The undecidability of finitary PCF in Coq

First Bachelor seminar talk

Fabian Brenner Advisors: Yannick Forster, Dominik Kirst Supervisor: Prof. Gert Smolka April 30, 2024

Programming Systems Lab Saarland University

Programming Computable Functions (PCF)

DefinitionExtension of simply typed λ -calculus $T_1, T_2 := Nat \mid T_1 \rightarrow T_2$ $s, t, u := \lambda x. \ s \mid s \ t \mid x \mid 0 \mid succ \mid match \ s \ with \ (0 \Rightarrow t) \ (succ \ n \Rightarrow u) \mid fix \ f. \ s$ Operational semantics
match 0 with $(0 \Rightarrow t) \ (succ \ n \Rightarrow u) \rightarrow t \mid \ldots$

Observation: If \perp diverges, match \perp with $(0 \Rightarrow t)$ (succ $n \Rightarrow u$) diverges.

- ▶ Introduced by Plotkin [1977] based on unpublished material of Scott [1993]
- Essential in the development of denotational semantics and domain theory
- Multiple models for PCF developed, none completely satisfactory

Problem (Full abstraction problem of PCF)

Is there a fully abstract model of PCF that is concrete and independent of syntax?

Minimal requirement for such a model: For PCF_2 , presentation should only require computable operations on finitely represented objects belonging to a decidable set

Definition (PCF₂)

Extension of simply typed λ -calculus

$$T_1, T_2 :=$$
Nat Bool $| T_1 \rightarrow T_2$

 $s, t, u := \lambda x. \ s \mid s \mid t \mid x \mid true \mid false \mid fix f. \ s \perp$

 $| ext{ match } s ext{ with } (ext{true} \Rightarrow t) ext{ (false } \Rightarrow u)$

Operational semantics

match true with (true \Rightarrow t) (false \Rightarrow u) \rightarrow t, match \perp with (true \Rightarrow t) (false \Rightarrow u) \rightarrow \perp | ...

Theorem (Loader 2000)

No fully abstract model of PCF fulfilling the minimal criterion exists.

Recap (Minimal criterion)

For PCF_2 , presentation should only require computable operations on finitely represented objects belonging to a decidable set.

Definition

A model of a PCF is called **fully abstract** iff: Terms s, t have same representation in model iff they are contextually equivalent

Theorem (Loader 2000)

Contextual equivalence of PCF₂ is undecidable.

$\begin{array}{l} \textbf{Recap (PCF_2)} \\ & \underbrace{\text{Extension of simply typed } \lambda\text{-calculus}}_{s, t, u := \lambda x. \ s \ | \ s \ t \ | \ x \ | \ true \ | \ false \ | \ \bot \ | \ match \ s \ with \ (true \Rightarrow t) \ (false \Rightarrow u) \\ T_1, T_2 := \text{Bool} \ | \ T_1 \rightarrow T_2 \end{array}$

Definition

Two terms $\Gamma \vdash s, t \colon A$ are **contextually equivalent**: $\forall Cv, C \colon (\Gamma, A) \rightsquigarrow (\emptyset, \text{Bool}) \longrightarrow C[s] \Downarrow v \longleftrightarrow C[t] \Downarrow v$

Proof of Loader's theorem

Theorem (Loader 2000)

Contextual equivalence of PCF₂ is undecidable.

- \leq_m : many-one reducible
- SR: Word problem for string rewriting systems
- CE: Contextual equivalence on PCF₂

$\mathsf{SR} \leq_m \mathsf{CIE}\operatorname{-}\mathsf{SYS} \leq_m \mathsf{CE}\operatorname{-}\mathsf{SYS} \leq_m \mathsf{CE}$

 "the proof is long and technical, and consists of intricate syntactic arguments" [Higher-Order Computability: Longley, Normann]

- ▶ PCF₂ is strongly normalizing
- Related problems are decidable:
 - Contextual equivalence in PCF₁ [Loader 1998, Schmidt-Schauß 1999]
 - Contextual equivalence of the simply typed $\lambda\text{-calculus}$ with finite types [Ghani 1995, Scherer 2016]

Decidability for PCF₁

Definition (PCF₁)

Extension of simply typed λ -calculus

 $T_1, T_2 := \texttt{Unit} | T_1 \rightarrow T_2$

 $s, t, u := \lambda x. \ s \ | \ s \ t \ | \ x \mid () \mid \perp \mid \texttt{match } s \texttt{ with } () \Rightarrow t$

Operational semantics

 $(\texttt{match}\;()\;\texttt{with}\;()\Rightarrow t)\rightarrow t,\;(\texttt{match}\;\bot\;\texttt{with}\;()\Rightarrow t)\rightarrow\bot$

Theorem (Loader 1998, Schmidt-Schauß 1999)

Contextual equivalence of PCF_1 is decidable.

For each type T, a finite set of closed expressions representing all equivalence classes of closed expressions is computable does not work for PCF₂

Theorem (Ghani 1995, Scherer 2016)

Contextual equivalence of the simply typed λ -calculus with finite types is decidable.

Definition

 $\beta\eta$ -equivalence is the equivalence closure of β - and η -conversions

Proof sketch

- 1. $\beta\eta$ -equivalence is decidable (since system is strongly normalizing!)
- 2. $\beta\eta$ -equivalence coincides with contextual equivalence

- ► Formalisation Loader's result in Coq
- ► Synthetic computability: In Coq definable the same as computable
- ▶ No need to define notion of computability, use definability in Coq
- ▶ Use Autosubst 2 and de Bruijn terms to automate substitutions
- Contribute to Coq Library of Undecidability Proofs

Reduction chain in Loader's proof:

$SR \leq_m CIE-SYS \leq_m CE-SYS \leq_m CE$

SR: Word problem for string rewriting systemsCE: Deciding contextual equivalence on PCF₂So far:

- ► Formalised PCF₂ in Coq
- Understood blue and green reductions and formalised green reduction in Coq
- Formalisation of contextual equivalence in Coq

To do:

- Formalise blue reduction in Coq
- Deepen understanding of red reduction
- Formalise red reduction in Coq

Recap of Loader's result

- ► Solved important problem
- ► Technical and intricate proof
- Surprising result

Goals of this project

- Formalisation of Loader's result in Coq
- Clarification of reduction from string rewriting
- Not a formalisation of consequences or related results

- [Plotkin 1977] G.D. Plotkin, LCF considered as a programming language, Theoretical Computer Science, Volume 5, Issue 3, 1977, Pages 223-255, ISSN 0304-3975, https://doi.org/10.1016/0304-3975(77)90044-5.
- [Scott 1993] Dana S. Scott, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer Science, Volume 121, Issues 1–2, 1993, Pages 411-440, ISSN 0304-3975, https://doi.org/10.1016/0304-3975(93)90095-B.
- [Higher-Order Computability: Longley, Normann] John Longlay, Dag Normann, Higher-Order-Computability, Chapter 7, Theorem 7.5.22, 2015, Page 342, ISSN 2190-619X

- [Loader 2000] Ralph Loader, Finitary PCF is not decidable, Theoretical Computer Science, Volume 266, Issues 1–2, 2001, Pages 341-364, ISSN 0304-3975, https://doi.org/10.1016/S0304-3975(00)00194-8.
- ► [Loader 1998] Ralph Loader, Unary PCF is decidable, Theoretical Computer Science, Volume 206, Issues 1–2, 1998, Pages 317-329, ISSN 0304-3975, https://doi.org/10.1016/S0304-3975(98)00048-6.
- [CLUB] Coq Library of Undecidability Proofs, https://github.com/uds-psl/coq-library-undecidability

- [Schmidt-Schauß 1999] Manfred Schmidt-Schauß, Decidability of behavioural equivalence in unary PCF, Theoretical Computer Science, Volume 216, Issues 1–2, 1999, Pages 363-373, ISSN 0304-3975, https://doi.org/10.1016/S0304-3975(98)00024-3.
- ▶ [Ghani 1995] Neil Ghani, Beta-Eta Equality for Coproducts, TLCA, 1995.
- [Scherer 2017] Gabriel Scherer, Deciding equivalence with sums and the empty type, POPL '17, 2017, Pages 374-386, ISSN 0362-1340, https://doi.org/10.1145/3009837.3009901.

 $t_b := \lambda f. ext{ match } (f \bot) ext{ with } (ext{true} \Rightarrow f \ b) ext{ (false } \Rightarrow f \ b) ext{ for } b \in \{ ext{true}, ext{false}\}$

- ▶ In PCF₂, t_b either returns \perp or f is constant
- \Rightarrow Contextually equivalent in PCF_2
- ► Not $\eta\beta$ -equivalent
- Canonical translation to STLC with finite typed can get an *f* as input that is not constant but returns true or false on input ⊥
- \Rightarrow Translation not contextually equivalent in STLC with finite types

Recap (Ghani 1995, Scherer 2016)

Contextual equivalence of the simply typed λ -calculus with finite types is decidable.

Idea: Many-one reduction to contextual equivalence in this system

- Embed PCF₂ into STLC with finite types: model bool as sum type with three elements, etc.
- \blacktriangleright match in PCF2 only permits returning \bot if input is $\bot,$ match in STLC has no such restriction
- ► Counterexample for correctness can be constructed

Definition

- \lesssim : Loader's contextual pre-order, \simeq : contextual equivalence.
- ▶ CE: Given PCF terms *s*, *t*, decide if they are contextually equivalent.
- ► CE-SYS: Given finitely many pairs of PCF terms s_i: B and b_i ∈ true, false, decide if each s_i ≃ b_i.
- ► CIE-SYS: Given finitely many pairs of PCF terms s_i, t_i : \mathcal{B} , decide if each $s_i \leq t_i$.
- SR: Given string rewriting system (Σ, R) and two words W₀, W over Σ, decide if W is derivable from W₀ using the rules R.