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What is Löb’s theorem?

Problem (Henkin, 1952)

• Assume sufficiently strong formal system, e.g. Peano arithmetic
• There is a sentence S expressing own provability

Question: S independent or provable?

• Kreisel 1953: It depends on provability predicate
➤ Only inspected restricted set of provability predicates

• Löb 1955: S is provable
➤ But for a strong notion of provability predicate
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Provability

Intuitively, Prov(x) expresses provability in T if for all ϕ, T ⊢ ϕ↔ T ⊢ Prov(ϕ)12

Theorem (Löb’s theorem, 1955)

Let Prov(x) express provability in T . For all sentences ϕ, we have

(T ⊢ Prov(ϕ) →̇ ϕ)→ (T ⊢ ϕ).

• Generalises Gödel’s second incompleteness theorem
• Relevant beyond pure logic

➤ Program verification: Assume property holding later, i.e. at a lower step

index

• Agda-mechanisation by Gross et al. 2016
➤ Using Curry-Howard and quines
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1This is the notion Kreisel used in 1953.
2We assume that ϕ is some encoding of ϕ as term.



Provability

Intuitively, Prov(x) expresses provability in T if for all ϕ, T ⊢ ϕ↔ T ⊢ Prov(ϕ)12

Theorem (Löb’s theorem, 1955)

Let Prov(x) express provability in T . For all sentences ϕ, we have

(T ⊢ Prov(ϕ) →̇ ϕ)→ (T ⊢ ϕ).

• Intuitive notion: Too weak
• Sufficiently strong formulae → high technical overhead
• Can we do this more abstractly?

➤ Löb isolated abstract axioms

➤ Assuming them, proof is mechanical and short; also in Coq
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Löb’s axioms

We use Peano arithmetic (PA).

Löb’s axioms (cf. [BBJ07], slightly more general)

Suppose Prov(x) : F, and ϕ,ψ any sentence. Prov(x) is a modality satisfying
• necessitation if PA ⊢ ϕ implies PA ⊢ Prov(ϕ)
• the modal fixed point theorem if for any F (x) : F we find τ : F such that
PA ⊢ τ ↔̇ F (Prov(τ))
• internal necessitation if PA ⊢ Prov(ϕ) →̇ Prov(Prov(ϕ))
• the distributivity law if PA ⊢ Prov(ϕ →̇ ψ) →̇ Prov(ϕ) →̇ Prov(ψ)

• Goal: Use Church’s Thesis for arithmetic (CTPA)1

➤ Gives more abstract formula

➤ Investigate which axioms hold

4
1Formalised for first-order arithmetic by Hermes and Kirst 2022, proven consistent by Kirst and

Peters 2023.



Defining a provability candidate

Axiom (CTPA)

Let f : N→ N be a function.
There is a formula ϕ(x , y) such that for all n : N we have

PA ⊢ ∀̇x . ϕ(n, x) ↔̇ x ≡ f n.

Lemma (Weak representability, cf. [HK23])

Suppose P : N→ P is enumerable.
There is a formula ϕ(x) such that for all n : N we have

P n ↔ PA ⊢ ϕ(n).

Now inspect λϕ. PA ⊢ ϕ, enumerable by [FKS19]

Corollary

We find a formula Prov(x) such that for all ϕ : F we have PA ⊢ ϕ↔ PA ⊢ Prov(ϕ).
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Löb’s axioms revisited

Löb’s axioms

Suppose Prov(x) : F, and ϕ,ψ any sentence. Prov(x) is a modality satisfying
• necessitation if PA ⊢ ϕ implies PA ⊢ Prov(ϕ)
• the modal fixed point theorem if for any F (x) : F we find τ : F such that
PA ⊢ τ ↔̇ F (Prov(τ))
• internal necessitation if PA ⊢ Prov(ϕ) →̇ Prov(Prov(ϕ))
• the distributivity law if PA ⊢ Prov(ϕ →̇ ψ) →̇ Prov(ϕ) →̇ Prov(ψ)

• Next obligation: Modal fixed points
➤ Problem: Construct formula ‘out of nowhere’ → auxiliary result needed
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Gödel’s diagonal lemma

Lemma (Diagonal lemma, cf. [Nor18])

Suppose ϕ(x) : F. Then, there is a sentence G satisfying
PA ⊢ G ↔̇ ϕ(G ).

• Key result behind Gödel’s first incompleteness theorem (among others)

Lemma (Recursion theorem, Kleene (1938))

Suppose f : N→ N is computable (and total).
Then, there is g : N such that Mg = Mf (g).

• Proofs closely related
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Modal fixed points

With the diagonal lemma, we can find modal fixed points.

Lemma (Modal fixed points)

Let F (x) be a formula. There is a sentence ψ such that

PA ⊢ ψ ↔̇F (Prov(ψ)).

Proof.

• Use diagonal lemma on instance F (Prov(x))
• We obtain PA ⊢ ψ ↔̇F (Prov(ψ))
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Löb’s axioms revisited

Löb’s axioms

Suppose Prov(x) : F, and ϕ,ψ any sentence. Prov(x) is a modality satisfying
• necessitation if PA ⊢ ϕ implies PA ⊢ Prov(ϕ)
• the modal fixed point theorem if for any F (x) : F we find τ : F such that
PA ⊢ τ ↔̇ F (Prov(τ))
• internal necessitation if PA ⊢ Prov(ϕ) →̇ Prov(Prov(ϕ))
• the distributivity law if PA ⊢ Prov(ϕ →̇ ψ) →̇ Prov(ϕ) →̇ Prov(ψ)

• Other axioms to be investigated
➤ We have Kreisel’s notion of provability

➤ Too weak to show all axioms
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Corollaries of the diagonal lemma

Theorem (Gödel’s first incompleteness theorem)

There exists a sentence G with PA ̸⊢ G and PA ̸⊢ ¬̇G.

Transfers along all consistent and enumerable extensions of PA.

• Similar statement shown by Kirst and Peters 2023
➤ Different approach: Computational argument

• Our approach: Use diagonal lemma on instance ¬̇Prov(x)
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Corollaries of the diagonal lemma (continued)

Theorem (Tarski’s theorem, cf. [BBJ07])

There is no formula True(x) such that for all formulae ϕ

(N ⊨ ϕ→ N ⊨ True(ϕ)) and (N ̸⊨ ϕ→ N ⊨ ¬̇True(ϕ)).

Theorem (Essential undecidability1)

Suppose T ⊇ PA consistent.
Then, λϕ. T ⊢ ϕ is not decidable.

111Also shown by Kirst and Hermes 2022 using different approach.



Further work

• Find provability formula strong enough to show all Löb axioms
➤ Stay as abstract as possible

➤ Exploit CTPA as far as possible

• In Löb’s original 1955 paper, axioms are different
➤ Ours used in more recent literature

➤ Investigate how they relate

• Derive Gödel’s second incompleteness theorem from Löb’s theorem
• Diagonal lemma requires formula to have at most one free variable

➤ What happens if we allow for more?

Thanks for your attention.
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Technical background: Gödel numberings

Problem

Let ϕ(x), ψ : F.
We used ϕ(ψ) for ‘substituting some encoding of ψ for x in ϕ’.
ψ is not a number, but a formula → ψ not a numeral.

Typical issue. Gödel faced it himself.

Remark (Gödelisation)

There are functions göd : F→ N, göd−1 : N→ F inverting each other.

ϕ(ψ)⇝ ϕ(göd(ψ))
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Technical background: Diagonal lemma

• Functions diag := λϕ. ϕ(ϕ), and diagN := λn. göd(diag(göd−1(n)))

Proof.

• Suppose ϕ(x). To find: G such that PA ⊢ G ↔̇ ϕ(G )
• Plug diagN into CTPA, get dg(x , y) with ∀n : N. PA ⊢ ∀̇x . dg(n, x) ↔̇ x ≡ diagN n
• Define G ′ := ∃̇y . dg(x , y) ∧̇ ϕ(y) and G := G ′(G ′)
• Argue inside PA that

G = G ′(G ′) = ∃̇y . dg(G ′, y) ∧̇ ϕ(y)
↔ ∃̇y . y ≡ diagN(göd(G ′)) ∧̇ ϕ(y)
↔ ∃̇y . y ≡ göd(G ) ∧̇ ϕ(y)
↔ ϕ(G )
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Technical background: Tarski’s theorem

Theorem (Tarski’s theorem)

There is no formula True(x) such that for all formulae ϕ

(N ⊨ ϕ→ N ⊨ True(ϕ)) and (N ̸⊨ ϕ→ N ⊨ ¬̇True(ϕ)).

Proof.

• Suppose True(x) has this property
• By diagonal lemma and soundness, find G such that N ⊨ G ↔̇ ¬̇True(G )
• Case distinction

➤ If N ⊨ G , then N ⊨ True(G )
Further, N ⊨ ¬̇True(G ) from N ⊨ G ↔̇ ¬̇True(G ), i.e. N is inconsistent

➤ If N ̸⊨ G , have N ⊨ ¬̇True(G )
Show N ⊨ G . Easy from N ⊨ G ↔̇ ¬̇True(G ) □

20Proof still constructive by [Smo24] (classical reasoning for stable claims).



Technical background: Gödel’s first incompleteness theorem

Theorem (Strong separability, cf. [HK23])

Suppose P,Q : N→ P are
• both semi-decidable and
• disjoint (i.e. for all n : N, we have P n → Q n → ⊥).

Then, there is a formula ϕ(x) such that for all n : N we have
(P n → PA ⊢ ϕ(n)) and (Q n → PA ⊢ ¬̇ϕ(n)).

Corollary

We find a formula SProv(x) such that for all formulae ϕ

(PA ⊢ ϕ→ PA ⊢ SProv(ϕ)) ∧ (PA ⊢ ¬̇ϕ→ PA ⊢ ¬̇SProv(ϕ))
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Technical background: Gödel’s first incompleteness theorem (continued)

We have SProv(x) such that for all formulae ϕ

(PA ⊢ ϕ→ PA ⊢ SProv(ϕ)) ∧ (PA ⊢ ¬̇ϕ→ PA ⊢ ¬̇SProv(ϕ))

Proof (of Gödel’s first incompleteness theorem).

• Need to find: Sentence G with PA ̸⊢ G and PA ̸⊢ ¬̇G
• Plug ¬̇SProv(x) into diagonal lemma, obtain PA ⊢ G ↔̇ ¬̇SProv(G )
• If PA ⊢ G

➤ Obtain PA ⊢ SProv(G ) by property of SProv(x)
➤ Observe that PA ⊢ ¬̇SProv(G ) from diagonal lemma, contradiction

• If PA ⊢ ¬̇G
➤ Obtain PA ⊢ ¬̇SProv(G ) by property of SProv(x)
➤ Observe that PA ⊢ G from diagonal lemma, contradiction
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Technical background: Essential undecidability

Theorem (Essential undecidability)

Suppose T ⊇ PA consistent.
Then, λϕ. T ⊢ ϕ is not decidable.

Lemma

Suppose P : F→ P is decidable.
We can find formula ϕ(x) such that for any formula ψ

P ψ → PA ⊢ ϕ(ψ) and ¬P ψ → PA ⊢ ¬̇ϕ(ψ).

Proof (of essential undecidability).

• Suppose λϕ. T ⊢ ϕ was decidable
• Invoke lemma to obtain ϕ(x)
• By weakening, ∀ψ. T ⊢ ψ → T ⊢ ϕ(ψ) ∧ T ̸⊢ ψ → T ⊢ ¬̇ϕ(ψ), contradiction
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