
The undecidability of finitary PCF in Coq
First Bachelor seminar talk

Fabian Brenner
Advisors: Yannick Forster, Dominik Kirst
Supervisor: Prof. Gert Smolka
April 30, 2024

Programming Systems Lab
Saarland University

Programming Computable Functions (PCF)

Definition
Extension of simply typed λ-calculus

T1, T2 := Nat | T1 → T2

s, t, u := λx . s | s t | x | 0 | succ | match s with (0⇒ t) (succ n⇒ u) | fix f . s
Operational semantics

match 0 with (0⇒ t) (succ n⇒ u)→ t | . . .

Observation: If ⊥ diverges, match ⊥ with (0⇒ t) (succ n⇒ u) diverges.

▶ Introduced by Plotkin [1977] based on unpublished material of Scott [1993]
▶ Essential in the development of denotational semantics and domain theory
▶ Multiple models for PCF developed, none completely satisfactory

1

A long-standing open problem

Problem (Full abstraction problem of PCF)
Is there a fully abstract model of PCF that is concrete and independent of syntax?

Minimal requirement for such a model: For PCF2, presentation should only require
computable operations on finitely represented objects belonging to a decidable set
Definition (PCF2)

Extension of simply typed λ-calculus
T1, T2 := Nat Bool | T1 → T2

s, t, u := λx . s | s t | x | true | false | fix f . s ⊥
| match s with (true⇒ t) (false⇒ u)

Operational semantics
match true with (true⇒ t) (false⇒ u)→ t,

match ⊥ with (true⇒ t) (false⇒ u)→ ⊥ | . . .
2

Solution of the problem

Theorem (Loader 2000)
No fully abstract model of PCF fulfilling the minimal criterion exists.

Recap (Minimal criterion)
For PCF2, presentation should only require computable operations on finitely
represented objects belonging to a decidable set.

Definition
A model of a PCF is called fully abstract iff: Terms s, t have same representation in
model iff they are contextually equivalent

3

Contextual equivalence

Theorem (Loader 2000)
Contextual equivalence of PCF2 is undecidable.

Recap (PCF2)
Extension of simply typed λ-calculus

s, t, u := λx . s | s t | x | true | false | ⊥ | match s with (true⇒ t) (false⇒ u)
T1, T2 := Bool | T1 → T2

Definition
Two terms Γ ⊢ s, t : A are contextually equivalent:
∀Cv . C : (Γ, A)⇝ (∅, Bool) −→ C [s] ⇓ v ←→ C [t] ⇓ v

4

Proof of Loader’s theorem

Theorem (Loader 2000)
Contextual equivalence of PCF2 is undecidable.

≤m : many-one reducible
SR: Word problem for string rewriting systems
CE: Contextual equivalence on PCF2

SR ≤m CIE-SYS ≤m CE-SYS ≤m CE

▶ ”the proof is long and technical, and consists of intricate syntactic arguments”
[Higher-Order Computability: Longley, Normann]

5

Surprising result

▶ PCF2 is strongly normalizing
▶ Related problems are decidable:

• Contextual equivalence in PCF1 [Loader 1998, Schmidt-Schauß 1999]
• Contextual equivalence of the simply typed λ-calculus with finite types [Ghani 1995,

Scherer 2016]

6

Decidability for PCF1

Definition (PCF1)
Extension of simply typed λ-calculus

T1, T2 := Unit | T1 → T2

s, t, u := λx . s | s t | x | () | ⊥ | match s with ()⇒ t
Operational semantics

(match () with ()⇒ t)→ t, (match ⊥ with ()⇒ t)→ ⊥

Theorem (Loader 1998, Schmidt-Schauß 1999)
Contextual equivalence of PCF1 is decidable.

▶ For each type T, a finite set of closed expressions representing all equivalence
classes of closed expressions is computable does not work for PCF2

7

Decidability of STLC with finite types

Theorem (Ghani 1995, Scherer 2016)
Contextual equivalence of the simply typed λ-calculus with finite types is decidable.

Definition
βη-equivalence is the equivalence closure of β- and η-conversions

Proof sketch

1. βη-equivalence is decidable (since system is strongly normalizing!)
2. βη-equivalence coincides with contextual equivalence

8

Course of action

▶ Formalisation Loader’s result in Coq
▶ Synthetic computability: In Coq definable the same as computable
▶ No need to define notion of computability, use definability in Coq
▶ Use Autosubst 2 and de Bruijn terms to automate substitutions
▶ Contribute to Coq Library of Undecidability Proofs

9

Current state and outlook

Reduction chain in Loader’s proof:

SR ≤m CIE-SYS ≤m CE-SYS ≤m CE

SR: Word problem for string rewriting systems
CE: Deciding contextual equivalence on PCF2

So far:

▶ Formalised PCF2 in Coq
▶ Understood blue and green reductions and formalised green reduction in Coq
▶ Formalisation of contextual equivalence in Coq

To do:

▶ Formalise blue reduction in Coq
▶ Deepen understanding of red reduction
▶ Formalise red reduction in Coq 10

Goals and key take-aways

Recap of Loader’s result

▶ Solved important problem
▶ Technical and intricate proof
▶ Surprising result

Goals of this project

▶ Formalisation of Loader’s result in Coq
▶ Clarification of reduction from string rewriting
▶ Not a formalisation of consequences or related results

11

References 1

▶ [Plotkin 1977] G.D. Plotkin, LCF considered as a programming language,
Theoretical Computer Science, Volume 5, Issue 3, 1977, Pages 223-255, ISSN
0304-3975, https://doi.org/10.1016/0304-3975(77)90044-5.

▶ [Scott 1993] Dana S. Scott, A type-theoretical alternative to ISWIM, CUCH,
OWHY, Theoretical Computer Science, Volume 121, Issues 1–2, 1993, Pages
411-440, ISSN 0304-3975, https://doi.org/10.1016/0304-3975(93)90095-B.

▶ [Higher-Order Computability: Longley, Normann] John Longlay, Dag Normann,
Higher-Order-Computability, Chapter 7, Theorem 7.5.22, 2015, Page 342, ISSN
2190-619X

12

References 2

▶ [Loader 2000] Ralph Loader, Finitary PCF is not decidable, Theoretical Computer
Science, Volume 266, Issues 1–2, 2001, Pages 341-364, ISSN 0304-3975,
https://doi.org/10.1016/S0304-3975(00)00194-8.

▶ [Loader 1998] Ralph Loader, Unary PCF is decidable, Theoretical Computer
Science, Volume 206, Issues 1–2, 1998, Pages 317-329, ISSN 0304-3975,
https://doi.org/10.1016/S0304-3975(98)00048-6.

▶ [CLUB] Coq Library of Undecidability Proofs,
https://github.com/uds-psl/coq-library-undecidability

13

References 3

▶ [Schmidt-Schauß 1999] Manfred Schmidt-Schauß, Decidability of behavioural
equivalence in unary PCF, Theoretical Computer Science, Volume 216, Issues 1–2,
1999, Pages 363-373, ISSN 0304-3975,
https://doi.org/10.1016/S0304-3975(98)00024-3.

▶ [Ghani 1995] Neil Ghani, Beta-Eta Equality for Coproducts, TLCA, 1995.
▶ [Scherer 2017] Gabriel Scherer, Deciding equivalence with sums and the empty

type, POPL ’17, 2017, Pages 374-386, ISSN 0362-1340,
https://doi.org/10.1145/3009837.3009901.

14

Counterexample

tb := λf . match (f⊥) with (true⇒ f b) (false⇒ f b) for b ∈ {true, false}

▶ In PCF2, tb either returns ⊥ or f is constant
⇒ Contextually equivalent in PCF2

▶ Not ηβ-equivalent
▶ Canonical translation to STLC with finite typed can get an f as input that is not

constant but returns true or false on input ⊥
⇒ Translation not contextually equivalent in STLC with finite types

15

Reduction to STLC with finite types

Recap (Ghani 1995, Scherer 2016)
Contextual equivalence of the simply typed λ-calculus with finite types is decidable.

Idea: Many-one reduction to contextual equivalence in this system

▶ Embed PCF2 into STLC with finite types: model bool as sum type with three
elements, etc.

▶ match in PCF2 only permits returning ⊥ if input is ⊥, match in STLC has no
such restriction

▶ Counterexample for correctness can be constructed

16

Decidability problems in Loader’s proof

Definition
≲ : Loader’s contextual pre-order, ≃ : contextual equivalence.

▶ CE: Given PCF terms s, t, decide if they are contextually equivalent.
▶ CE-SYS: Given finitely many pairs of PCF terms si : B and bi ∈ true, false, decide

if each si ≃ bi .
▶ CIE-SYS: Given finitely many pairs of PCF terms si , ti : B, decide if each si ≲ ti .
▶ SR: Given string rewriting system (Σ, R) and two words W0, W over Σ, decide if

W is derivable from W0 using the rules R.

17

