}(\overline{\varphi})$.

Löb's axioms

Suppose Prov(x) : \mathbb{F} , and φ, ψ any sentence. Prov(x) is a modality satisfying

- **necessitation** if $PA \vdash \varphi$ implies $PA \vdash Prov(\overline{\varphi})$
- the modal fixed point theorem if for any F(x) : \mathbb{F} we find τ : \mathbb{F} such that $PA \vdash \tau \leftrightarrow F(Prov(\overline{\tau}))$
- internal necessitation if $\mathsf{PA} \vdash \mathsf{Prov}(\overline{\varphi}) \xrightarrow{\cdot} \mathsf{Prov}(\overline{\mathsf{Prov}}(\overline{\varphi}))$
- the distributivity law if $\mathsf{PA} \vdash \mathsf{Prov}(\overline{\varphi} \to \overline{\psi}) \to \mathsf{Prov}(\overline{\varphi}) \to \mathsf{Prov}(\overline{\psi})$
- Next obligation: Modal fixed points
 - \blacktriangleright Problem: Construct formula 'out of nowhere' \rightarrow auxiliary result needed

Lemma (Diagonal lemma, cf. [Nor18])

Suppose $\varphi(x) : \mathbb{F}$. Then, there is a sentence G satisfying $\mathsf{PA} \vdash G \Leftrightarrow \varphi(\overline{G}).$

• Key result behind Gödel's first incompleteness theorem (among others)

Lemma (Recursion theorem, Kleene (1938))

Suppose $f : \mathbb{N} \to \mathbb{N}$ is computable (and total). Then, there is $g : \mathbb{N}$ such that $M_g = M_{f(g)}$.

• Proofs closely related

With the diagonal lemma, we can find modal fixed points.

Lemma (Modal fixed points)

Let F(x) be a formula. There is a sentence ψ such that

 $\mathsf{PA} \vdash \psi \leftrightarrow F(\mathsf{Prov}(\overline{\psi})).$

Proof.

- Use diagonal lemma on instance F(Prov(x))
- We obtain $\mathsf{PA} \vdash \psi \leftrightarrow F(\mathsf{Prov}(\overline{\psi}))$

Löb's axioms

Suppose Prov(x) : \mathbb{F} , and φ, ψ any sentence. Prov(x) is a modality satisfying

- **necessitation** if $PA \vdash \varphi$ implies $PA \vdash Prov(\overline{\varphi})$
- the modal fixed point theorem if for any F(x) : \mathbb{F} we find τ : \mathbb{F} such that $PA \vdash \tau \leftrightarrow F(Prov(\overline{\tau}))$
- internal necessitation if $\mathsf{PA} \vdash \mathsf{Prov}(\overline{\varphi}) \xrightarrow{\cdot} \mathsf{Prov}(\overline{\mathsf{Prov}}(\overline{\varphi}))$
- the distributivity law if $\mathsf{PA} \vdash \mathsf{Prov}(\overline{\varphi} \to \overline{\psi}) \to \mathsf{Prov}(\overline{\varphi}) \to \mathsf{Prov}(\overline{\psi})$
- Other axioms to be investigated
 - ➤ We have Kreisel's notion of provability
 - ► Too weak to show all axioms

Theorem (Gödel's first incompleteness theorem)

There exists a sentence G with $PA \not\vdash G$ and $PA \not\vdash \neg G$.

Transfers along all consistent and enumerable extensions of PA.

- Similar statement shown by Kirst and Peters 2023
 - ► Different approach: Computational argument
- Our approach: Use diagonal lemma on instance $\neg Prov(x)$

Theorem (Tarski's theorem, cf. [BBJ07])

There is no formula True(x) such that for all formulae φ

 $(\mathbb{N}\vDash\varphi\to\mathbb{N}\vDash\mathsf{True}(\overline{\varphi}))$ and $(\mathbb{N}\nvDash\varphi\to\mathbb{N}\vDash\mathsf{True}(\overline{\varphi}))$.

Theorem (Essential undecidability¹)

Suppose $T \supseteq PA$ consistent. Then, $\lambda \varphi$. $T \vdash \varphi$ is not decidable.

¹Also shown by Kirst and Hermes 2022 using different approach.

- Find provability formula strong enough to show all Löb axioms
 - ► Stay as abstract as possible
 - \blacktriangleright Exploit CT_{PA} as far as possible
- In Löb's original 1955 paper, axioms are different
 - ► Ours used in more recent literature
 - ► Investigate how they relate
- Derive Gödel's second incompleteness theorem from Löb's theorem
- Diagonal lemma requires formula to have at most one free variable
 - ➤ What happens if we allow for more?

Thanks for your attention.

- [BBJ07] George S. Boolos, John P. Burgess and Richard C. Jeffrey. **Computability and Logic**. 5. edition. Cambridge University Press, 2007.
- [FKS19] Yannick Forster, Dominik Kirst and Gert Smolka. 'On synthetic undecidability in coq, with an application to the entscheidungsproblem'. In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019. Ed. by Assia Mahboubi and Magnus O. Myreen. ACM, 2019, pp. 38–51. DOI: 10.1145/3293880.3294091. URL: https://doi.org/10.1145/3293880.3294091.

- [Hen54] Leon Henkin. 'G. Kreisel. On a problem of Henkin's. Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, series A, vol. 56 (1953), pp. 405–406; also Indagationes mathematicae, vol. 15 (1953), pp. 405–406.'. In: Journal of Symbolic Logic 19.3 (1954), 219–220. DOI: 10.2307/2268627.
- [HK23] Marc Hermes and Dominik Kirst. 'An Analysis of Tennenbaum's Theorem in Constructive Type Theory'. In: CoRR abs/2302.14699 (2023). DOI: 10.48550/ARXIV.2302.14699. arXiv: 2302.14699. URL: https://doi.org/10.48550/arXiv.2302.14699.

- [KH23] Dominik Kirst and Marc Hermes. 'Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq'. In: J. Autom. Reason. 67.1 (2023), p. 13. DOI: 10.1007/S10817-022-09647-X. URL: https://doi.org/10.1007/s10817-022-09647-x.
- [Kle38] S. C. Kleene. 'On Notation for Ordinal Numbers'. In: The Journal of Symbolic Logic 3.4 (1938), pp. 150–155. ISSN: 00224812. URL: http://www.jstor.org/stable/2267778 (visited on 28/04/2024).

References iv

[KP23] Dominik Kirst and Benjamin Peters. 'Gödel's Theorem Without Tears -Essential Incompleteness in Synthetic Computability'. In: 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Ed. by Bartek Klin and Elaine Pimentel. Vol. 252. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 30:1–30:18. ISBN: 978-3-95977-264-8. DOI: 10.4230/LIPIcs.CSL.2023.30. URL: https://dropsdev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.30.

[Lob55] M. H. Lob. 'Solution of a Problem of Leon Henkin'. In: The Journal of Symbolic Logic 20.2 (1955), pp. 115–118. ISSN: 00224812. URL: http://www.jstor.org/stable/2266895 (visited on 28/04/2024).

- [Nor18] Michael Norrish. LSS 2018: Computability and Incompleteness. Gödel's First Incompleteness Theorem, Tarski's Indefinability of Truth. 2018. URL: https://comp.anu.edu.au/lss/lectures/2023/lsscomputability-4.pdf.
- [Smo24] Gert Smolka. Modeling and Proving in Computational Type Theory Using the Coq Proof Assistant. Textbook under construction. 2024. URL: https://www.ps.uni-saarland.de/~smolka/drafts/mpctt.pdf (visited on 28/04/2024).

Problem

Let $\varphi(x), \psi : \mathbb{F}$. We used $\varphi(\overline{\psi})$ for 'substituting some encoding of ψ for x in φ' . ψ is not a **number**, but a **formula** $\rightarrow \overline{\psi}$ not a numeral.

Typical issue. Gödel faced it himself.

Remark (Gödelisation)

There are functions $g \ddot{o} d : \mathbb{F} \to \mathbb{N}$, $g \ddot{o} d^{-1} : \mathbb{N} \to \mathbb{F}$ inverting each other.

 $\varphi(\overline{\psi}) \rightsquigarrow \varphi(\overline{\operatorname{g\"od}(\psi)})$

Technical background: Diagonal lemma

• Functions diag := $\lambda \varphi$. $\varphi(\overline{\varphi})$, and diag_N := λn . göd(diag(göd⁻¹(n)))

Proof.

- Suppose $\varphi(x)$. To find: G such that $PA \vdash G \leftrightarrow \varphi(\overline{G})$
- Plug diag_N into CT_{PA} , get dg(x, y) with $\forall n : \mathbb{N}$. PA $\vdash \forall x . dg(\overline{n}, x) \leftrightarrow x \equiv \overline{diag_N n}$
- Define $G' := \dot{\exists} y. dg(x, y) \land \varphi(y)$ and $G := G'(\overline{G'})$
- Argue inside PA that

$$G = G'(\overline{G'}) = \exists y. dg(\overline{G'}, y) \land \varphi(y)$$

$$\leftrightarrow \exists y. y \equiv \overline{\text{diag}}_{\mathbb{N}}(\underline{\text{god}}(G')) \land \varphi(y)$$

$$\leftrightarrow \exists y. y \equiv \overline{\underline{\text{god}}(G)} \land \varphi(y)$$

$$\leftrightarrow \varphi(\overline{G})$$

Theorem (Tarski's theorem)

There is no formula $\operatorname{True}(x)$ such that for all formulae φ $(\mathbb{N} \vDash \varphi \to \mathbb{N} \vDash \operatorname{True}(\overline{\varphi}))$ and $(\mathbb{N} \nvDash \varphi \to \mathbb{N} \vDash \neg \operatorname{True}(\overline{\varphi})).$

Proof.

- Suppose True(x) has this property
- By diagonal lemma and soundness, find G such that $\mathbb{N} \vDash G \Leftrightarrow \neg \mathsf{True}(\overline{G})$
- Case distinction

► If $\mathbb{N} \models G$, then $\mathbb{N} \models \text{True}(\overline{G})$ Further, $\mathbb{N} \models \neg \text{True}(\overline{G})$ from $\mathbb{N} \models G \leftrightarrow \neg \text{True}(\overline{G})$, i.e. \mathbb{N} is inconsistent

Proof still constructive by [Smo24] (classical reasoning for stable claims).

Theorem (Strong separability, cf. [HK23])

Suppose $P, Q : \mathbb{N} \to \mathbb{P}$ are

- both semi-decidable and
- disjoint (i.e. for all $n : \mathbb{N}$, we have $P \ n \to Q \ n \to \bot$).

Then, there is a formula $\varphi(x)$ such that for all $n : \mathbb{N}$ we have $(P \ n \to \mathsf{PA} \vdash \varphi(\overline{n})) \text{ and } (Q \ n \to \mathsf{PA} \vdash \neg \varphi(\overline{n})).$

Corollary

We find a formula SProv(x) such that for all formulae φ $(PA \vdash \varphi \rightarrow PA \vdash SProv(\overline{\varphi})) \land (PA \vdash \neg \varphi \rightarrow PA \vdash \neg SProv(\overline{\varphi}))$

Technical background: Gödel's first incompleteness theorem (continued)

We have SProv(x) such that for all formulae φ

 $(\mathsf{PA}\vdash\varphi\to\mathsf{PA}\vdash\mathsf{SProv}(\overline{\varphi}))\land(\mathsf{PA}\vdash\neg\varphi\to\mathsf{PA}\vdash\neg\mathsf{SProv}(\overline{\varphi}))$

Proof (of Gödel's first incompleteness theorem).

- Need to find: Sentence G with $PA \not\vdash G$ and $PA \not\vdash \neg G$
- Plug \neg SProv(x) into diagonal lemma, obtain PA $\vdash G \leftrightarrow \neg$ SProv(\overline{G})
- If $\mathsf{PA} \vdash G$
 - ▶ Obtain $PA \vdash SProv(\overline{G})$ by property of SProv(x)
 - ▶ Observe that $PA \vdash \neg SProv(\overline{G})$ from diagonal lemma, contradiction
- If $\mathsf{PA} \vdash \neg G$
 - ► Obtain $PA \vdash \neg SProv(\overline{G})$ by property of SProv(x)
 - ▶ Observe that $PA \vdash G$ from diagonal lemma, contradiction

Technical background: Essential undecidability

Theorem (Essential undecidability)

Suppose $T \supseteq PA$ consistent. Then, $\lambda \varphi$. $T \vdash \varphi$ is not decidable.

Lemma

Suppose $P : \mathbb{F} \to \mathbb{P}$ is decidable. We can find formula $\varphi(x)$ such that for any formula ψ $P \psi \to PA \vdash \varphi(\overline{\psi})$ and $\neg P \psi \to PA \vdash \neg \varphi(\overline{\psi})$.

Proof (of essential undecidability).

- Suppose $\lambda \varphi$. $T \vdash \varphi$ was decidable
- Invoke lemma to obtain $\varphi(x)$
- By weakening, $\forall \psi$. $T \vdash \psi \rightarrow T \vdash \varphi(\overline{\psi}) \land T \nvDash \psi \rightarrow T \vdash \neg \varphi(\overline{\psi})$, contradiction