Löb's Theorem and Provability Predicates in Coq Second Bachelor Seminar Talk

Janis Bailitis

Universität des Saarlandes Advisors: Dr. Yannick Forster, Dr. Dominik Kirst Supervisor: Prof. Dr. Gert Smolka Programming Systems Lab

June 6, 2024

Problem (Henkin, 1952)

- Assume sufficiently strong formal system, e.g. Peano arithmetic
- There is a sentence S expressing own provability

Question: S independent or provable?

- Kreisel 1953: It depends on provability predicate
 - Only inspected restricted set of provability predicates
- Löb 1955: S is provable
 - ► But for a strong notion of provability predicate

Theorem (Löb's theorem, 1955)

Let Pr(x) express provability internally in T. For all sentences φ , we have

$$(T \vdash \Pr(\overline{\varphi}) \rightarrow \varphi) \text{ implies } (T \vdash \varphi).$$

 $\Pr(x)$ expresses provability **externally** in \mathcal{T} if at least $\mathcal{T} \vdash \varphi$ implies $\mathcal{T} \vdash \Pr(\overline{\varphi})$

- Internal provability predicates require much technical detail
- Can we do this more abstractly in the spirit of Kirst & Peters (2023)?
 - Löb isolated abstract axioms
 - Crucial ones became known as Hilbert-Bernays-Löb derivability conditions
 - ► Hide most technical details

Hilbert-Bernays-Löb (HBL) derivability conditions (see Löb, 1955)

We say that Pr(x) satisfies

- **necessitation** if $T \vdash \varphi$ implies $T \vdash \Pr(\overline{\varphi})$
- internal necessitation if $\mathcal{T} \vdash \Pr(\overline{\varphi}) \xrightarrow{\cdot} \Pr(\overline{\Pr(\overline{\varphi})})$
- the distributivity law if $\mathcal{T} \vdash \Pr(\overline{\varphi \rightarrow \psi}) \rightarrow \Pr(\overline{\varphi}) \rightarrow \Pr(\overline{\psi})$
- Key behind Gödel's second incompleteness theorem
- Many similar conditions analysed by Kurahashi (2020, 2021)
- Also used in mechanisations with proof assistants (Isabelle)
 - > Paulson (2015) proves first two; uses hereditarily finite set theory
 - ► Assumed without proof by Popescu & Traytel (2021)

We use Peano arithmetic (PA).

Hilbert-Bernays-Löb (HBL) derivability conditions (see Löb, 1955)

We say that Pr(x) satisfies

- **necessitation** if $PA \vdash \varphi$ implies $PA \vdash Pr(\overline{\varphi})$
- internal necessitation if $\mathsf{PA} \vdash \mathsf{Pr}(\overline{\varphi}) \xrightarrow{\cdot} \mathsf{Pr}(\overline{\mathsf{Pr}(\overline{\varphi})})$
- the distributivity law if $\mathsf{PA} \vdash \mathsf{Pr}(\overline{\varphi} \to \overline{\psi}) \to \mathsf{Pr}(\overline{\varphi}) \to \mathsf{Pr}(\overline{\psi})$
- We analysed how far Church's Thesis for arithmetic $(\mathsf{CT}_{\mathsf{PA}})^1$ takes us
 - ► Gives more abstract formula
 - ► Investigate which axioms hold

¹Formalised for first-order arithmetic by Hermes and Kirst 2022, proven consistent by Kirst and Peters 2023.

Defining a first provability candidate

Axiom (CT_{PA})

For every $f : \mathbb{N} \to \mathbb{N}$, there is a formula $\varphi(x, y)$ such that for all $n : \mathbb{N}$ $\mathsf{PA} \vdash \dot{\forall} y. \varphi(\overline{n}, y) \leftrightarrow y = \overline{f n}.$

Lemma (Weak representability, cf. Hermes & Kirst (2023))

Let $P : \mathbb{N} \to \mathbb{P}$ be enumerable. There is a formula $\varphi(x)$ such that for all $n : \mathbb{N}$ $P n \text{ iff } PA \vdash \varphi(\overline{n}).$

We inspect $\lambda \varphi$. PA $\vdash \varphi$, enumerability mechanised by Forster, Kirst & Smolka (2019).

Corollary

We obtain Pr(x) such that $PA \vdash \varphi$ iff $PA \vdash Pr(\overline{\varphi})$.

Pr(x) is **external** provability predicate.

A problem arises

We obtained Pr(x) such that $PA \vdash \varphi$ iff $PA \vdash Pr(\overline{\varphi})$.

Theorem (Gödel's second incompleteness theorem, 1931)

Suppose Pr(x) is an internal provability predicate for PA. Then, $PA \not\vdash \neg Pr(\bot)$.

HBL derivability conditions imply this theorem via Löb's Theorem.

Definition (Mostowski's modification, 1965 (modified slightly¹))

We set $Pr'(x) := Pr(x) \land x \neq \overline{\bot}$.

Lemma

 $\mathsf{PA} \vdash \varphi$ iff $\mathsf{PA} \vdash \mathsf{Pr}'(\overline{\varphi})$, i.e. $\mathsf{Pr}'(x)$ is an external provability predicate.

Lemma

 $\mathsf{PA} \vdash \neg \mathsf{Pr}'(\overline{\bot}).$

¹This formulation is mentioned by Bezboruah & Shepherdson (1976).

Formal proofs in Peano Arithmetic: Getting internal

Problem

- Pr'(x) is external provability predicate
- We showed $\mathsf{PA} \vdash \neg \mathsf{Pr}'(\overline{\bot})$
- If Pr' satisfied the HBL conditions, we would have PA $\nvdash \neg$ Pr' $(\dot{\perp})$
- $\rightarrow\,$ Not all external provability predicates satisfy the HBL conditions

Towards a solution

PA should reason about proofs: Find formula Prf(x, y) expressing 'x is a proof of y'.

Remark (Formal proofs, cf. [Rau10])

A proof of φ is a nonempty list $\ell = [\psi_1, \ldots, \psi_n] : \mathcal{L}(\mathbb{F})$ with $\varphi = \psi_n$ s.t. for each i

- ψ_i is an axiom of PA or
- there are j, j' < i such that ψ_i follows from $\psi_j, \psi_{j'}$ by modus ponens.

If PA has a formula Prf(x, y) capturing proofs, $Pr(y) := \dot{\exists} x$. Prf(x, y) is internal.

• Gödel, Boolos, Smith and Rautenberg define Prf(x, y) from scratch

 \blacktriangleright E.g. they explicitly define list formulas such as len(x, y) for length inside PA

Our approach: Use CT_PA to obtain these formulas abstractly

Next problem (terms and numerals), simplified

- 1. We know: For all $\ell : \mathcal{L}(\mathbb{F})$ that $\mathsf{PA} \vdash \dot{\forall} z$. $\mathsf{len}(\overline{\ell}, z) \leftrightarrow z = \overline{|\ell|}$
- 2. Suppose that Prf(x, y) uses len(x, z) internally for some z
- 3. When we destruct $\exists x$. Prf(x, y), we only know len(x, z) for some **terms** x, z
- 4. x not necessarily a **numeral**: We cannot apply property from 1.

Introducing the required functions through axioms

New idea needed: Add functions and constants to PA.

[] (nil) $|\ell|$ (length) $\ell + \ell'$ (append) $x::\ell$ (cons) $\ell[i]$ (indexed access) $x \rightarrow y$ (implication)

These functions should have standard properties, we assume them through axioms.

Required properties, not exhaustive

• $\mathsf{PA} \vdash |[]| = \mathsf{O}$

$$\mathsf{PA} \vdash \dot{\forall} \ell x. \ (x :: \ell)[\mathsf{O}] = x$$

•

•
$$\mathsf{PA} \vdash \dot{\forall} \ell x. |x:: \ell| = \mathsf{S}|\ell|$$

•
$$\mathsf{PA} \vdash \forall i \ \ell \ x. \ (x :: \ell)[\mathsf{S}i] = \ell[i]$$

- $\mathsf{PA} \vdash \dot{\forall} \ell \ell'$. $|\ell + \ell'| = |\ell| + |\ell'|$ $\mathsf{PA} \vdash \dot{\forall} i \ell \ell'$. $i < |\ell| \rightarrow \ell[i] = (\ell + \ell')[i]$
- $\mathsf{PA} \vdash \forall i \ \ell \ \ell'. \ i < |\ell'| \rightarrow \ell'[i] = (\ell + \ell')[i + |\ell|]$
- For all formulas φ, ψ , we have $\mathsf{PA} \vdash \overline{\varphi} \rightarrow \overline{\psi} = \overline{\varphi} \rightarrow \overline{\psi}$

The Hilbert-Bernays-Löb derivability conditions

Hilbert-Bernays-Löb derivability conditions

We say that Pr(x) satisfies

- **necessitation** if $PA \vdash \varphi$ implies $PA \vdash Pr(\overline{\varphi})$
- internal necessitation if $\mathsf{PA} \vdash \mathsf{Pr}(\overline{\varphi}) \xrightarrow{\cdot} \mathsf{Pr}(\overline{\mathsf{Pr}(\overline{\varphi})})$
- the distributivity law if $\mathsf{PA} \vdash \mathsf{Pr}(\overline{\varphi} \to \overline{\psi}) \to \mathsf{Pr}(\overline{\psi}) \to \mathsf{Pr}(\overline{\psi})$

Reminder (Formal proofs)

A proof of φ is a nonempty list $\ell = [\psi_1, \dots, \psi_n] : \mathcal{L}(\mathbb{F})$ with $\varphi = \psi_n$ s.t. for each *i*

- ψ_i is an axiom of PA or
- there are j, j' < i such that ψ_i follows from $\psi_j, \psi_{j'}$ by modus ponens.

Proof (of the distributivity law).

Let ℓ, ℓ' be proofs of $\varphi \rightarrow \psi$ and φ , respectively. Then, $(\ell \# \ell') \# [\psi]$ proves ψ . \Box

11

The Hilbert-Bernays-Löb derivability conditions

Hilbert-Bernays-Löb derivability conditions

We say that Pr(x) satisfies

- **necessitation** if $PA \vdash \varphi$ implies $PA \vdash Pr(\overline{\varphi})$
- internal necessitation if $\mathsf{PA} \vdash \mathsf{Pr}(\overline{\varphi}) \rightarrow \mathsf{Pr}(\overline{\mathsf{Pr}(\overline{\varphi})})$
- the distributivity law if $\mathsf{PA} \vdash \mathsf{Pr}(\overline{\varphi} \to \overline{\psi}) \to \mathsf{Pr}(\overline{\psi}) \to \mathsf{Pr}(\overline{\psi})$

Reminder (Formal proofs)

A proof of φ is a nonempty list $\ell = [\psi_1, \dots, \psi_n] : \mathcal{L}(\mathbb{F})$ with $\varphi = \psi_n$ s.t. for each *i*

- ψ_i is an axiom of PA or
- there are j, j' < i such that ψ_i follows from $\psi_j, \psi_{j'}$ by modus ponens.
- Necessitation not obvious: How to formalise ND-derivations this way?
- $\bullet\,$ Need equivalent system with only modus ponens and axioms \rightsquigarrow Hilbert system

Deriving internal necessitation

Definition (Σ_1 -formulas, Kleene (1943) & Mostowski (1947))

Let φ and $\psi(x_1, \ldots, x_n)$ be formulas such that

- $\varphi = \dot{\exists} x_1 \dots \dot{\exists} x_n$. $\psi(x_1, \dots, x_n)$ and
- ψ does not use quantifiers (except bounded ones, e.g. $\dot{\forall}y < x)$

We say that φ is a Σ_1 -formula.

We can show that our internal provability predicate is Σ_1 .

Theorem (Provable Σ_1 -completeness, cf. [Rau10])

Let φ be a Σ_1 -formula. Then $\mathsf{PA} \vdash \varphi \xrightarrow{\cdot} \mathsf{Pr}(\overline{\varphi})$.

- In the proof, provability on open formulas is needed (e.g. $Pr(\overline{\varphi(x_1, ..., x_n)}))$
- For instance, we want to obtain $Pr(\overline{\varphi(\overline{42}, \ldots, \overline{42})})$ from $Pr(\overline{\varphi(x_1, \ldots, x_n)})$ by substitution

Achievements and further work

We have

- Mechanised the abstract proof of Löb's Theorem from the HBL conditions
- Mechanised the Diagonal Lemma as well as important corollaries such as Gödel's first incompleteness theorem
- Analysed why external provability predicates are too weak for Löb's Theorem
- Developed a rough understanding of internal provability predicates

We will

- Formalise the needed Hilbert system for the necessitation proof
- Understand internal necessitation sufficiently
- Finish mechanising the results in Coq
- Optional: Resolve identified weaknesses of Coq library for first-order logic [Kir+22]

Thanks for your attention.

References i

- [BS76] A. Bezboruah and J. C. Shepherdson. 'Gödel's Second Incompleteness Theorem for Q'. In: The Journal of Symbolic Logic 41.2 (1976), pp. 503–512. ISSN: 00224812. URL: http://www.jstor.org/stable/2272251.
- [FKS19] Yannick Forster, Dominik Kirst and Gert Smolka. 'On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem'. In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019. Ed. by Assia Mahboubi and Magnus O. Myreen. ACM, 2019, pp. 38–51. DOI: 10.1145/3293880.3294091.
- [Gö31] K. Gödel. 'Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I'. In: Monatshefte für Mathematik 38.1 (1931), pp. 173–198.

References ii

- [Hen52] Leon Henkin. 'A problem concerning provability'. In: The Journal of Symbolic Logic 17.2 (1952), p. 160. ISSN: 00224812. URL: http://www.jstor.org/stable/2266288.
- [HK23] Marc Hermes and Dominik Kirst. 'An Analysis of Tennenbaum's Theorem in Constructive Type Theory'. In: CoRR abs/2302.14699 (2023). DOI: 10.48550/ARXIV.2302.14699. arXiv: 2302.14699.
- [KH23] Dominik Kirst and Marc Hermes. 'Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq'. In: J. Autom. Reason. 67.1 (2023), p. 13. DOI: 10.1007/S10817-022-09647-X.
- [Kir+22] Dominik Kirst et al. 'A Coq Library for Mechanised First-Order Logic'. In: The Coq Workshop (2022).

References iii

- [Kle43] S. C. Kleene. 'Recursive Predicates and Quantifiers'. In: Transactions of the American Mathematical Society 53 (1943), pp. 41–73. DOI: 10.2307/2267986.
- [KP23] Dominik Kirst and Benjamin Peters. 'Gödel's Theorem Without Tears -Essential Incompleteness in Synthetic Computability'. In: 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Ed. by Bartek Klin and Elaine Pimentel. Vol. 252. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 30:1–30:18. ISBN: 978-3-95977-264-8. DOI: 10.4230/LIPIcs.CSL.2023.30.
- [Kre53] Georg Kreisel. **'On a problem of Henkin's'.** In: Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings. A 56 (1953), pp. 405–406.

References iv

- [Kur20] Taishi Kurahashi. 'A note on derivability conditions'. In: The Journal of Symbolic Logic 85.3 (Sept. 2020), 1224–1253. ISSN: 1943-5886. DOI: 10.1017/jsl.2020.33.
- [Kur21] Taishi Kurahashi. 'Rosser Provability and the Second Incompleteness Theorem'. In: Advances in Mathematical Logic. Ed. by Toshiyasu Arai et al. Singapore: Springer Nature Singapore, 2021, pp. 77–97. ISBN: 978-981-16-4173-2.
- [Lö55] M. H. Löb. 'Solution of a Problem of Leon Henkin'. In: The Journal of Symbolic Logic 20.2 (1955), pp. 115–118. ISSN: 00224812. URL: http://www.jstor.org/stable/2266895.

[Mos47] Andrzej Mostowski. 'On definable sets of positive integers'. In: Fundamenta Mathematicae 34.1 (1947), pp. 81–112. URL: http://eudml.org/doc/213118.

- [Mos65] Andrzej Mostowski. 'Thirty years of foundational studies: lectures on the development of mathematical logic and the study of the foundations of mathematics in 1930-1964.'. In: Acta Philosophica Fennica 17 (1965), pp. 1–180.
- [Pau15] Lawrence C. Paulson. 'A Mechanised Proof of Gödel's Incompleteness Theorems Using Nominal Isabelle'. In: Journal of Automated Reasoning 55 (2015), pp. 1–37. DOI: 10.1007/s10817-015-9322-8.

- [PT21] A. Popescu and D. Traytel. 'Distilling the Requirements of Gödel's Incompleteness Theorems with a Proof Assistant'. In: Journal of Automated Reasoning (2021). DOI: 10.1007/s10817-021-09599-8.
- [Rau10] Wolfgang Rautenberg. A Concise Introduction to Mathematical Logic.
 3. edition. Springer New York Dordrecht Heidelberg London, 2010. DOI: 10.1007/978-1-4419-1221-3.

Problem

Let $\varphi(x), \psi : \mathbb{F}$. We used $\varphi(\overline{\psi})$ for 'substituting some encoding of ψ for x in φ' . ψ is not a **number**, but a **formula** $\rightarrow \overline{\psi}$ not a numeral.

Typical issue. Gödel faced it himself.

Remark (Gödelisation)

There are functions $g\ddot{o}d : \mathbb{F} \to \mathbb{N}$, $g\ddot{o}d^{-1} : \mathbb{N} \to \mathbb{F}$ inverting each other.

 $\varphi(\overline{\psi}) \rightsquigarrow \varphi(\overline{\text{god}}(\psi))$ We also assume a Gödel numbering $\text{god}_{\mathcal{L}}$ for lists of formulas; $\varphi(\overline{\ell}) \rightsquigarrow \varphi(\overline{\text{god}_{\mathcal{L}}(\ell)})$

Technical background: External provability is too weak

We obtained Pr(x) such that $PA \vdash \varphi$ iff $PA \vdash Pr(\overline{\varphi})$.

Definition (Mostowski's modification, 1965 (modified slightly))

We set $\Pr'(x) := \Pr(x) \land x \neq \bot$.

Lemma

 $\mathsf{PA} \vdash \varphi \text{ iff } \mathsf{PA} \vdash \mathsf{Pr}'(\overline{\varphi}).$

Proof.

- Suppose that $\mathsf{PA} \vdash \varphi$
 - 1. Observe that $\mathsf{PA} \vdash \mathsf{Pr}(\overline{\varphi})$
 - 2. In the meta-level, we know that PA is consistent, so $\varphi \neq \dot{\perp}$ (and thus $\overline{\varphi} \neq \dot{\perp}$)
 - 3. PA decides equalities: $PA \vdash \overline{\varphi} = \bot$ or $PA \vdash \overline{\varphi} \neq \bot$
 - 4. By soundness and 2., PA $\nvdash \overline{\varphi} = \dot{\perp}$
 - 5. From 1.,3. and 4., conclude $PA \vdash Pr(\overline{\varphi}) \land \overline{\varphi} \neq \overset{\cdot}{\perp}$

Technical background: External provability is too weak

We obtained Pr(x) such that $PA \vdash \varphi$ iff $PA \vdash Pr(\overline{\varphi})$.

Definition (Mostowski's modification, 1965 (modified slightly))

We set $\Pr'(x) := \Pr(x) \land x \neq \bot$.

Lemma

 $\mathsf{PA} \vdash \neg \mathsf{Pr}'(\overline{\bot}).$

Proof.

We argue inside PA.

- After introducing and destructing, have to show PA, $Pr(\overline{\perp}), \overline{\perp} \neq \overline{\perp} \vdash \overline{\perp}$
- By applying the assumption, we are left to show PA, $Pr(\overline{\perp}), \overline{\perp} \neq \overline{\perp} \vdash \overline{\perp} = \overline{\perp}$
- This follows by reflexivity

Technical background: External provability is too weak

Lemma (Weak representability, cf. Hermes & Kirst (2023))

Let $P : \mathbb{N} \to \mathbb{P}$ be enumerable. There is a formula $\varphi(x)$ such that for all $n : \mathbb{N}$ $P \ n \ iff \ \mathsf{PA} \vdash \varphi(\overline{n}).$

Recap

- We proved Pr'(x) weakly represents $\lambda \varphi$. PA $\vdash \varphi$
- We showed $\mathsf{PA} \vdash \neg \mathsf{Pr}'(\overline{\bot})$

We can show: If Pr'(x) was internal, then $PA \nvDash \neg Pr'(\overline{\bot})$, for instance via Gödel's second incompleteness theorem.

Takeaway

Weak representability does not suffice to define internal provability predicates.

Technical background: CT_{PA} is too weak

Axiom (CT_{PA})

For every $f : \mathbb{N} \to \mathbb{N}$, there is a formula $\varphi(x, y)$ such that for all $n : \mathbb{N}$ $\mathsf{PA} \vdash \dot{\forall} y . \varphi(\overline{n}, y) \leftrightarrow y = \overline{f n}.$

Example

Suppose the successor function $S : \mathbb{N} \to \mathbb{N}$ is represented by $\varphi_S(x, y)$. **Question:** Can we derive, for all $n : \mathbb{N}$, that $PA \vdash \varphi_S(\overline{n}, S\overline{n})$?

- Use property of φ_{s} : PA $\vdash S \overline{n} = \overline{Sn}$
- By definition of numerals, $PA \vdash S \overline{n} = S \overline{n}$, easy to finish

Question: Can we derive $PA \vdash \forall x. \varphi_{S}(x, Sx)$?

• Introduce x: $PA \vdash \varphi_{S}(x, Sx)$. No way to continue as x not a numeral

Yes!

No!

Technical background: CT_{PA} is too weak

Axiom (CT_{PA})

For every $f : \mathbb{N} \to \mathbb{N}$, there is a formula $\varphi(x, y)$ such that for all $n : \mathbb{N}$ $\mathsf{PA} \vdash \dot{\forall} y . \varphi(\overline{n}, y) \leftrightarrow y = \overline{f n}.$

- Suppose we define Prf(x, y) using formulas resulting from CT_{PA} , s.t. e.g. $\varphi(x, z)$ appears in Prf(x, y)
- We have to show $\mathsf{PA} \vdash (\dot{\exists} x. \mathsf{Prf}(x, \overline{\varphi \rightarrow \psi})) \rightarrow (\dot{\exists} x'. \mathsf{Prf}(x', \overline{\varphi})) \rightarrow \dot{\exists} x''. \mathsf{Prf}(x'', \overline{\psi})$
- After introducing, we know $\varphi(x, z)$ and $\varphi(x', z')$ for some terms z, z'
- x, x' not necessarily numerals: Defining property from CT_{PA} not applicable

Formal proofs: Spelling out (some of) the details

Reminder (Formal proofs)

A proof of φ is a nonempty list $\ell = [\psi_1, \dots, \psi_n] : \mathcal{L}(\mathbb{F})$ with $\varphi = \psi_n$ s.t. for each *i*

- ψ_i is an axiom of PA or
- there are j, j' < i such that ψ_i follows from $\psi_i, \psi_{i'}$ by modus ponens.

Definition (Provability predicate)

Let Ax(x) be a formula capturing axioms of PA (details to be investigated).

$$Prf(x, y) := (\exists z. |x| = Sz \land x[z] = y) \land \forall i. i < |x| \rightarrow WellFormed(x, i)$$
$$VellFormed(x, i) := Ax(x) \lor \exists j j'. j < i \land j' < i \land x[j] = x[j'] \xrightarrow{\sim} x[i]$$

Technical background: Provability on open formulas

Problem

- Let φ be a formula with free variables x_1, \ldots, x_n , i.e. $\varphi = \varphi(x_1, \ldots, x_n)$
- $Pr(\overline{\varphi(x_1,\ldots,x_n)})$ is closed. x_1,\ldots,x_n are hard-coded in encoding
- We want to obtain $Pr(\overline{\varphi(\overline{42}, \ldots, \overline{42})})$ from $Pr(\overline{\varphi(x_1, \ldots, x_n)})$ by substitution

First attempt to circumvent this issue, cf. [Rau10]

• It is possible to define an *n*-place function sb_n in PA satisfying PA $\vdash sb_n(\overline{\varphi(x_1, \dots, x_n)}, t_1, \dots, t_n) = \overline{\varphi(t_1, \dots, t_n)}$

for any *n*-bounded formula φ and terms t_1, \ldots, t_n .

- Then, $\Pr_n(x, y_1, \ldots, y_n) := \Pr(\operatorname{sb}_n(x, y_1, \ldots, y_n))$ has desired property
- Not satisfactory due to dependency on *n*

Paulson formalised yet another approach in the Isabelle proof assistant.