Löb's Theorem and Provability Predicates in Coq

Second Bachelor Seminar Talk

Janis Bailitis
Universität des Saarlandes
Advisors: Dr. Yannick Forster, Dr. Dominik Kirst
Supervisor: Prof. Dr. Gert Smolka
Programming Systems Lab

June 6, 2024

What is Löb's theorem?

Problem (Henkin, 1952)

- Assume sufficiently strong formal system, e.g. Peano arithmetic
- There is a sentence S expressing own provability

Question: S independent or provable?

- Kreisel 1953: It depends on provability predicate
> Only inspected restricted set of provability predicates
- Löb 1955: S is provable
> But for a strong notion of provability predicate

Provability

Theorem (Löb's theorem, 1955)

Let $\operatorname{Pr}(x)$ express provability internally in T. For all sentences φ, we have

$$
(T \vdash \operatorname{Pr}(\bar{\varphi}) \rightarrow \varphi) \text { implies }(T \vdash \varphi) .
$$

$\operatorname{Pr}(x)$ expresses provability externally in T if at least $T \vdash \varphi$ implies $T \vdash \operatorname{Pr}(\bar{\varphi})$

- Internal provability predicates require much technical detail
- Can we do this more abstractly in the spirit of Kirst \& Peters (2023)?
- Löb isolated abstract axioms
- Crucial ones became known as Hilbert-Bernays-Löb derivability conditions
> Hide most technical details

The Hilbert-Bernays-Löb derivability conditions

Hilbert-Bernays-Löb (HBL) derivability conditions (see Löb, 1955)

We say that $\operatorname{Pr}(x)$ satisfies

- necessitation if $T \vdash \varphi$ implies $T \vdash \operatorname{Pr}(\bar{\varphi})$
- internal necessitation if $T \vdash \operatorname{Pr}(\bar{\varphi}) \rightarrow \operatorname{Pr}(\overline{\operatorname{Pr}(\bar{\varphi})})$
- the distributivity law if $T \vdash \operatorname{Pr}(\overline{\varphi \rightarrow \psi}) \rightarrow \operatorname{Pr}(\bar{\varphi}) \rightarrow \operatorname{Pr}(\bar{\psi})$
- Key behind Gödel's second incompleteness theorem
- Many similar conditions analysed by Kurahashi $(2020,2021)$
- Also used in mechanisations with proof assistants (Isabelle)
- Paulson (2015) proves first two; uses hereditarily finite set theory
- Assumed without proof by Popescu \& Traytel (2021)

The Hilbert-Bernays-Löb derivability conditions

We use Peano arithmetic (PA).

Hilbert-Bernays-Löb (HBL) derivability conditions (see Löb, 1955)

We say that $\operatorname{Pr}(x)$ satisfies

- necessitation if $\operatorname{PA} \vdash \varphi$ implies $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi})$
- internal necessitation if $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi}) \rightarrow \operatorname{Pr}(\overline{\operatorname{Pr}(\bar{\varphi})})$
- the distributivity law if $\operatorname{PA} \vdash \operatorname{Pr}(\overline{\varphi \rightarrow \psi}) \rightarrow \operatorname{Pr}(\bar{\varphi}) \rightarrow \operatorname{Pr}(\bar{\psi})$
- We analysed how far Church's Thesis for arithmetic $\left(\mathrm{CT}_{\text {PA }}\right)^{1}$ takes us
- Gives more abstract formula
> Investigate which axioms hold
${ }^{1}$ Formalised for first-order arithmetic by Hermes and Kirst 2022, proven consistent by Kirst and

Defining a first provability candidate

Axiom ($\mathrm{CT}_{\mathrm{PA}}$)

For every $f: \mathbb{N} \rightarrow \mathbb{N}$, there is a formula $\varphi(x, y)$ such that for all $n: \mathbb{N}$

$$
\mathrm{PA} \vdash \dot{\forall} y . \varphi(\bar{n}, y) \dot{\leftrightarrow} y=\overline{f n} .
$$

Lemma (Weak representability, cf. Hermes \& Kirst (2023))

Let $P: \mathbb{N} \rightarrow \mathbb{P}$ be enumerable. There is a formula $\varphi(x)$ such that for all $n: \mathbb{N}$ $P n$ iff PA $\vdash \varphi(\bar{n})$.

We inspect $\lambda \varphi$. PA $\vdash \varphi$, enumerability mechanised by Forster, Kirst \& Smolka (2019).

Corollary

We obtain $\operatorname{Pr}(x)$ such that $\mathrm{PA} \vdash \varphi$ iff $\mathrm{PA} \vdash \operatorname{Pr}(\bar{\varphi})$.
$\operatorname{Pr}(x)$ is external provability predicate.

A problem arises

We obtained $\operatorname{Pr}(x)$ such that $\mathrm{PA} \vdash \varphi$ iff $\mathrm{PA} \vdash \operatorname{Pr}(\bar{\varphi})$.

Theorem (Gödel's second incompleteness theorem, 1931)

Suppose $\operatorname{Pr}(x)$ is an internal provability predicate for PA . Then, $\mathrm{PA} \nvdash \dot{\operatorname{Ar}} \operatorname{Pr}(\overline{\dot{\perp}})$.
HBL derivability conditions imply this theorem via Löb's Theorem.

Definition (Mostowski's modification, 1965 (modified slightly ${ }^{1}$))

We set $\operatorname{Pr}^{\prime}(x):=\operatorname{Pr}(x) \dot{\wedge} x \neq \dot{\perp}$.

Lemma

$\operatorname{PA} \vdash \varphi$ iff $\operatorname{PA} \vdash \operatorname{Pr}^{\prime}(\bar{\varphi})$, i.e. $\operatorname{Pr}^{\prime}(x)$ is an external provability predicate.

Lemma

PA $\vdash \dot{\neg} \operatorname{Pr}^{\prime}(\overline{\dot{\perp}})$.

[^0]
Formal proofs in Peano Arithmetic: Getting internal

Problem

- $\operatorname{Pr}^{\prime}(x)$ is external provability predicate
- We showed PA $\vdash \dot{\rightarrow} \operatorname{Pr}^{\prime}(\overline{\dot{\perp}})$
- If $\operatorname{Pr}^{\prime}$ satisfied the HBL conditions, we would have $\operatorname{PA} \nvdash \dot{\operatorname{Pr}}{ }^{\prime}(\overline{\dot{\perp}})$
\rightarrow Not all external provability predicates satisfy the HBL conditions

Towards a solution

PA should reason about proofs: Find formula $\operatorname{Prf}(x, y)$ expressing ' x is a proof of y '.

Remark (Formal proofs, cf. [Rau10])

A proof of φ is a nonempty list $\ell=\left[\psi_{1}, \ldots, \psi_{n}\right]: \mathcal{L}(\mathbb{F})$ with $\varphi=\psi_{n}$ s.t. for each i

- ψ_{i} is an axiom of PA or
- there are $j, j^{\prime}<i$ such that ψ_{i} follows from $\psi_{j}, \psi_{j^{\prime}}$ by modus ponens.

Obtaining the required functions inside Peano Arithmetic

If PA has a formula $\operatorname{Prf}(x, y)$ capturing proofs, $\operatorname{Pr}(y):=\dot{\exists} x \cdot \operatorname{Prf}(x, y)$ is internal.

- Gödel, Boolos, Smith and Rautenberg define $\operatorname{Prf}(x, y)$ from scratch
- E.g. they explicitly define list formulas such as len (x, y) for length inside PA

Our approach: Use CT PA to obtain these formulas abstractly

Next problem (terms and numerals), simplified

1. We know: For all $\ell: \mathcal{L}(\mathbb{F})$ that $\operatorname{PA} \vdash \dot{\forall} z \operatorname{len}(\bar{\ell}, z) \dot{\leftrightarrow} z=\overline{|\ell|}$
2. Suppose that $\operatorname{Prf}(x, y)$ uses len (x, z) internally for some z
3. When we destruct $\exists x$. $\operatorname{Prf}(x, y)$, we only know len (x, z) for some terms x, z 4. x not necessarily a numeral: We cannot apply property from 1 .

Introducing the required functions through axioms

New idea needed: Add functions and constants to PA.

$$
\begin{array}{lll}
{[] \text { (nil) }} & |\ell| \text { (length) } & \ell+\ell^{\prime} \text { (append) } \\
x:: \ell \text { (cons) } & \ell[i] \text { (indexed access) } & x \xrightarrow[\rightarrow]{\sim} y \text { (implication) }
\end{array}
$$

These functions should have standard properties, we assume them through axioms.

Required properties, not exhaustive

- $\mathrm{PA} \vdash|[]|=0$
- PAト $\dot{\forall} \ell x \cdot(x:: \ell)[\mathrm{O}]=x$
- PAト $\forall \ell x .|x:: \ell|=S|\ell|$
- PA $\vdash \dot{\forall} i \ell x .(x:: \ell)[S i]=\ell[i]$
- PA $\vdash \dot{\forall} \ell \ell^{\prime}$. $\left|\ell+\ell^{\prime}\right|=|\ell|+\left|\ell^{\prime}\right|$
- PA $\vdash \dot{\forall} i \ell \ell^{\prime} . i<\left|\ell^{\prime}\right| \rightarrow \ell^{\prime}[i]=\left(\ell+\ell^{\prime}\right)[i+|\ell|]$
- For all formulas φ, ψ, we have $\mathrm{PA} \vdash \overline{\varphi \rightarrow \psi}=\bar{\varphi} \stackrel{\sim}{\rightarrow} \bar{\psi}$

The Hilbert-Bernays-Löb derivability conditions

Hilbert-Bernays-Löb derivability conditions

We say that $\operatorname{Pr}(x)$ satisfies

- necessitation if $\operatorname{PA} \vdash \varphi$ implies $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi})$
- internal necessitation if $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi}) \rightarrow \operatorname{Pr}(\overline{\operatorname{Pr}(\bar{\varphi})})$
- the distributivity law if $\operatorname{PA} \vdash \operatorname{Pr}(\overline{\varphi \rightarrow \psi}) \rightarrow \operatorname{Pr}(\bar{\varphi}) \rightarrow \operatorname{Pr}(\bar{\psi})$

Reminder (Formal proofs)
A proof of φ is a nonempty list $\ell=\left[\psi_{1}, \ldots, \psi_{n}\right]: \mathcal{L}(\mathbb{F})$ with $\varphi=\psi_{n}$ s.t. for each i

- ψ_{i} is an axiom of PA or
- there are $j, j^{\prime}<i$ such that ψ_{i} follows from $\psi_{j}, \psi_{j^{\prime}}$ by modus ponens.

Proof (of the distributivity law).
Let ℓ, ℓ^{\prime} be proofs of $\varphi \rightarrow \psi$ and φ, respectively. Then, $\left(\ell+\ell^{\prime}\right)+[\psi]$ proves ψ.

The Hilbert-Bernays-Löb derivability conditions

Hilbert-Bernays-Löb derivability conditions

We say that $\operatorname{Pr}(x)$ satisfies

- necessitation if $\operatorname{PA} \vdash \varphi$ implies $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi})$
- internal necessitation if $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi}) \rightarrow \operatorname{Pr}(\overline{\operatorname{Pr}(\bar{\varphi})})$
- the distributivity law if $\operatorname{PA} \vdash \operatorname{Pr}(\overline{\varphi \rightarrow \psi}) \rightarrow \operatorname{Pr}(\bar{\varphi}) \rightarrow \operatorname{Pr}(\bar{\psi})$

Reminder (Formal proofs)
A proof of φ is a nonempty list $\ell=\left[\psi_{1}, \ldots, \psi_{n}\right]: \mathcal{L}(\mathbb{F})$ with $\varphi=\psi_{n}$ s.t. for each i

- ψ_{i} is an axiom of PA or
- there are $j, j^{\prime}<i$ such that ψ_{i} follows from $\psi_{j}, \psi_{j^{\prime}}$ by modus ponens.
- Necessitation not obvious: How to formalise ND-derivations this way?
- Need equivalent system with only modus ponens and axioms \rightsquigarrow Hilbert system

Deriving internal necessitation

Definition (Σ_{1}-formulas, Kleene (1943) \& Mostowski (1947))

Let φ and $\psi\left(x_{1}, \ldots, x_{n}\right)$ be formulas such that

- $\varphi=\dot{\exists} x_{1} \ldots \dot{\exists} x_{n} . \psi\left(x_{1}, \ldots, x_{n}\right)$ and
- ψ does not use quantifiers (except bounded ones, e.g. $\dot{\forall} y<x$)

We say that φ is a Σ_{1}-formula.
We can show that our internal provability predicate is Σ_{1}.
Theorem (Provable Σ_{1}-completeness, cf. [Rau10])
Let φ be a Σ_{1}-formula. Then $\mathrm{PA} \vdash \varphi \rightarrow \operatorname{Pr}(\bar{\varphi})$.

- In the proof, provability on open formulas is needed $\left(\right.$ e.g. $\left.\operatorname{Pr}\left(\overline{\varphi\left(x_{1}, \ldots, x_{n}\right)}\right)\right)$
- For instance, we want to obtain $\operatorname{Pr}(\overline{\varphi(\overline{42}, \ldots, \overline{42})})$ from $\operatorname{Pr}\left(\overline{\varphi\left(x_{1}, \ldots, x_{n}\right)}\right)$ by substitution

Achievements and further work

We have

- Mechanised the abstract proof of Löb's Theorem from the HBL conditions
- Mechanised the Diagonal Lemma as well as important corollaries such as Gödel's first incompleteness theorem
- Analysed why external provability predicates are too weak for Löb's Theorem
- Developed a rough understanding of internal provability predicates

We will

- Formalise the needed Hilbert system for the necessitation proof
- Understand internal necessitation sufficiently
- Finish mechanising the results in Coq
- Optional: Resolve identified weaknesses of Coq library for first-order logic [Kir+22]

Thanks for your attention.

References i

[BS76] A. Bezboruah and J. C. Shepherdson. 'Gödel’s Second Incompleteness Theorem for Q'. In: The Journal of Symbolic Logic 41.2 (1976), pp. 503-512. ISSN: 00224812. URL: http://www. jstor.org/stable/2272251.
[FKS19] Yannick Forster, Dominik Kirst and Gert Smolka. 'On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem'. In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019. Ed. by Assia Mahboubi and Magnus O. Myreen. ACM, 2019, pp. 38-51. DOI: 10.1145/3293880. 3294091.
[Gö31] K. Gödel. ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I'. In: Monatshefte für Mathematik 38.1 (1931), pp. 173-198.
[Hen52] Leon Henkin. 'A problem concerning provability'. In: The Journal of Symbolic Logic 17.2 (1952), p. 160. ISSN: 00224812. URL: http://www.jstor.org/stable/2266288.
[HK23] Marc Hermes and Dominik Kirst. 'An Analysis of Tennenbaum's Theorem in Constructive Type Theory’. In: CoRR abs/2302.14699 (2023). DOI: 10.48550/ARXIV.2302.14699. arXiv: 2302.14699.
[KH23] Dominik Kirst and Marc Hermes. 'Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq'. In: J. Autom. Reason. 67.1 (2023), p. 13. DOI: 10.1007/S10817-022-09647-X.
[Kir+22] Dominik Kirst et al. 'A Coq Library for Mechanised First-Order Logic'. In: The Coq Workshop (2022)

References ifi

[Kle43] S. C. Kleene. 'Recursive Predicates and Quantifiers'. In: Transactions of the American Mathematical Society 53 (1943), pp. 41-73. DOI: 10.2307/2267986.
[KP23] Dominik Kirst and Benjamin Peters. 'Gödel's Theorem Without Tears Essential Incompleteness in Synthetic Computability'. In: 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Ed. by Bartek Klin and Elaine Pimentel. Vol. 252. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 30:1-30:18. ISBN: 978-3-95977-264-8. DOI:
10.4230/LIPIcs.CSL. 2023. 30 .
[Kre53] Georg Kreisel. ‘On a problem of Henkin's’. In: Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings. A 56 (1953), pp. 405-406.

References iv

[Kur20] Taishi Kurahashi. 'A note on derivability conditions'. In: The Journal of Symbolic Logic 85.3 (Sept. 2020), 1224-1253. ISSN: 1943-5886. DOI: 10.1017/jsl.2020.33.
[Kur21] Taishi Kurahashi. 'Rosser Provability and the Second Incompleteness Theorem'. In: Advances in Mathematical Logic. Ed. by Toshiyasu Arai et al. Singapore: Springer Nature Singapore, 2021, pp. 77-97. ISBN: 978-981-16-4173-2.
[Lö55] M. H. Löb. 'Solution of a Problem of Leon Henkin'. In: The Journal of Symbolic Logic 20.2 (1955), pp. 115-118. ISSN: 00224812. URL: http://www.jstor.org/stable/2266895.

References v

[Mos47] Andrzej Mostowski. 'On definable sets of positive integers'. In: Fundamenta Mathematicae 34.1 (1947), pp. 81-112. URL:
http://eudml.org/doc/213118.
[Mos65] Andrzej Mostowski. 'Thirty years of foundational studies: lectures on the development of mathematical logic and the study of the foundations of mathematics in 1930-1964.'. In: Acta Philosophica Fennica 17 (1965), pp. 1-180.
[Pau15] Lawrence C. Paulson. 'A Mechanised Proof of Gödel's Incompleteness Theorems Using Nominal Isabelle'. In: Journal of Automated Reasoning 55 (2015), pp. 1-37. DOI: 10.1007/s10817-015-9322-8.

References vi

[PT21] A. Popescu and D. Traytel. 'Distilling the Requirements of Gödel's Incompleteness Theorems with a Proof Assistant'. In: Journal of Automated Reasoning (2021). DOI: 10.1007/s10817-021-09599-8.
[Rau10] Wolfgang Rautenberg. A Concise Introduction to Mathematical Logic. 3. edition. Springer New York Dordrecht Heidelberg London, 2010. DOI: 10.1007/978-1-4419-1221-3.

Technical background: Gödel numberings

Problem

Let $\varphi(x), \psi: \mathbb{F}$.
We used $\varphi(\bar{\psi})$ for 'substituting some encoding of ψ for x in φ '.
ψ is not a number, but a formula $\rightarrow \bar{\psi}$ not a numeral.
Typical issue. Gödel faced it himself.

Remark (Gödelisation)

There are functions göd : $\mathbb{F} \rightarrow \mathbb{N}$, göd ${ }^{-1}: \mathbb{N} \rightarrow \mathbb{F}$ inverting each other.
$\varphi(\bar{\psi}) \rightsquigarrow \varphi(\overline{\operatorname{göd}(\psi)})$
We also assume a Gödel numbering göd $\mathcal{L}_{\mathcal{L}}$ for lists of formulas; $\varphi(\bar{\ell}) \rightsquigarrow \varphi\left(\overline{\operatorname{göd}_{\mathcal{L}}(\ell)}\right)$

Technical background: External provability is too weak

We obtained $\operatorname{Pr}(x)$ such that $\operatorname{PA} \vdash \varphi$ iff $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi})$.

Definition (Mostowski's modification, 1965 (modified slightly))

We set $\operatorname{Pr}^{\prime}(x):=\operatorname{Pr}(x) \dot{\wedge} x \neq \dot{L}$.

Lemma

$\mathrm{PA} \vdash \varphi$ iff $\operatorname{PA} \vdash \operatorname{Pr}^{\prime}(\bar{\varphi})$.

Proof.

- Suppose that PA $\vdash \varphi$

1. Observe that $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi})$
2. In the meta-level, we know that PA is consistent, so $\varphi \neq \dot{\perp}$ (and thus $\bar{\varphi} \neq \overline{\dot{L}}$)
3. PA decides equalities: $\mathrm{PA} \vdash \bar{\varphi}=\overline{\bar{L}}$ or $\mathrm{PA} \vdash \bar{\varphi} \neq \overline{\dot{\perp}}$
4. By soundness and $2 ., \mathrm{PA} \nvdash \bar{\varphi}=\dot{\perp}$
5. From 1.,3. and 4., conclude $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi}) \dot{\wedge} \bar{\varphi} \neq \overline{\dot{L}}$

Technical background: External provability is too weak

We obtained $\operatorname{Pr}(x)$ such that $\operatorname{PA} \vdash \varphi$ iff $\operatorname{PA} \vdash \operatorname{Pr}(\bar{\varphi})$.

Definition (Mostowski's modification, 1965 (modified slightly))

We set $\operatorname{Pr}^{\prime}(x):=\operatorname{Pr}(x) \dot{\wedge} x \neq \overline{\dot{L}}$.

Lemma

PA $\vdash \dot{\neg} \operatorname{Pr}^{\prime}(\overline{\dot{\perp}})$.

Proof.

We argue inside PA.

- After introducing and destructing, have to show $\operatorname{PA}, \operatorname{Pr}(\overline{\dot{L}}), \overline{\dot{\perp}} \neq \overline{\dot{L}} \vdash \dot{\perp}$
- By applying the assumption, we are left to show $\operatorname{PA}, \operatorname{Pr}(\overline{\dot{L}}), \overline{\dot{\perp}} \neq \overline{\dot{\perp}} \vdash \overline{\dot{\perp}}=\overline{\dot{\perp}}$
- This follows by reflexivity

Technical background: External provability is too weak

Lemma (Weak representability, cf. Hermes \& Kirst (2023))

Let $P: \mathbb{N} \rightarrow \mathbb{P}$ be enumerable. There is a formula $\varphi(x)$ such that for all $n: \mathbb{N}$

$$
P n \text { iff PA } \vdash \varphi(\bar{n}) .
$$

Recap

- We proved $\operatorname{Pr}^{\prime}(x)$ weakly represents $\lambda \varphi$. $\mathrm{PA} \vdash \varphi$
- We showed PA $\vdash \dot{\neg} \operatorname{Pr}^{\prime}(\overline{\dot{\perp}})$

We can show: If $\operatorname{Pr}^{\prime}(x)$ was internal, then $\operatorname{PA} \nvdash \neg \operatorname{Pr}^{\prime}(\overline{\dot{\perp}})$, for instance via Gödel's second incompleteness theorem.

Takeaway

Weak representability does not suffice to define internal provability predicates.

Technical background: $C T_{\text {PA }}$ is too weak

Axiom ($C T_{P A}$)

For every $f: \mathbb{N} \rightarrow \mathbb{N}$, there is a formula $\varphi(x, y)$ such that for all $n: \mathbb{N}$

$$
\mathrm{PA} \vdash \dot{\forall} y . \varphi(\bar{n}, y) \dot{\leftrightarrow} y=\overline{f n} .
$$

Example

Suppose the successor function $\mathrm{S}: \mathbb{N} \rightarrow \mathbb{N}$ is represented by $\varphi_{\mathrm{S}}(x, y)$.
Question: Can we derive, for all $n: \mathbb{N}$, that $\mathrm{PA} \vdash \varphi_{\mathrm{S}}(\bar{n}, \mathrm{~S} \bar{n})$?

- Use property of $\varphi_{\mathrm{S}}: \mathrm{PA} \vdash \mathrm{S} \bar{n}=\overline{\mathrm{Sn}}$
- By definition of numerals, $\mathrm{PA} \vdash \mathrm{S} \bar{n}=S \bar{n}$, easy to finish

Question: Can we derive PA $\vdash \dot{\forall} x . \varphi_{\mathrm{S}}(x, S x)$?

- Introduce $x: \operatorname{PA} \vdash \varphi_{\mathrm{S}}(x, \mathrm{~S} x)$. No way to continue as x not a numeral

Technical background: $C T_{\text {PA }}$ is too weak

Axiom ($C T_{P A}$)

For every $f: \mathbb{N} \rightarrow \mathbb{N}$, there is a formula $\varphi(x, y)$ such that for all $n: \mathbb{N}$

$$
\mathrm{PA} \vdash \dot{\forall} y . \varphi(\bar{n}, y) \dot{\leftrightarrow} y=\overline{f n} .
$$

- Suppose we define $\operatorname{Prf}(x, y)$ using formulas resulting from $C T_{P A}$, s.t. e.g. $\varphi(x, z)$ appears in $\operatorname{Prf}(x, y)$
- We have to show $\operatorname{PA} \vdash(\dot{\exists} x \cdot \operatorname{Prf}(x, \bar{\varphi} \rightarrow \psi)) \rightarrow\left(\dot{\exists} x^{\prime} . \operatorname{Prf}\left(x^{\prime}, \bar{\varphi}\right)\right) \rightarrow \dot{\exists} x^{\prime \prime} . \operatorname{Prf}\left(x^{\prime \prime}, \bar{\psi}\right)$
- After introducing, we know $\varphi(x, z)$ and $\varphi\left(x^{\prime}, z^{\prime}\right)$ for some terms z, z^{\prime}
- x, x^{\prime} not necessarily numerals: Defining property from CTPA not applicable

Formal proofs: Spelling out (some of) the details

Reminder (Formal proofs)

A proof of φ is a nonempty list $\ell=\left[\psi_{1}, \ldots, \psi_{n}\right]: \mathcal{L}(\mathbb{F})$ with $\varphi=\psi_{n}$ s.t. for each i

- ψ_{i} is an axiom of PA or
- there are $j, j^{\prime}<i$ such that ψ_{i} follows from $\psi_{j}, \psi_{j^{\prime}}$ by modus ponens.

Definition (Provability predicate)

Let $A x(x)$ be a formula capturing axioms of PA (details to be investigated).

$$
\operatorname{Prf}(x, y):=(\dot{\exists} z .|x|=S z \dot{\wedge} x[z]=y) \dot{\wedge} \dot{\forall} i . i<|x| \dot{\rightarrow} \text { WellFormed }(x, i)
$$

WellFormed $(x, i):=\operatorname{Ax}(x) \dot{\vee} \dot{\exists} j j^{\prime} . j<i \dot{\wedge} j^{\prime}<i \dot{\wedge} x[j]=x\left[j^{\prime}\right] \stackrel{\sim}{\rightarrow} x[i]$

Technical background: Provability on open formulas

Problem

- Let φ be a formula with free variables x_{1}, \ldots, x_{n}, i.e. $\varphi=\varphi\left(x_{1}, \ldots, x_{n}\right)$
- $\operatorname{Pr}\left(\overline{\varphi\left(x_{1}, \ldots, x_{n}\right)}\right)$ is closed. x_{1}, \ldots, x_{n} are hard-coded in encoding
- We want to obtain $\operatorname{Pr}(\overline{\varphi(\overline{42}, \ldots, \overline{42})})$ from $\operatorname{Pr}\left(\overline{\varphi\left(x_{1}, \ldots, x_{n}\right)}\right)$ by substitution

First attempt to circumvent this issue, cf. [Rau10]

- It is possible to define an n-place function $s b_{n}$ in PA satisfying

$$
\mathrm{PA} \vdash \mathrm{sb}_{n}\left(\overline{\varphi\left(x_{1}, \ldots, x_{n}\right)}, t_{1}, \ldots, t_{n}\right)=\overline{\varphi\left(t_{1}, \ldots, t_{n}\right)}
$$

for any n-bounded formula φ and terms t_{1}, \ldots, t_{n}.

- Then, $\operatorname{Pr}_{n}\left(x, y_{1}, \ldots, y_{n}\right):=\operatorname{Pr}\left(\operatorname{sb}_{n}\left(x, y_{1}, \ldots, y_{n}\right)\right)$ has desired property
- Not satisfactory due to dependency on n

Paulson formalised yet another approach in the Isabelle proof assistant.

[^0]: ${ }^{1}$ This formulation is mentioned by Bezboruah \& Shepherdson (1976).

