The undecidability of PCF₂ in synthetic computability

Second Bachelor seminar talk

Fabian Brenner Advisors: Yannick Forster, Dominik Kirst Supervisor: Prof. Gert Smolka June 6, 2024

Programming Systems Lab Saarland University

A long-standing open problem

Recap: PCF, PCF₂

- \blacktriangleright PCF: simply typed $\lambda\text{-calculus}$ with $\mathbb N$ and recursion
- ▶ PCF₂: simply typed λ -calculus with \mathbb{B} and if

Full abstraction problem of PCF

Is there a fully abstract model of PCF that is concrete and independent of syntax?

Necessary criterion

If a fully abstract model exists, then contextual equivalence of PCF_2 is decidable.

Theorem (Loader 2000)

Contextual equivalence of PCF₂ is undecidable.

PCF₂ and contextual equivalence

$\begin{array}{l} \hline \textbf{Definition (PCF_2)} \\ \hline \textbf{Extension of simply typed λ-calculus} \\ \hline T_1, T_2 := \mathbb{B} \mid T_1 \rightarrow T_2 \\ \hline s, t, u := \lambda x. \ s \mid s \ t \mid x \mid \texttt{true} \mid \texttt{false} \mid \bot \mid \texttt{if } s \texttt{ then } t \texttt{ else } u \\ \hline \textbf{Operational semantics} \\ \hline \texttt{if true then } t \texttt{ else } u \quad \succ \quad t, \\ \hline \texttt{if } \bot \texttt{ then } t \texttt{ else } u \quad \succ \quad \bot \quad \mid \ \dots \end{array}$

Definition (Contextual equivalence)

Two terms $\Gamma \vdash s, t \colon A$ are **contextually equivalent** $\Gamma \vdash s \equiv_c t \colon A$ iff for all contexts $C \colon (\Gamma, A) \rightsquigarrow (\emptyset, \text{Bool})$ and values v we have that $C[s] \Downarrow v \longleftrightarrow C[t] \Downarrow v$

Proof of Loader's theorem

Theorem (Loader 2000)

Contextual equivalence of PCF₂ is undecidable.

 \leq_m : many-one reducible SR: Word problem for string rewriting systems CE: Contextual equivalence on PCF₂

$$\mathsf{SR} \leq_m \mathsf{SATIS} \leq_m \mathsf{CIE}\operatorname{-}\mathsf{SYS} \leq_m \mathsf{CE}\operatorname{-}\mathsf{RES}\operatorname{-}\mathsf{SYS} \leq_m \mathsf{CE}$$

For finite alphabet Σ , finite set of rewriting rules *R*, define:

$$\frac{(C, C') \in R}{D_1 C D_2 \Rightarrow_R D_1 C' D_2} \qquad \frac{X \Rightarrow_R^* Y \quad Y \Rightarrow_R Z}{W \Rightarrow_R^* W}$$

Obervational preorder (on \mathbb{B})

• $s \leq t$ iff $s = \bot$ or s = t for $s, t \in \{\texttt{true}, \texttt{false}\}$

Γ⊢ s ≤ t iff Γ⊢ s, t: B and for all substitutions σ of closed terms for free variables in s, t the normal forms of σ s and σ t are in relation

Encoding of words

$$T \ W := \underbrace{\mathbb{B} \to \cdots \to \mathbb{B}}_{2|W|+2} \to \mathbb{B}$$

Definition (Word encoding)

Let $v \in \{\texttt{true, false}\}$. Enc is a v-encoding iff for all words $W: \emptyset \vdash Enc W: T W$ and Enc W only returns \perp or v.

Example

• Const_v
$$W x_1 \dots x_{2|W|}$$
 i $j = v$

► Let
$$W = w_1 \dots w_n$$
.
Word_v $W x_1 x_2 \dots x_{2|W|-1} x_{2|W|}$ i $j = \begin{cases} v & \forall n. x_{2n-1} = x_{2n} = w_n \\ \bot & \text{otherwise} \end{cases}$

Encoding of rules

Definition (Rule encoding)

F encodes rule (C, C') w.r.t. *Enc* iff $\emptyset \vdash F : T C \rightarrow T C'$, it is \leq -minimal s.t. for all $W = D_1 C D_2$, $W' = D_1 C' D_2$ and $\Gamma := x_n, y'_n, z_n, i', j' : \mathbb{B}$ we have

$$\Gamma \vdash F(\lambda y_1 \dots y_{2|C|} ij. Enc \ W \ x_1 \dots x_{2|D_1|} y_1 \dots y_{2|C|} z_1 \dots z_{2|D_2|} ij) y'_1 \dots y'_{2|C'|} i'j'$$

$$\geq Enc \ W' x_1 \dots x_{2|D_1|} y'_1 \dots y'_{2|C'|} z_1 \dots z_{2|D_2|} i'j'$$

F simulates behavior of Enc W' with less information provided by arguments

Example

For the rule (C, C') and the Word_v encoding, we have $F f y'_1 \dots y'_{2|C'|} i'j' = \begin{cases} v & \forall n \colon y'_{2n-1} = y'_{2n} = c'_n & \land & f c_1 c_1 \dots c_{|C|} c_{|C|} \bot \bot = v \\ \bot & \text{otherwise} \end{cases}$

$$\blacktriangleright \ \mathsf{SR}(R, W_0, W) := W_0 \Rightarrow^*_R W$$

 \blacktriangleright Choose ${\mathcal E}$ as set of Loader's 32 mostly technical word enodings.

► SATIS(
$$R, W_0, W$$
) := $\exists t. w_0, r_1, \dots, r_{|R|}, x_1, \dots, x_{2|W|+2} \vdash t$: $\mathbb{B} \land \forall Enc \in \mathcal{E}. t \text{ satisfies } W \text{ w.r.t. } Enc, W_0, R$

 $SR \leq_m SATIS$

Reduction function is identity function.

Recap (SATIS)

$$\begin{aligned} \mathsf{SATIS}(R, W_0, W) &:= \exists t. \ w_0, r_1, \dots, r_{|R|}, x_1, \dots, x_{2|W|+2} \vdash t \colon \mathbb{B} \land \\ \forall \mathsf{Enc} \in \mathcal{E}. \ t \ \mathsf{satisfies} \ W \ \mathsf{w.r.t.} \ \mathsf{Enc}, W_0, R \end{aligned}$$

We write
$$R = R_1, ..., R_N = (C_1, C'_1), ..., (C_N, C'_N)$$

Definition

We say *t* satisfies *W* with respect to Enc, W_0 , *R* iff

t is a normal term with $w_0: T W_0, r_i: T C_i \rightarrow T C'_i, x_i: \mathbb{B} \vdash t: \mathbb{B}$ such that

 $t[Enc W_0, F_{R_1}, \dots, F_{R_N}, x_1, \dots, x_{2|W|+2}] \ge Enc W x_1 \dots x_{2|W|+2}$

Recap (Satisfiability)

t satisfies *W*: $t[Enc W_0, F_{R_1}, ..., F_{R_N}, x_1, ..., x_{2|W|+2}] \ge Enc W x_1 ... x_{2|W|+2}$

Consider $W_0 = AA$, $A \Rightarrow_{R_1} BB$, $B \Rightarrow_{R_2} A$.

AA: Enc
$$W_0x_1x_2x_3x_4ij \ge Enc W_0x_1x_2x_3x_4ij$$

 \Downarrow_{R_1}

- $ABB: F_{R_1}(\lambda y_1 y_2 i j. Enc \ W_0 x_1 x_2 y_1 y_2 i j) y'_1 y'_2 y'_3 y'_4 i' j' \ge Enc \ ABB \ x_1 x_2 y'_1 y'_2 y'_3 y'_4 i' j' \\ \downarrow_{R_2}$

Theorem (Forward direction)

If $W_0 \Rightarrow^*_R W$, then $SATIS(R, W_0, W)$.

- Construct t by induction on derivation of W as in previous example
- \blacktriangleright No properties of ${\mathcal E}$ needed, any set of encodings would work

Theorem (Backwards direction)

If SATIS (R, W_0, W) , then $W_0 \Rightarrow_R^* W$.

- ▶ A priori, we do not know which form *t* has
- We need to derive a term t' satisfying W of useful form
- Intricate technical arguments necessary
- Makes use of specifc enodings in \mathcal{E}

Reduction chain in Loader's proof

$SR \leq_m SATIS \leq_m CIE-RES-SYS \leq_m CE-SYS \leq_m CE$

- ▶ Formalised PCF₂, observational and contextual equivalence in Coq
- ► Understood orange, blue and green reductions, formalised green reduction in Coq
- Understood forward direction and high-level reasoning in backwards direction of violet reduction
- Formalising forward direction of violet reduction
- Formalise remaining reductions in Coq
- Deepen understanding of syntactical arguments in backwards direction of violet reduction
- ▶ Formalising definitions necessary for backwards direction

Goals and key take-aways

Recap of Loader's result

- Solved important problem
- Technical and intricate proof
- Original paper known to be intransparent, provides no examples and barely any intuition

Goals of this project

- Clarification of reduction from string rewriting
- Formalising parts of a synthetic version of Loader's result and possibly contributing to Coq Library of Undecidable Problems [CLUP]
- Developing presentation of Loader's proof containing insightful examples and providing better intuition than original paper as base for future projects

- [Plotkin 1977] G.D. Plotkin, LCF considered as a programming language, Theoretical Computer Science, Volume 5, Issue 3, 1977, Pages 223-255, ISSN 0304-3975, https://doi.org/10.1016/0304-3975(77)90044-5.
- [Scott 1993] Dana S. Scott, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer Science, Volume 121, Issues 1–2, 1993, Pages 411-440, ISSN 0304-3975, https://doi.org/10.1016/0304-3975(93)90095-B.
- [Higher-Order Computability: Longley, Normann] John Longlay, Dag Normann, Higher-Order-Computability, Chapter 7, Theorem 7.5.22, 2015, Page 342, ISSN 2190-619X

- [Loader 2000] Ralph Loader, Finitary PCF is not decidable, Theoretical Computer Science, Volume 266, Issues 1–2, 2001, Pages 341-364, ISSN 0304-3975, https://doi.org/10.1016/S0304-3975(00)00194-8.
- [CLUP] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith Heiter, Dominik Kirst, et al..

A Coq Library of Undecidable Problems, CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages, Jan 2020, New Orleans, United States. (10.1017/S0960129597002302). (hal-02944217)

Definition

- $\blacktriangleright \ \mathsf{SR}(R, W_0, W) := W_0 \Rightarrow^*_R W$
- ► SATIS(R, W_0, W) := $\exists t. w_0, r_1, \ldots, r_{|R|}, x_1, \ldots, x_{2|W|+2} \vdash t$: $\mathbb{B} \land \forall Enc \in \mathcal{E}. t$ satisfies W w.r.t. Enc, W_0, R
- ▶ CIE-SYS: Contains lists of pairs of PCF terms, such that $s_i, t_i : B$ and $s_i \leq t_i$.
- CE-SYS: Contains lists of pairs of PCF terms, such that $s_i : \mathcal{B}$, $b_i \in \{\texttt{true}, \texttt{false}\}$ and $s_i \simeq b_i$.
- CE: Contains pairs of PCF terms s, t, such that they are contextually equivalent.

Definition (Observational preorder)

- ▶ $s \le t$ iff $s = \bot$ or s = t for $s, t \in \{\texttt{true}, \texttt{false}\}$
- \blacktriangleright $\,\leq$ is extended to closed terms of type $\mathbb B$ by comparing normal forms
- ▶ For $\emptyset \vdash s, t : A \rightarrow B$: $f \leq g$ iff for all closed s, t of type A we have $f \ s \leq g \ t$
- For Γ ⊢ s, t: A: s ≤ t iff this is the case for all substitutions of closed terms for the free variables in s, t

Proof sketch of forward direction

Proof.

Induction on derivation of W.

 $\blacktriangleright W = W_0$

- $t := Enc W_0 w_1 \dots w_{2|W_0|} ij$
- Satisfies W_0 by reflexivity
- Assume $W = D_1 C D_2$ derivable, $D_1 C D_2 \Rightarrow_R D_1 C' D_2$
 - By IH, exists t satisfying W, define t' as:

$$t' := F_{(C,C'),Enc} (\lambda y_1 \dots y_{2|C|} ij.t[x_1, \dots, x_{2|D_1|}, y_1, \dots, y_{2|C|}, z_1, \dots, z_{2|D_2|}, i, j])y'_1 \dots y'_{2|C'|} i'j'$$

- As t satisfies W: $t[x_1, \dots, x_{2|D_1|}, y_1, \dots, y_{2|C|}, z_1, \dots, z_{2|D_2|}, i, j] \ge$ Enc W $x_1 \dots x_{2|D_1|} y_1 \dots y_{2|C|} z_1 \dots z_{2|D_2|} ij$
- Claim follows now by definition of rule encodings

Lemma

If t satisfies W, then there exists t' with all the following reductions applied satisfying W.

- ► Spine reduction
- ► Rib reduction
- Chain reduction

Assume that t satisfies word with all the previous reductions applied.

- t has either the form Enc W₀ a₁...a_{2|W₀|}ij or F_(C,C')(λy₁...y_{2|C|}ij.s)a₁...a₂|C'|i'j' (because of the reductions and technical lemmas)
- ► $t = Enc W_0 a_1 \dots a_{2|W_0|} ij$: Implies that $W = W_0$ (clearly derivable)
- ► $t = F_{(C,C')}(\lambda y_1 \dots y_{2|C|} ij.s) a_1 \dots a_{2|C'|} i'j'$ we can deduce that rule (C, C') has been applied and s satisfies $W = D_1 C D_2$, then claim follows by IH

Definition (Spinal sub-terms)

- ▶ *s* is spinal sub-term of itself
- Spinal sub-terms of s are also spinal sub-terms of $R_i(\lambda \bar{y}.s)\bar{a}$

Definition

- The **coccyx** is the unique spinal sub-term not of the form $R_i(\lambda \bar{y}.s)\bar{a}$
- A term has reduced spine if its coccyx has form $W_0\bar{a}$

Let t have reduced spine.

Definition (Rib sub-terms)

• If $t = W_0 a_1 \dots a_k$, its rib sub-terms are $\{a_1, \dots, a_k\}$

• If $t = R_i (\lambda \bar{y} \cdot s) a_1 \dots a_k$, then the set of its rib sub-terms is then union of $\{a_1, \dots, a_k\}$ with the set of rib sub-terms of s

Definition (Reduced ribs)

A term t with reduced spine has reduced ribs if W_0 , R_i have no occurences in the rib sub-terms of t.

Definition (Classification)

Consider terms of the form $W_0 a_1 \dots a_{2l+2}$ and $R_i(\lambda y_1 \dots y_{2k+2} \dots b)a_1 \dots a_{2k+2}$

- \blacktriangleright a_{2i-1} are odd sub-terms
- \blacktriangleright a_{2i} are even sub-terms
- $a_1 \dots a_{2l}$ are positional sub-terms
- ► a_{2i+1}, a_{2i+2} are control sub-terms

Variables are classified in the same way.

Definition (Chain reduction)

A term *t* is chain reduced iff for each spinal sub-term in the form $R_i(\lambda \bar{y}ij.f\bar{b}\alpha\beta)\bar{a}$, we have that $\beta = j$.

Lemma (Linearity)

If $t[W_0, \overline{R}, x_1, \ldots, x_{2n+2}]$ satisfies W and has all the previous reductions applied, then each x_i occurs exactly once in t.