
The undecidability of PCF2 in synthetic computability
Second Bachelor seminar talk

Fabian Brenner
Advisors: Yannick Forster, Dominik Kirst
Supervisor: Prof. Gert Smolka
June 6, 2024

Programming Systems Lab
Saarland University

A long-standing open problem

Recap: PCF, PCF2

▶ PCF: simply typed λ-calculus with N and recursion
▶ PCF2: simply typed λ-calculus with B and if

Full abstraction problem of PCF
Is there a fully abstract model of PCF that is concrete and independent of syntax?

Necessary criterion
If a fully abstract model exists, then contextual equivalence of PCF2 is decidable.

Theorem (Loader 2000)
Contextual equivalence of PCF2 is undecidable.

1

PCF2 and contextual equivalence

Definition (PCF2)
Extension of simply typed λ-calculus

T1, T2 := B | T1 → T2

s, t, u := λx . s | s t | x | true | false | ⊥ | if s then t else u
Operational semantics

if true then t else u ≻ t,

if ⊥ then t else u ≻ ⊥ | . . .

Definition (Contextual equivalence)
Two terms Γ ⊢ s, t : A are contextually equivalent Γ ⊢ s ≡c t : A iff for all contexts
C : (Γ, A)⇝ (∅, Bool) and values v we have that C [s] ⇓ v ←→ C [t] ⇓ v

2

Proof of Loader’s theorem

Theorem (Loader 2000)
Contextual equivalence of PCF2 is undecidable.

≤m : many-one reducible
SR: Word problem for string rewriting systems
CE: Contextual equivalence on PCF2

SR ≤m SATIS ≤m CIE-SYS ≤m CE-RES-SYS ≤m CE

For finite alphabet Σ, finite set of rewriting rules R, define:

(C , C ′) ∈ R
D1CD2 ⇒R D1C ′D2 W ⇒∗

R W
X ⇒∗

R Y Y ⇒R Z
X ⇒∗

R Z

3

Observational preorder

true

⊥

false

Obervational preorder (on B)
▶ s ≤ t iff s = ⊥ or s = t for s, t ∈ {true, false}
▶ Γ ⊢ s ≤ t iff Γ ⊢ s, t : B and for all substitutions σ of closed terms for free

variables in s, t the normal forms of σ s and σ t are in relation

4

Encoding of words

T W := B→ · · · → B︸ ︷︷ ︸
2|W |+2

→ B

Definition (Word encoding)
Let v ∈ {true, false}. Enc is a v -encoding iff for all words W : ∅ ⊢ Enc W : T W
and Enc W only returns ⊥ or v .

Example
▶ Constv W x1 . . . x2|W | i j = v
▶ Let W = w1 . . . wn.

Wordv W x1 x2 . . . x2|W |−1 x2|W | i j =

v ∀n. x2n−1 = x2n = wn

⊥ otherwise

5

Encoding of rules

Definition (Rule encoding)
F encodes rule (C , C ′) w.r.t. Enc iff ∅ ⊢ F : T C → T C ′, it is ≤-minimal s.t. for
all W = D1CD2, W ′ = D1C ′D2 and Γ := xn, y ′

n, zn, i ′, j ′ : B we have

Γ ⊢ F (λy1 . . . y2|C |ij .Enc W x1 . . . x2|D1|y1 . . . y2|C |z1 . . . z2|D2|ij)y ′
1 . . . y ′

2|C ′|i
′j ′

≥ Enc W ′x1 . . . x2|D1|y ′
1 . . . y ′

2|C ′|z1 . . . z2|D2|i ′j ′

▶ F simulates behavior of Enc W ′ with less information provided by arguments
Example
For the rule (C , C ′) and the Wordv encoding, we have

F f y ′
1 . . . y ′

2|C ′|i
′j ′ =

v ∀n : y ′
2n−1 = y ′

2n = c ′
n ∧ f c1c1 . . . c|C |c|C |⊥⊥ = v

⊥ otherwise
6

Reduction from string rewriting

▶ SR(R, W0, W) := W0 ⇒∗
R W

▶ Choose E as set of Loader’s 32 mostly technical word enodings.
▶ SATIS(R, W0, W) := ∃t. w0, r1, . . . , r|R|, x1, . . . , x2|W |+2 ⊢ t : B ∧

∀Enc ∈ E . t satisfies W w.r.t. Enc, W0, R

SR ≤m SATIS

Reduction function is identity function.

7

Satisfiability of words

Recap (SATIS)
SATIS(R, W0, W) := ∃t. w0, r1, . . . , r|R|, x1, . . . , x2|W |+2 ⊢ t : B ∧

∀Enc ∈ E . t satisfies W w.r.t. Enc, W0, R

We write R = R1, . . . , RN = (C1, C ′
1), . . . , (CN , C ′

N)

Definition
We say t satisfies W with respect to Enc, W0, R iff
t is a normal term with w0 : T W0, ri : T Ci → T C ′

i , xi : B ⊢ t : B such that

t[Enc W0, FR1 , . . . , FRN , x1, . . . , x2|W |+2] ≥ Enc W x1 . . . x2|W |+2

8

Construction of satisfying terms - example

Recap (Satisfiability)
t satisfies W : t[Enc W0, FR1 , . . . , FRN , x1, . . . , x2|W |+2] ≥ Enc W x1 . . . x2|W |+2

Consider W0 = AA, A⇒R1 BB, B ⇒R2 A.
AA : Enc W0x1x2x3x4ij ≥ Enc W0x1x2x3x4ij
⇓R1

ABB : FR1(λy1y2ij .Enc W0x1x2y1y2ij)y ′
1y ′

2y ′
3y ′

4i ′j ′ ≥ Enc ABB x1x2y ′
1y ′

2y ′
3y ′

4i ′j ′

⇓R2

AAB : FR2(λy1y2ij .F (R1)(λỹ1ỹ2kl .Enc W0x1x2ỹ1ỹ2kl)y1y2z1z2ij)y ′
1y ′

2i ′j ′

≥ Enc AAB x1x2x1x2y ′
1y ′

2z1z2i ′j ′

9

Correctness proof of reduction - Forward direction

Theorem (Forward direction)
If W0 ⇒∗

R W , then SATIS(R, W0, W).

▶ Construct t by induction on derivation of W as in previous example
▶ No properties of E needed, any set of encodings would work

10

Correctness proof of reduction - Backwards direction

Theorem (Backwards direction)
If SATIS (R, W0, W), then W0 ⇒∗

R W .

▶ A priori, we do not know which form t has
▶ We need to derive a term t ′ satisfying W of useful form
▶ Intricate technical arguments necessary
▶ Makes use of specifc enodings in E

11

Current state and outlook

Reduction chain in Loader’s proof

SR ≤m SATIS ≤m CIE-RES-SYS ≤m CE-SYS ≤m CE

▶ Formalised PCF2, observational and contextual equivalence in Coq
▶ Understood orange, blue and green reductions, formalised green reduction in Coq
▶ Understood forward direction and high-level reasoning in backwards direction of

violet reduction
▶ Formalising forward direction of violet reduction
▶ Formalise remaining reductions in Coq
▶ Deepen understanding of syntactical arguments in backwards direction of violet

reduction
▶ Formalising definitions necessary for backwards direction 12

Goals and key take-aways

Recap of Loader’s result

▶ Solved important problem
▶ Technical and intricate proof
▶ Original paper known to be intransparent, provides no examples and barely any

intuition

Goals of this project

▶ Clarification of reduction from string rewriting
▶ Formalising parts of a synthetic version of Loader’s result and possibly

contributing to Coq Library of Undecidable Problems [CLUP]
▶ Developing presentation of Loader’s proof containing insightful examples and

providing better intuition than original paper as base for future projects

13

References 1

▶ [Plotkin 1977] G.D. Plotkin, LCF considered as a programming language,
Theoretical Computer Science, Volume 5, Issue 3, 1977, Pages 223-255, ISSN
0304-3975, https://doi.org/10.1016/0304-3975(77)90044-5.

▶ [Scott 1993] Dana S. Scott, A type-theoretical alternative to ISWIM, CUCH,
OWHY, Theoretical Computer Science, Volume 121, Issues 1–2, 1993, Pages
411-440, ISSN 0304-3975, https://doi.org/10.1016/0304-3975(93)90095-B.

▶ [Higher-Order Computability: Longley, Normann] John Longlay, Dag Normann,
Higher-Order-Computability, Chapter 7, Theorem 7.5.22, 2015, Page 342, ISSN
2190-619X

14

References 2

▶ [Loader 2000] Ralph Loader, Finitary PCF is not decidable, Theoretical Computer
Science, Volume 266, Issues 1–2, 2001, Pages 341-364, ISSN 0304-3975,
https://doi.org/10.1016/S0304-3975(00)00194-8.

▶ [CLUP] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner,
Edith Heiter, Dominik Kirst, et al..
A Coq Library of Undecidable Problems, CoqPL 2020 The Sixth International
Workshop on Coq for Programming Languages, Jan 2020, New Orleans, United
States. 〈10.1017/S0960129597002302〉. 〈hal-02944217〉

15

Decidability problems in Loader’s proof

Definition
▶ SR(R, W0, W) := W0 ⇒∗

R W
▶ SATIS(R, W0, W) := ∃t. w0, r1, . . . , r|R|, x1, . . . , x2|W |+2 ⊢ t : B ∧
∀Enc ∈ E . t satisfies W w.r.t. Enc, W0, R

▶ CIE-SYS: Contains lists of pairs of PCF terms, such that si , ti : B and si ≤ ti .
▶ CE-SYS: Contains lists of pairs of PCF terms, such that si : B,

bi ∈ {true, false} and si ≃ bi .
▶ CE: Contains pairs of PCF terms s, t, such that they are contextually equivalent.

16

Observational preorder - formal definition

Definition (Observational preorder)
▶ s ≤ t iff s = ⊥ or s = t for s, t ∈ {true, false}
▶ ≤ is extended to closed terms of type B by comparing normal forms
▶ For ∅ ⊢ s, t : A→ B: f ≤ g iff for all closed s, t of type A we have f s ≤ g t
▶ For Γ ⊢ s, t : A: s ≤ t iff this is the case for all substitutions of closed terms for

the free variables in s, t

17

Proof sketch of forward direction

Proof.
Induction on derivation of W .

▶ W = W0

• t := Enc W0 w1 . . . w2|W0|ij
• Satisfies W0 by reflexivity

▶ Assume W = D1CD2 derivable, D1CD2 ⇒R D1C ′D2

• By IH, exists t satisfying W , define t ′ as:

t ′ := F(C ,C ′),Enc

(λy1 . . . y2|C |ij .t[x1, . . . , x2|D1|, y1, . . . , y2|C |, z1, . . . , z2|D2|, i , j])y ′
1 . . . y ′

2|C ′|i ′j ′

• As t satisfies W :
t[x1, . . . , x2|D1|, y1, . . . , y2|C |, z1, . . . , z2|D2|, i , j] ≥
Enc W x1 . . . x2|D1|y1 . . . y2|C |z1 . . . z2|D2|ij

• Claim follows now by definition of rule encodings 18

Preliminaries for backwards direction

Lemma
If t satisfies W , then there exists t ′ with all the following reductions applied
satisfying W .

▶ Spine reduction
▶ Rib reduction
▶ Chain reduction

19

Proof sketch of backwards direction

Assume that t satisfies word with all the previous reductions applied.

▶ t has either the form Enc W0 a1 . . . a2|W0|ij or
F(C ,C ′)(λy1 . . . y2|C |ij .s)a1 . . . a2|C ′|i ′j ′ (because of the reductions and technical
lemmas)

▶ t = Enc W0 a1 . . . a2|W0|ij :
Implies that W = W0 (clearly derivable)

▶ t = F(C ,C ′)(λy1 . . . y2|C |ij .s)a1 . . . a2|C ′|i ′j ′ we can deduce that rule (C , C ′) has
been applied and s satisfies W = D1CD2, then claim follows by IH

20

Spine reduction

Definition (Spinal sub-terms)
▶ s is spinal sub-term of itself
▶ Spinal sub-terms of s are also spinal sub-terms of Ri(λȳ .s)ā

Definition
▶ The coccyx is the unique spinal sub-term not of the form Ri(λȳ .s)ā
▶ A term has reduced spine if its coccyx has form W0ā

21

Rib reduction

Let t have reduced spine.
Definition (Rib sub-terms)
▶ If t = W0 a1 . . . ak , its rib sub-terms are {a1, . . . , ak}
▶ If t = Ri (λȳ .s)a1 . . . ak , then the set of its rib sub-terms is then union of
{a1, . . . , ak} with the set of rib sub-terms of s

Definition (Reduced ribs)
A term t with reduced spine has reduced ribs if W0, Ri have no occurences in the rib
sub-terms of t.

22

Rib sanity

Definition (Classification)
Consider terms of the form W0 a1 . . . a2l+2 and Ri(λy1 . . . y2k+2.b)a1 . . . a2k+2

▶ a2i−1 are odd sub-terms
▶ a2i are even sub-terms
▶ a1 . . . a2l are positional sub-terms
▶ a2i+1, a2i+2 are control sub-terms

Variables are classified in the same way.

23

Chain reduction and Linearity

Definition (Chain reduction)
A term t is chain reduced iff for each spinal sub-term in the form Ri(λȳ ij .f b̄αβ)ā, we
have that β = j .

Lemma (Linearity)
If t[W0, R̄, x1, . . . , x2n+2] satisfies W and has all the previous reductions applied, then
each xi occurs exactly once in t.

24

