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What is Löb’s theorem?

Problem (Henkin, 1952)

• Assume sufficiently strong formal system, e.g. Peano arithmetic
• There is a sentence S expressing own provability

Question: S independent or provable?

• Kreisel 1953: It depends on provability predicate
➤ Only inspected restricted set of provability predicates

• Löb 1955: S is provable
➤ But for a strong notion of provability predicate
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Provability

Theorem (Löb’s theorem, 1955)

Let Pr(x) express provability internally in T . For all sentences ϕ, we have

(T ⊢ Pr(ϕ) →̇ ϕ) implies (T ⊢ ϕ).

Pr(x) expresses provability externally in T if at least T ⊢ ϕ implies T ⊢ Pr(ϕ)
• Internal provability predicates require much technical detail
• Can we do this more abstractly in the spirit of Kirst & Peters (2023)?

➤ Löb isolated abstract axioms

➤ Crucial ones became known as Hilbert-Bernays-Löb derivability conditions

➤ Hide most technical details
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The Hilbert-Bernays-Löb derivability conditions

Hilbert-Bernays-Löb (HBL) derivability conditions (see Löb, 1955)

We say that Pr(x) satisfies

• necessitation if T ⊢ ϕ implies T ⊢ Pr(ϕ)
• internal necessitation if T ⊢ Pr(ϕ) →̇ Pr(Pr(ϕ))
• the distributivity law if T ⊢ Pr(ϕ →̇ ψ) →̇ Pr(ϕ) →̇ Pr(ψ)

• Key behind Gödel’s second incompleteness theorem
• Many similar conditions analysed by Kurahashi (2020, 2021)
• Also used in mechanisations with proof assistants (Isabelle)

➤ Paulson (2015) proves first two; uses hereditarily finite set theory

➤ Assumed without proof by Popescu & Traytel (2021)
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The Hilbert-Bernays-Löb derivability conditions

We use Peano arithmetic (PA).

Hilbert-Bernays-Löb (HBL) derivability conditions (see Löb, 1955)

We say that Pr(x) satisfies

• necessitation if PA ⊢ ϕ implies PA ⊢ Pr(ϕ)
• internal necessitation if PA ⊢ Pr(ϕ) →̇ Pr(Pr(ϕ))
• the distributivity law if PA ⊢ Pr(ϕ →̇ ψ) →̇ Pr(ϕ) →̇ Pr(ψ)

• We analysed how far Church’s Thesis for arithmetic (CTPA)1 takes us
➤ Gives more abstract formula

➤ Investigate which axioms hold

5
1Formalised for first-order arithmetic by Hermes and Kirst 2022, proven consistent by Kirst and
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Defining a first provability candidate

Axiom (CTPA)

For every f : N→ N, there is a formula ϕ(x , y) such that for all n : N
PA ⊢ ∀̇y . ϕ(n, y) ↔̇ y = f n.

Lemma (Weak representability, cf. Hermes & Kirst (2023))

Let P : N→ P be enumerable. There is a formula ϕ(x) such that for all n : N
P n iff PA ⊢ ϕ(n).

We inspect λϕ.PA ⊢ ϕ, enumerability mechanised by Forster, Kirst & Smolka (2019).

Corollary

We obtain Pr(x) such that PA ⊢ ϕ iff PA ⊢ Pr(ϕ).

Pr(x) is external provability predicate.
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A problem arises

We obtained Pr(x) such that PA ⊢ ϕ iff PA ⊢ Pr(ϕ).

Theorem (Gödel’s second incompleteness theorem, 1931)

Suppose Pr(x) is an internal provability predicate for PA. Then, PA ̸⊢ ¬̇Pr(⊥̇).

HBL derivability conditions imply this theorem via Löb’s Theorem.

Definition (Mostowski’s modification, 1965 (modified slightly1))

We set Pr′(x) := Pr(x) ∧̇ x ̸= ⊥̇.

Lemma

PA ⊢ ϕ iff PA ⊢ Pr′(ϕ), i.e. Pr′(x) is an external provability predicate.

Lemma

PA ⊢ ¬̇Pr′(⊥̇).
71This formulation is mentioned by Bezboruah & Shepherdson (1976).



Formal proofs in Peano Arithmetic: Getting internal

Problem

• Pr′(x) is external provability predicate

• We showed PA ⊢ ¬̇Pr′(⊥̇)

• If Pr′ satisfied the HBL conditions, we would have PA ̸⊢ ¬̇Pr′(⊥̇)
→ Not all external provability predicates satisfy the HBL conditions

Towards a solution

PA should reason about proofs: Find formula Prf(x , y) expressing ‘x is a proof of y ’.

Remark (Formal proofs, cf. [Rau10])

A proof of ϕ is a nonempty list ℓ = [ψ1, . . . , ψn] : L(F) with ϕ = ψn s.t. for each i

• ψi is an axiom of PA or
• there are j , j ′ < i such that ψi follows from ψj , ψj ′ by modus ponens. 8



Obtaining the required functions inside Peano Arithmetic

If PA has a formula Prf(x , y) capturing proofs, Pr(y) := ∃̇x . Prf(x , y) is internal.
• Gödel, Boolos, Smith and Rautenberg define Prf(x , y) from scratch

➤ E.g. they explicitly define list formulas such as len(x , y) for length inside PA

Our approach: Use CTPA to obtain these formulas abstractly

Next problem (terms and numerals), simplified

1. We know: For all ℓ : L(F) that PA ⊢ ∀̇z . len(ℓ, z) ↔̇ z = |ℓ|
2. Suppose that Prf(x , y) uses len(x , z) internally for some z

3. When we destruct ∃̇x . Prf(x , y), we only know len(x , z) for some terms x , z
4. x not necessarily a numeral: We cannot apply property from 1.
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Introducing the required functions through axioms

New idea needed: Add functions and constants to PA.

[] (nil) |ℓ| (length) ℓ++ ℓ′ (append)

x ::ℓ (cons) ℓ[i ] (indexed access) x→̃y (implication)

These functions should have standard properties, we assume them through axioms.

Required properties, not exhaustive

• PA ⊢ |[]| = O

• PA ⊢ ∀̇ℓ x . (x ::ℓ)[O] = x
• PA ⊢ ∀̇ℓ x . |x ::ℓ| = S|ℓ|
• PA ⊢ ∀̇i ℓ x . (x ::ℓ)[Si ] = ℓ[i ]

• PA ⊢ ∀̇ℓ ℓ′. |ℓ++ ℓ′| = |ℓ|+ |ℓ′| • PA ⊢ ∀̇i ℓ ℓ′. i < |ℓ| →̇ ℓ[i ] = (ℓ++ ℓ′)[i ]

• PA ⊢ ∀̇i ℓ ℓ′. i < |ℓ′| →̇ ℓ′[i ] = (ℓ++ ℓ′)[i + |ℓ|]
• For all formulas ϕ,ψ, we have PA ⊢ ϕ →̇ ψ = ϕ→̃ψ
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The Hilbert-Bernays-Löb derivability conditions

Hilbert-Bernays-Löb derivability conditions

We say that Pr(x) satisfies

• necessitation if PA ⊢ ϕ implies PA ⊢ Pr(ϕ)
• internal necessitation if PA ⊢ Pr(ϕ) →̇ Pr(Pr(ϕ))
• the distributivity law if PA ⊢ Pr(ϕ →̇ ψ) →̇ Pr(ϕ) →̇ Pr(ψ)

Reminder (Formal proofs)

A proof of ϕ is a nonempty list ℓ = [ψ1, . . . , ψn] : L(F) with ϕ = ψn s.t. for each i

• ψi is an axiom of PA or
• there are j , j ′ < i such that ψi follows from ψj , ψj ′ by modus ponens.

Proof (of the distributivity law).

Let ℓ, ℓ′ be proofs of ϕ →̇ ψ and ϕ, respectively. Then, (ℓ++ ℓ′) ++ [ψ] proves ψ. 11



The Hilbert-Bernays-Löb derivability conditions

Hilbert-Bernays-Löb derivability conditions

We say that Pr(x) satisfies

• necessitation if PA ⊢ ϕ implies PA ⊢ Pr(ϕ)
• internal necessitation if PA ⊢ Pr(ϕ) →̇ Pr(Pr(ϕ))
• the distributivity law if PA ⊢ Pr(ϕ →̇ ψ) →̇ Pr(ϕ) →̇ Pr(ψ)

Reminder (Formal proofs)

A proof of ϕ is a nonempty list ℓ = [ψ1, . . . , ψn] : L(F) with ϕ = ψn s.t. for each i

• ψi is an axiom of PA or
• there are j , j ′ < i such that ψi follows from ψj , ψj ′ by modus ponens.

• Necessitation not obvious: How to formalise ND-derivations this way?
• Need equivalent system with only modus ponens and axioms ⇝ Hilbert system
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Deriving internal necessitation

Definition (Σ1-formulas, Kleene (1943) & Mostowski (1947))

Let ϕ and ψ(x1, . . . , xn) be formulas such that

• ϕ = ∃̇x1 . . . ∃̇xn. ψ(x1, . . . , xn) and
• ψ does not use quantifiers (except bounded ones, e.g. ∀̇y < x)

We say that ϕ is a Σ1-formula.

We can show that our internal provability predicate is Σ1.

Theorem (Provable Σ1-completeness, cf. [Rau10])

Let ϕ be a Σ1-formula. Then PA ⊢ ϕ →̇ Pr(ϕ).

• In the proof, provability on open formulas is needed (e.g. Pr(ϕ(x1, . . . , xn)))
• For instance, we want to obtain Pr(ϕ(42, . . . , 42)) from Pr(ϕ(x1, . . . , xn)) by
substitution
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Achievements and further work

We have

• Mechanised the abstract proof of Löb’s Theorem from the HBL conditions
• Mechanised the Diagonal Lemma as well as important corollaries such as Gödel’s
first incompleteness theorem

• Analysed why external provability predicates are too weak for Löb’s Theorem
• Developed a rough understanding of internal provability predicates

We will

• Formalise the needed Hilbert system for the necessitation proof
• Understand internal necessitation sufficiently
• Finish mechanising the results in Coq
• Optional: Resolve identified weaknesses of Coq library for first-order logic
[Kir+22]

Thanks for your attention.
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Technical background: Gödel numberings

Problem

Let ϕ(x), ψ : F.
We used ϕ(ψ) for ‘substituting some encoding of ψ for x in ϕ’.
ψ is not a number, but a formula → ψ not a numeral.

Typical issue. Gödel faced it himself.

Remark (Gödelisation)

There are functions göd : F→ N, göd−1 : N→ F inverting each other.

ϕ(ψ)⇝ ϕ(göd(ψ))
We also assume a Gödel numbering gödL for lists of formulas; ϕ(ℓ)⇝ ϕ(gödL(ℓ))
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Technical background: External provability is too weak

We obtained Pr(x) such that PA ⊢ ϕ iff PA ⊢ Pr(ϕ).

Definition (Mostowski’s modification, 1965 (modified slightly))

We set Pr′(x) := Pr(x) ∧̇ x ̸= ⊥̇.

Lemma

PA ⊢ ϕ iff PA ⊢ Pr′(ϕ).

Proof.

• Suppose that PA ⊢ ϕ
1. Observe that PA ⊢ Pr(ϕ)
2. In the meta-level, we know that PA is consistent, so ϕ ̸= ⊥̇ (and thus ϕ ̸= ⊥̇)
3. PA decides equalities: PA ⊢ ϕ = ⊥̇ or PA ⊢ ϕ ̸= ⊥̇
4. By soundness and 2., PA ̸⊢ ϕ = ⊥̇
5. From 1.,3. and 4., conclude PA ⊢ Pr(ϕ) ∧̇ ϕ ̸= ⊥̇ 22



Technical background: External provability is too weak

We obtained Pr(x) such that PA ⊢ ϕ iff PA ⊢ Pr(ϕ).

Definition (Mostowski’s modification, 1965 (modified slightly))

We set Pr′(x) := Pr(x) ∧̇ x ̸= ⊥̇.

Lemma

PA ⊢ ¬̇Pr′(⊥̇).

Proof.

We argue inside PA.

• After introducing and destructing, have to show PA,Pr(⊥̇), ⊥̇ ≠ ⊥̇ ⊢ ⊥̇

• By applying the assumption, we are left to show PA,Pr(⊥̇), ⊥̇ ≠ ⊥̇ ⊢ ⊥̇ = ⊥̇
• This follows by reflexivity
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Technical background: External provability is too weak

Lemma (Weak representability, cf. Hermes & Kirst (2023))

Let P : N→ P be enumerable. There is a formula ϕ(x) such that for all n : N
P n iff PA ⊢ ϕ(n).

Recap

• We proved Pr′(x) weakly represents λϕ. PA ⊢ ϕ

• We showed PA ⊢ ¬̇Pr′(⊥̇)

We can show: If Pr′(x) was internal, then PA ̸⊢ ¬̇Pr′(⊥̇),
for instance via Gödel’s second incompleteness theorem.

Takeaway

Weak representability does not suffice to define internal provability predicates.
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Technical background: CTPA is too weak

Axiom (CTPA)

For every f : N→ N, there is a formula ϕ(x , y) such that for all n : N
PA ⊢ ∀̇y . ϕ(n, y) ↔̇ y = f n.

Example

Suppose the successor function S : N→ N is represented by ϕS(x , y).
Question: Can we derive, for all n : N, that PA ⊢ ϕS(n,S n)? Yes!

• Use property of ϕS: PA ⊢ S n = Sn

• By definition of numerals, PA ⊢ S n = S n, easy to finish

Question: Can we derive PA ⊢ ∀̇x . ϕS(x ,S x)? No!

• Introduce x : PA ⊢ ϕS(x ,S x). No way to continue as x not a numeral
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Technical background: CTPA is too weak

Axiom (CTPA)

For every f : N→ N, there is a formula ϕ(x , y) such that for all n : N
PA ⊢ ∀̇y . ϕ(n, y) ↔̇ y = f n.

• Suppose we define Prf(x , y) using formulas resulting from CTPA, s.t. e.g.
ϕ(x , z) appears in Prf(x , y)

• We have to show PA ⊢ (∃̇x . Prf(x , ϕ →̇ψ)) →̇ (∃̇x ′. Prf(x ′, ϕ)) →̇ ∃̇x ′′. Prf(x ′′, ψ)
• After introducing, we know ϕ(x , z) and ϕ(x ′, z ′) for some terms z , z ′

• x , x ′ not necessarily numerals: Defining property from CTPA not applicable
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Formal proofs: Spelling out (some of) the details

Reminder (Formal proofs)

A proof of ϕ is a nonempty list ℓ = [ψ1, . . . , ψn] : L(F) with ϕ = ψn s.t. for each i

• ψi is an axiom of PA or
• there are j , j ′ < i such that ψi follows from ψj , ψj ′ by modus ponens.

Definition (Provability predicate)

Let Ax(x) be a formula capturing axioms of PA (details to be investigated).

Prf(x , y) := (∃̇z . |x | = Sz ∧̇ x [z ] = y) ∧̇ ∀̇i . i < |x | →̇WellFormed(x , i)
WellFormed(x , i) := Ax(x) ∨̇ ∃̇j j ′. j < i ∧̇ j ′ < i ∧̇ x [j ] = x [j ′]→̃x [i ]
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Technical background: Provability on open formulas

Problem

• Let ϕ be a formula with free variables x1, . . . , xn, i.e. ϕ = ϕ(x1, . . . , xn)

• Pr(ϕ(x1, . . . , xn)) is closed. x1, . . . , xn are hard-coded in encoding
• We want to obtain Pr(ϕ(42, . . . , 42)) from Pr(ϕ(x1, . . . , xn)) by substitution

First attempt to circumvent this issue, cf. [Rau10]

• It is possible to define an n-place function sbn in PA satisfying
PA ⊢ sbn(ϕ(x1, . . . , xn), t1, . . . , tn) = ϕ(t1, . . . , tn)

for any n-bounded formula ϕ and terms t1, . . . , tn.

• Then, Prn(x , y1, . . . , yn) := Pr(sbn(x , y1, . . . , yn)) has desired property
• Not satisfactory due to dependency on n

Paulson formalised yet another approach in the Isabelle proof assistant. 28
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