The Undecidability of Contextual Equivalence of PCF₂ – Towards a Mechanisation in Coq

Final Bachelor talks

Fabian Brenner Advisors: Yannick Forster, Dominik Kirst Supervisor: Prof. Gert Smolka

August 23, 2024

Programming Systems Lab Saarland University

Programming Computable Functions and full abstraction

▶ Programming Computable Functions (PCF): simply typed λ -calculus with \mathbb{N} and recursion

Full abstraction problem for PCF

Is there a fully abstract model of PCF that is "concrete and independent of syntax"?

- Such a model would permit to decide contextual equivalence of finitary fragments of PCF.
- Is contextual equivalence of finitary fragments of PCF decidable? (Jung, Stoughton, 1993)

Theorem (Loader, 2000)

Contextual equivalence of PCF₂ is undecidable.

- Negative answer to full abstraction problem
- ► Surprising result: In related calculi, contextual equivalence decidable
- Proof well-known to be difficult and intransparent: "the proof is long and technical, and consists of intricate syntactic arguments" (Longley, Normann, 2015)

Synthetic Undecidability in Coq

- ▶ Introduced by Forster, Kirst, and Smolka in 2019
- Undecidability defined relative to Halting problem for Turing machines

Lemma

- ► Halting problem for Turing machines is undecidable
- ▶ If $P \leq_m Q$ and P is undecidable, Q is undecidable

Definition (Many-one reductions)

For predicates $P \colon X \to \mathbb{P}, \ Q \colon Y \to \mathbb{P}$:

- $P \leq_m Q$ iff $\exists f \colon X \to Y$. $\forall x. P \ x \ \leftrightarrow \ Q \ (f \ x) \ \land \ f$ is computable
 - Independent of concrete model of computation
- ▶ Our work is based on Coq Library of Undecidability Proofs (Forster et al., 2020)

PCF₂ and contextual equivalence

 $\begin{array}{l} \hline \textbf{Definition (PCF_2)} \\ \hline \\ \underline{\textbf{Extension of simply typed λ-calculus}} \\ T_1, T_2: ty ::= \mathbb{B} \mid T_1 \rightarrow T_2 \\ s, t, u: tm ::= \lambda x.s \mid s \ t \mid x \mid \text{if s then t else $u \mid true \mid false \mid \bot} \\ \hline \\ \underline{\textbf{Operational semantics}} \\ \text{if true then t else $u \quad \succ \quad t \mid} \\ \hline \\ \text{if \bot then t else $u \quad \succ \quad \bot \mid} \\ \hline \end{array}$

Definition (Contextual equivalence)

Two terms $\Gamma \vdash s, t \colon A$ are **contextually equivalent** $(\Gamma \vdash s \equiv_c t \colon A)$ iff for all contexts $C \colon (\Gamma, A) \rightsquigarrow (\emptyset, \mathbb{B})$ and values v, we have that $C[s] \Downarrow v \longleftrightarrow C[t] \Downarrow v$

Observational preorder

Observational preorder

► For closed boolean terms, \leq_b is defined by $s \leq_b t := s \Downarrow \bot \lor (\exists v. v \in [true, false, \bot] \land s \Downarrow v \land t \Downarrow v).$

Inductively lifted to arbitrary closed well-typed terms:

$$s \leq_c t : \mathbb{B} := s \leq_b t$$

$$s \leq_c t : A \to B := \text{ for all } a, b \text{ with } \emptyset \vdash a : A, \ \emptyset \vdash b : A \text{ and } a \leq_c b : A,$$

it holds that $s \ a \leq_c t \ b : B.$

Lifted to arbitrarily typed terms:

 $\Gamma \vdash s \leq_o t: A := \Gamma \vdash s, t: A \text{ and for all substitutions } \sigma \text{ of closed terms for}$

free variables in s, t, it holds that $s[\sigma] \leq_c t[\sigma]$: A

Definition (Observational Equivalence)

```
\Gamma \vdash s \equiv_o t \colon A := \Gamma \vdash s \leq_o t \colon A \land \Gamma \vdash t \leq_o s \colon A
```

Agrees with contextual equivalence

Proof involves two unmechanised result about PCF₂:

Lemma

- ► Church-Rosser property holds for PCF₂
- Boolean normal forms are computable for PCF₂

Proof of Loader's theorem

Theorem (Loader 2000)

Contextual equivalence (CE) of PCF₂ is undecidable.

$$\mathsf{CE}(s,t,A) := \emptyset \vdash s \equiv_c t : A$$

SR: String rewriting

$$\overline{\mathsf{SR}} \leq_m \overline{\mathsf{SATIS}} \leq_m \overline{\mathsf{PS}} \leq_m \overline{\mathsf{RPS}} \leq_m \mathsf{CE}$$

Actual reductions proven:

$$SR \leq_m SATIS \leq_m PS \leq_m RPS$$
 $\overline{RPS} \leq_m CE$

► Main difficulty lies in first reduction

String Rewriting (SR)

- Decision problem going back to Thue
- Mechanised in Coq by Forster, Heiter, and Smolka
- Finite alphabet of symbols Σ , finitely many rewriting rules $R: \mathcal{L}(\mathcal{L}(\Sigma) \times \mathcal{L}(\Sigma))$

 $\frac{(e, f) \in R}{d_1 e d_2 \Rightarrow_R d_1 f d_2}, \qquad \frac{a \Rightarrow_R^* b \ b \Rightarrow_R c}{a \Rightarrow_R^* a}, \qquad \frac{a \Rightarrow_R^* b \ b \Rightarrow_R c}{a \Rightarrow_R^* c}.$

Reachability problem: $SR_R(a: \mathcal{L}(\Sigma), b: \mathcal{L}(\Sigma)) := a \Rightarrow_R^* b$

Lemma (Davis)

There exist rewriting rules R such that the following problem is undecidable:

$$SR(a: \mathcal{L}(\mathcal{B}), b: \mathcal{L}(\mathcal{B})) := SR_R(a, b).$$

Encoding of words

$$T(a) := \underbrace{\mathbb{B} \to \cdots \to \mathbb{B}}_{2|a|+2} \to \mathbb{B}$$

Definition (Word encoding)

Let $v \in [\text{true}, \text{false}]$. *Enc*: $\mathcal{L}(\mathcal{B}) \to \text{tm}$ is a *v*-encoding iff for all words *a*, it holds that $\emptyset \vdash Enc(a)$: $\mathcal{T}(a)$ and Enc(a) only returns \bot or *v*.

Example

• Const_v(a)
$$s_1 \dots s_{2|a|}$$
 i $j = v$

• Let
$$a = a_1 \dots a_n$$
.
 $\operatorname{Word}_{v}(a) \ s_1 \ s'_1 \dots s_{|a|} \ s'_{2|a|} \ i \ j = \begin{cases} v & \forall k. \ s_k \Downarrow a_k \land s'_k \Downarrow a_k \\ \bot & \text{otherwise} \end{cases}$

Term F encodes rule (e, f) with respect to v-encoding Enc:

 $\blacktriangleright \emptyset \vdash F : T(e) \to T(f)$

► For all words d₁, d₂, F simulates behavior of Enc(d₁fd₂) with only knowing arguments representing f and behaviour of Enc(d₁ed₂)

Example

For the rule (e, f) and the Word_v encoding, we have $F g s_1 s'_1 \dots s_{|f|} s'_{2|f|} i j = \begin{cases} v \quad \forall k. \ s_k \Downarrow f_k \land s'_k \Downarrow f_k \land g \ e_1 e_1 \dots e_{|e|} e_{|e|} \bot \bot \Downarrow v \\ \bot \quad \text{otherwise} \end{cases}$

Equivalence between SR and SATIS

Recap (SR)

$$\mathsf{SR}(a,b) := a \Rightarrow^*_R b$$

 \blacktriangleright Choose ${\mathcal E}$ as set of Loader's 32 mostly technical word enodings.

Definition (SATIS)

$$\begin{aligned} \mathsf{SATIS}(a,b) &:= \exists t. \ w_0, r_1, \dots, r_{|R|}, x_1, \dots, x_{2|b|+2} \vdash t \colon \mathbb{B} \quad \land \\ \forall \mathsf{Enc} \in \mathcal{E}. \ t \text{ satisfies } b \text{ w.r.t. } \mathsf{Enc. } a, \text{ and } R \end{aligned}$$

Theorem (Equivalence between SR and SATIS)

 $\forall a \ b. \ \mathsf{SR}(a, b) \leftrightarrow \ \mathsf{SATIS}(a, b)$

▶ Induces a reduction SR \leq_m SATIS

Satisfiability of words

Recap (SATIS)

$$\begin{aligned} \mathsf{SATIS}(a,b) &:= \exists t. \ w_0, r_1, \dots, r_{|R|}, x_1, \dots, x_{2|b|+2} \vdash t \colon \mathbb{B} \quad \land \\ \forall \textit{Enc} \in \mathcal{E}. \ t \text{ satisfies } b \text{ w.r.t. } \textit{Enc}, \ a, \text{ and } R \end{aligned}$$

Let
$$R = [(e_1, f_1), \dots, (e_N, f_N)].$$

Definition (Satisfies)

It is said t satisfies b with respect to Enc, a, and R iff t is a normal term with $w_0: T(a), r_k: T(e_k) \rightarrow T(f_k), x_l: \mathbb{B} \vdash t: \mathbb{B}$ such that

$$x_1, \ldots, x_{2|b|+2} \vdash t[Enc(a), F_1, \ldots, F_N, x_1, \ldots, x_{2|b|+2}] \ge_o Enc(b) x_1 \ldots x_{2|b|+2} \colon \mathbb{B}$$

where F_k is any rule encoding of (e_k, f_k) .

Theorem (Forward direction)

If SR(a, b), then SATIS(a, b).

- Around half a page in Loader's paper
- Construct t by induction on derivation of b
- \blacktriangleright No properties of ${\mathcal E}$ needed, any set of encodings would work

Theorem (Backward direction)

If SATIS(a, b), then SR(a, b).

- ► Around 13 pages in Loader's paper
- A priori, one does not know which form t has
- If t is in the form of terms constructed in the forward direction, proof is fairly straightforward
- Intricate technical arguments necessary to manipulate the structure of t (5 structural simplifications)
- \blacktriangleright Makes use of specifc enodings in ${\cal E}$

$\overline{\mathsf{SR}} \leq_m \overline{\mathsf{SATIS}} \leq_m \overline{\mathsf{PS}} \leq_m \overline{\mathsf{RPS}} \leq_m \mathsf{CE}$

- Turned Loader's proof into a reduction chain
- ▶ Mechanised PCF₂ as well as observational and contextual equivalence in Coq
- Mechanised all but first reduction in Coq
- Presented remaining reduction on paper, with several nontrivial details Loader left out, serving as basis for future mechanisations
- Provided insightful examples and technical observations

Remark: Attempted to mechanise forward direction of equivalence between SR and SATIS in Coq (unfinished due to lack of time)

Fill gaps in mechanisation:

- Show remaining results about PCF₂ (Church-Rosser property, computability of boolean normal forms)
- Show existence of rule encodings
- Complete mechanisation of equivalence between SR and SATIS

Connect this work to Coq Library of Undecidability Proofs: Mechanise undecidability of SR for some fixed rewriting rules

References i

Coq Mechanisation

- ▶ Preliminaries: \sim 150 loc
- ▶ Results about PCF_2 : ~ 700 loc
- Observational and contextual equivalence: \sim 700 loc
- \blacktriangleright Definition of decision problems: \sim 100 loc
- \blacktriangleright Undecidability result: \sim 50 loc

 $SR \leq_m SATIS \leq_m RPS \leq_m RPS \leq_m CE$

- Orange reduction: \sim 700 loc
- ▶ Blue reduction: \sim 100 loc
- Green reduction: \sim 200 loc

Overall: \sim 500 loc specification, \sim 2200 loc proofs (Unfinished forward direction of remaing reduction: additional \sim 300 loc)

Encoding of rules

Definition (Rule encoding)

Term F encodes rule (e, f) w.r.t. Enc iff $\emptyset \vdash F : T(e) \rightarrow T(f)$, it is \leq_o -minimal s.t. for all $a = d_1ed_2$, and $b = d_1fd_2$, it holds that

$$\Gamma \vdash F(\lambda y_1 \dots y_{2|e|} i \ j.Enc(a) \ x_1 \dots x_{2|d_1|} y_1 \dots y_{2|e|} z_1 \dots z_{2|d_2|} i \ j) y'_1 \dots y'_{2|f|} i' \ j'$$

$$\geq_o \ Enc(b) x_1 \dots x_{2|d_1|} y'_1 \dots y'_{2|f|} z_1 \dots z_{2|d_2|} i' \ j'$$

with
$$\Gamma \ := \ x_1, \ldots, x_{2|d_1}, \ y_1', \ldots, y_{2|f|}', \ z_1, \ldots, z_{2|d_2|}, \ i', \ j'$$

F simulates behavior of Enc(b) with less information provided by arguments

Example

For the rule (e, f) and the Word_v encoding, we have $F g s_1 s'_1 \dots s_{|f|} s'_{2|f|} i j = \begin{cases} v \quad \forall k. \ s_k \Downarrow f_k \land s'_k \Downarrow f_k \land g \ e_1 e_1 \dots e_{|e|} e_{|e|} \bot \bot \Downarrow v \\ \bot \quad \text{otherwise} \end{cases}$