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What is Lob’s theorem?

Problem (Henkin, 1952)

e Assume sufficiently strong formal system, e.g. Peano arithmetic

e There is a sentence S expressing own provability

Question: S independent or provable?

o Kreisel 1953: It depends on provability predicate

» Only inspected restricted set of provability predicates
e [Ob 1955: S is provable

» But for a strong notion of provability predicate



Provability

Intuitively, Prov(x) expresses provability in T if for all ¢, T ¢ > T I Prov(p)*?

Theorem (Lob’s theorem, 1955)

Let Prov(x) express provability in T. For all sentences @, we have

(T F Prov(p) > 9) = (T F ).

e Generalises Godel's second incompleteness theorem
e Relevant beyond pure logic
» Program verification: Assume property holding later, i.e. at a lower step
index
e Agda-mechanisation by Gross et al. 2016
» Using Curry-Howard and quines

'This is the notion Kreisel used in 1953.
2\We assume that @ is some encoding of ¢ as term.



Provability

Intuitively, Prov(x) expresses provability in T if for all ¢, T ¢ <> T I Prov(p)*?

Theorem (Lob’s theorem, 1955)

Let Prov(x) express provability in T. For all sentences @, we have

(T E Prov(o) = @) = (T F ).

e Intuitive notion: Too weak
e Sufficiently strong formulae — high technical overhead
e Can we do this more abstractly?

» Lob isolated abstract axioms
» Assuming them, proof is mechanical and short; also in Coq

'This is the notion Kreisel used in 1953.
2We assume that @ is some encoding of ¢ as term.



Lob’s axioms

We use Peano arithmetic (PA).

Lob’s axioms (cf. [BBJO07], slightly more general)

Suppose Prov(x) : F, and ¢, ¢ any sentence. Prov(x) is a modality satisfying
e necessitation if PA - ¢ implies PA I Prov(p)

e the modal fixed point theorem if for any F(x) : F we find 7 : F such that
PAE T < F(Prov(T))

¢ internal necessitation if PA - Prov(p) — Prov(Prov(®))
e the distributivity law if PA - Prov(yp = ¥) = Prov(@) = Prov(v)

e Goal: Use Church’s Thesis for arithmetic (CTpa)?

» Gives more abstract formula
» |nvestigate which axioms hold

'Formalised for first-order arithmetic by Hermes and Kirst 2022, proven consistent by Kirst and
Peters 2023.



Defining a provability candidate

Axiom (CTpp)

Let f : N — N be a function.
There is a formula @(x,y) such that for all n: N we have

PA I Vx. (7, x) < x = F n.

Lemma (Weak representability, cf. [HK23])

Suppose P : N — P js enumerable.
There is a formula ¢(x) such that for all n: N we have
P n < PA L o(n).

Now inspect Ap. PA I ¢, enumerable by [FKS19]

Corollary
We find a formula Prov(x) such that for all ¢ : F we have PA F ¢ <+ PA F Prov(p).



Lob’s axioms revisited

Suppose Prov(x) : IF, and @, 9 any sentence. Prov(x) is a modality satisfying
e necessitation if PA F ¢ implies PA - Prov(p)

e the modal fixed point theorem if for any F(x) : F we find 7 : F such that
PAE T & F(Prov(T))

e internal necessitation if PA - Prov(p) = Prov(Prov(p))
e the distributivity law if PA - Prov(y — %) - Prov(@) = Prov(¥)

e Next obligation: Modal fixed points
» Problem: Construct formula ‘out of nowhere’ — auxiliary result needed



Godel’s diagonal lemma

Lemma (Diagonal lemma, cf. [Nor18])

Suppose @(x) : F. Then, there is a sentence G satisfying

PAF G <> ¢(G).

e Key result behind Goédel's first incompleteness theorem (among others)

Lemma (Recursion theorem, Kleene (1938))

Suppose f : N — N s computable (and total).
Then, there is g : N such that Mg = Mg (4.

e Proofs closely related



Modal fixed points

With the diagonal lemma, we can find modal fixed points.

Lemma (Modal fixed points)

Let F(x) be a formula. There is a sentence ¥ such that

PA - 9 <5 F(Prov(%)).

e Use diagonal lemma on instance F(Prov(x))

e We obtain PA I 9 <+ F(Prov(¥))



Lob’s axioms revisited

Lob’s axioms

Suppose Prov(x) : I, and @, 9 any sentence. Prov(x) is a modality satisfying

e necessitation if PA - ¢ implies PA + Prov(p)

e the modal fixed point theorem if for any F(x) : F we find 7 : F such that
PAE T < F(Prov(T))

e internal necessitation if PA - Prov(®) - Prov(Prov())

e the distributivity law if PA - Prov(y — ) - Prov(@) = Prov(¥)

e Other axioms to be investigated

» We have Kreisel's notion of provability
» Too weak to show all axioms



Corollaries of the diagonal lemma

Theorem (Godel’s first incompleteness theorem)

There exists a sentence G with PA/ G and PAt/ -G.

Transfers along all consistent and enumerable extensions of PA.
e Similar statement shown by Kirst and Peters 2023
» Different approach: Computational argument

e Our approach: Use diagonal lemma on instance -=Prov(x)



Corollaries of the diagonal lemma (continued)

Theorem (Tarski’s theorem, cf. [BBJ07])

There is no formula True(x) such that for all formulae ¢

(NE @ — NE True(p)) and (N ¢ — N E - True(p)).

Theorem (Essential undecidability')

Suppose T O PA consistent.
Then, Ap. T &= @ is not decidable.

! Also shown by Kirst and Hermes 2022 using different approach. 11



e Find provability formula strong enough to show all Lob axioms

» Stay as abstract as possible
» Exploit CTpa as far as possible

e |n Lob’s original 1955 paper, axioms are different

» Ours used in more recent literature
» Investigate how they relate

e Derive Godel's second incompleteness theorem from Lob’s theorem
e Diagonal lemma requires formula to have at most one free variable
» \What happens if we allow for more?

Thanks for your attention.
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Technical background: Godel numberings

Problem
Let o(x), 9 : F.

We used (1) for ‘substituting some encoding of ¢ for x in ¢'.
9 is not a number, but a formula — % not a numeral.

Typical issue. Godel faced it himself.

Remark (Godelisation)

There are functions god : F — N, god~! : N — FF inverting each other.

() ~ ©(god(¥))

18



Technical background: Diagonal lemma

e Functions diag := Ap. (), and diagy := An. god(diag(god—1(n)))

e Suppose ¢(x). To find: G such that PAF G <> ¢(G)

e Plug diagy into CTpa, get dg(x, y) with ¥n : N. PA I Vx. dg(7, x) <> x = diagy n
e Define G' := Jy. dg(x,y) A p(y) and G := G'(G)

e Argue inside PA that

G =G'(G')=3y.dg(G".y) Ap(y)
< Jy. y = diagy(gd(G")) A p(y)

© Jy.y =g3d(G) A p(y)

< p(G)



Technical background: Tarski’s theorem

Theorem (Tarski’'s theorem)

There is no formula True(x) such that for all formulae ¢
(NE @ — NE True(p)) and (N ¢ — N E - True(p)).

e Suppose True(x) has this property
e By diagonal lemma and soundness, find G such that N E G <3 < True(G)

e Case distinction

» If NE G, then N True(G)
Further, N E < True(G) from N E G <>~ True(G), i.e. N is inconsistent

» If N G, have N F ~True(G)
Show N E G. Easy from N E G <» - True(G) O

Proof still constructive by [Smo24] (classical reasoning for stable claims). 20



Technical background: Godel’s first incompleteness theorem

Theorem (Strong separability, cf. [HK23])

Suppose P, Q : N — P are

e both semi-decidable and

e disjoint (i.e. for alln: N, we have Pn— Qn— L).
Then, there is a formula ¢(x) such that for all n: N we have
(Pn— PAE @(n)) and (Q n — PAF Sp(n)).

Corollary

We find a formula SProv(x) such that for all formulae ¢
(PAF ¢ — PAE SProv(®)) A (PAEF - — PA + -SProv(p))

21



Technical background: Godel’s first incompleteness theorem (continued)

We have SProv(x) such that for all formulae ¢
(PAF ¢ — PAF SProv(®)) A (PAF - — PA F =SProv(p))

Proof (of Godel’s first incompleteness theorem).

e Need to find: Sentence G with PAF G and PA Y/ -G
e Plug ~SProv(x) into diagonal lemma, obtain PA - G <+ “SProv(G)
o fPAFG

» Obtain PA I SProv(G) by property of SProv(x)

» Observe that PA = -SProv(G) from diagonal lemma, contradiction
o If PAF G

» Obtain PA  ~SProv(G) by property of SProv(x)
» Observe that PA F G from diagonal lemma, contradiction

22



Technical background: Essential undecidability

Theorem (Essential undecidability)

Suppose T O PA consistent.
Then, Ap. T F @ is not decidable.

Lemma

Suppose P : F — P is decidable.
We can find formula @(x) such that for any formula 1

P — PAF (W) and ~P 1 — PA F ().

Proof (of essential undecidability).

e Suppose A\p. T F ¢ was decidable

e Invoke lemma to obtain ¢(x)

e By weakening, Vo). T ¥ — T F () A T I/ — T I Sp(h), contradiction
]

23



	References

