The undecidability of PCF_{2} in synthetic computability

Second Bachelor seminar talk

Fabian Brenner
Advisors: Yannick Forster, Dominik Kirst
Supervisor: Prof. Gert Smolka
June 6, 2024
Programming Systems Lab
Saarland University

A long-standing open problem

Recap: PCF, PCF_{2}

- PCF: simply typed λ-calculus with \mathbb{N} and recursion
- PCF_{2} : simply typed λ-calculus with \mathbb{B} and if

Full abstraction problem of PCF

Is there a fully abstract model of PCF that is concrete and independent of syntax?

Necessary criterion

If a fully abstract model exists, then contextual equivalence of PCF_{2} is decidable.

Theorem (Loader 2000)

Contextual equivalence of PCF_{2} is undecidable.

PCF_{2} and contextual equivalence

Definition $\left(\mathrm{PCF}_{2}\right)$

Extension of simply typed λ-calculus

$$
\begin{aligned}
& T_{1}, T_{2}:=\mathbb{B} \mid T_{1} \rightarrow T_{2} \\
& s, t, u:=\lambda x . s|s t| x \mid \text { true } \mid \text { false }|\perp| \text { if } s \text { then } t \text { else } u \\
& \\
& \quad \text { Operational semantics } \\
& \\
& \quad \text { if true then } t \text { else } u \succ t, \\
& \\
& \quad \text { if } \perp \text { then } t \text { else } u \succ \perp \mid \ldots
\end{aligned}
$$

Definition (Contextual equivalence)

Two terms $\Gamma \vdash s, t: A$ are contextually equivalent $\Gamma \vdash s \equiv_{c} t: A$ iff for all contexts $C:(\Gamma, A) \rightsquigarrow(\emptyset$, Bool $)$ and values v we have that $C[s] \Downarrow v \longleftrightarrow C[t] \Downarrow v$

Proof of Loader's theorem

Theorem (Loader 2000)

Contextual equivalence of PCF_{2} is undecidable.
\leq_{m} : many-one reducible
SR: Word problem for string rewriting systems
CE: Contextual equivalence on PCF_{2}

$$
\mathrm{SR} \leq_{m} \mathrm{SATIS} \leq_{m} \mathrm{CIE-SYS} \leq_{m} \mathrm{CE}-\mathrm{RES}-\mathrm{SYS} \leq_{m} \mathrm{CE}
$$

For finite alphabet Σ, finite set of rewriting rules R, define:

$$
\frac{\left(C, C^{\prime}\right) \in R}{D_{1} C D_{2} \Rightarrow_{R} D_{1} C^{\prime} D_{2}} \quad \frac{X \Rightarrow_{R}^{*} Y Y \Rightarrow_{R} Z}{X \Rightarrow_{R}^{*} W} \quad \frac{*}{R}
$$

Observational preorder

Obervational preorder (on \mathbb{B})

- $s \leq t$ iff $s=\perp$ or $s=t$ for $s, t \in\{$ true, false $\}$
- 「 $\vdash s \leq t$ iff $\Gamma \vdash s, t: \mathbb{B}$ and for all substitutions σ of closed terms for free variables in s, t the normal forms of σs and σt are in relation

Encoding of words

$$
T W:=\underbrace{\mathbb{B} \rightarrow \cdots \rightarrow \mathbb{B}}_{2|W|+2} \rightarrow \mathbb{B}
$$

Definition (Word encoding)

Let $v \in\{$ true, false $\}$. Enc is a v-encoding iff for all words $W: \emptyset \vdash E n c W: T W$ and Enc W only returns \perp or v.

Example

- Const ${ }_{v} W x_{1} \ldots x_{2|W|} i j=v$
- Let $W=w_{1} \ldots w_{n}$.
$W^{W} \operatorname{Word}_{v} W x_{1} x_{2} \ldots x_{2|W|-1} x_{2|W|} i j= \begin{cases}v & \forall n . x_{2 n-1}=x_{2 n}=w_{n} \\ \perp & \text { otherwise }\end{cases}$

Encoding of rules

Definition (Rule encoding)

F encodes rule $\left(C, C^{\prime}\right)$ w.r.t. Enc iff $\emptyset \vdash F: T C \rightarrow T C^{\prime}$, it is \leq-minimal s.t. for all $W=D_{1} C D_{2}, W^{\prime}=D_{1} C^{\prime} D_{2}$ and $\Gamma:=x_{n}, y_{n}^{\prime}, z_{n}, i^{\prime}, j^{\prime}: \mathbb{B}$ we have

$$
\begin{aligned}
& \Gamma \vdash F\left(\lambda y_{1} \ldots y_{2|C|} i j . E n c W x_{1} \ldots x_{2\left|D_{1}\right|} y_{1} \ldots y_{2|C|} z_{1} \ldots z_{2\left|D_{2}\right|} \mid j\right) y_{1}^{\prime} \ldots y_{2\left|C^{\prime}\right|}^{\prime} i^{\prime} j^{\prime} \\
\geq & E n c W^{\prime} x_{1} \ldots x_{2\left|D_{1}\right|} y_{1}^{\prime} \ldots y_{2\left|C^{\prime}\right|}^{\prime} z_{1} \ldots z_{2\left|D_{2}\right|} i^{\prime} j^{\prime}
\end{aligned}
$$

- F simulates behavior of Enc W^{\prime} with less information provided by arguments

Example

For the rule $\left(C, C^{\prime}\right)$ and the $W^{\circ} \operatorname{cord}_{v}$ encoding, we have
$F f y_{1}^{\prime} \ldots y_{2\left|C^{\prime}\right|}^{\prime} i^{\prime} j^{\prime}= \begin{cases}v & \forall n: y_{2 n-1}^{\prime}=y_{2 n}^{\prime}=c_{n}^{\prime} \wedge \quad f c_{1} c_{1} \ldots c_{|C|} c_{|C|} \perp \perp=v \\ \perp & \text { otherwise }\end{cases}$

Reduction from string rewriting

- $\operatorname{SR}\left(R, W_{0}, W\right):=W_{0} \Rightarrow_{R}^{*} W$
- Choose \mathcal{E} as set of Loader's 32 mostly technical word enodings.
- $\operatorname{SATIS}\left(R, W_{0}, W\right):=\exists t . w_{0}, r_{1}, \ldots, r_{|R|}, x_{1}, \ldots, x_{2|W|+2} \vdash t: \mathbb{B}$ $\forall E n c \in \mathcal{E}$. t satisfies W w.r.t. Enc, W_{0}, R

$$
\mathrm{SR} \leq_{m} \text { SATIS }
$$

Reduction function is identity function.

Satisfiability of words

Recap (SATIS)

$\operatorname{SATIS}\left(R, W_{0}, W\right):=\exists t . w_{0}, r_{1}, \ldots, r_{|R|}, x_{1}, \ldots, x_{2|W|+2} \vdash t: \mathbb{B} \wedge$

$$
\forall E n c \in \mathcal{E} . t \text { satisfies } W \text { w.r.t. Enc, } W_{0}, R
$$

We write $R=R_{1}, \ldots, R_{N}=\left(C_{1}, C_{1}^{\prime}\right), \ldots,\left(C_{N}, C_{N}^{\prime}\right)$

Definition

We say t satisfies W with respect to Enc, W_{0}, R iff t is a normal term with $w_{0}: T W_{0}, r_{i}: T C_{i} \rightarrow T C_{i}^{\prime}, \quad x_{i}: \mathbb{B} \vdash t: \mathbb{B}$ such that

$$
t\left[\text { Enc } W_{0}, F_{R_{1}}, \ldots, F_{R_{N}}, x_{1}, \ldots, x_{2|W|+2}\right] \geq E n c W x_{1} \ldots x_{2|W|+2}
$$

Construction of satisfying terms - example

Recap (Satisfiability)

t satisfies W : $t\left[E n c W_{0}, F_{R_{1}}, \ldots, F_{R_{N}}, x_{1}, \ldots, x_{2|W|+2}\right] \geq$ Enc $W x_{1} \ldots x_{2|W|+2}$
Consider $W_{0}=A A, A \Rightarrow_{R_{1}} B B, B \Rightarrow_{R_{2}} A$.
AA: Enc $W_{0} x_{1} x_{2} x_{3} x_{4} i j \geq E n c W_{0} x_{1} x_{2} x_{3} x_{4} i j$
$\Downarrow_{R_{1}}$
$A B B: \quad F_{R_{1}}\left(\lambda y_{1} y_{2} i j\right.$.Enc $\left.W_{0} x_{1} x_{2} y_{1} y_{2} i j\right) y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4}^{\prime} i^{\prime} j^{\prime} \geq$ Enc $A B B x_{1} x_{2} y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4}^{\prime} i^{\prime} j^{\prime}$
$\Downarrow_{R_{2}}$
$A A B: \quad F_{R_{2}}\left(\lambda y_{1} y_{2} i j . F\left(R_{1}\right)\left(\lambda \tilde{y}_{1} \tilde{y}_{2} k l\right.\right.$.Enc $\left.\left.W_{0} x_{1} x_{2} \tilde{y}_{1} \tilde{y}_{2} k l\right) y_{1} y_{2} z_{1} z_{2} i j\right) y_{1}^{\prime} y_{2}^{\prime} i^{\prime} j^{\prime}$ $\geq E n c A A B x_{1} x_{2} x_{1} x_{2} y_{1}^{\prime} y_{2}^{\prime} z_{1} z_{2} i^{\prime} j^{\prime}$

Correctness proof of reduction - Forward direction

Theorem (Forward direction)

If $W_{0} \Rightarrow_{R}^{*} W$, then $\operatorname{SATIS}\left(R, W_{0}, W\right)$.

- Construct t by induction on derivation of W as in previous example
- No properties of \mathcal{E} needed, any set of encodings would work

Correctness proof of reduction - Backwards direction

```
Theorem (Backwards direction)
If SATIS \(\left(R, W_{0}, W\right)\), then \(W_{0} \Rightarrow_{R}^{*} W\).
- A priori, we do not know which form \(t\) has
- We need to derive a term \(t^{\prime}\) satisfying \(W\) of useful form
- Intricate technical arguments necessary
- Makes use of specifc enodings in \(\mathcal{E}\)
```


Current state and outlook

Reduction chain in Loader's proof

$$
\mathrm{SR} \leq_{m} \mathrm{SATIS} \leq_{m} \mathrm{CIE}-\mathrm{RES}-\mathrm{SYS} \leq_{m} \mathrm{CE}-\mathrm{SYS} \leq_{m} \mathrm{CE}
$$

- Formalised PCF_{2}, observational and contextual equivalence in Coq
- Understood orange, blue and green reductions, formalised green reduction in Coq
- Understood forward direction and high-level reasoning in backwards direction of violet reduction
- Formalising forward direction of violet reduction
- Formalise remaining reductions in Coq
- Deepen understanding of syntactical arguments in backwards direction of violet reduction
- Formalising definitions necessary for backwards direction

Goals and key take-aways

Recap of Loader's result

- Solved important problem
- Technical and intricate proof
- Original paper known to be intransparent, provides no examples and barely any intuition

Goals of this project

- Clarification of reduction from string rewriting
- Formalising parts of a synthetic version of Loader's result and possibly contributing to Coq Library of Undecidable Problems [CLUP]
- Developing presentation of Loader's proof containing insightful examples and providing better intuition than original paper as base for future projects

References 1

- [Plotkin 1977] G.D. Plotkin, LCF considered as a programming language, Theoretical Computer Science, Volume 5, Issue 3, 1977, Pages 223-255, ISSN 0304-3975, https://doi.org/10.1016/0304-3975(77)90044-5.
- [Scott 1993] Dana S. Scott, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer Science, Volume 121, Issues 1-2, 1993, Pages 411-440, ISSN 0304-3975, https://doi.org/10.1016/0304-3975(93)90095-B.
- [Higher-Order Computability: Longley, Normann] John Longlay, Dag Normann, Higher-Order-Computability, Chapter 7, Theorem 7.5.22, 2015, Page 342, ISSN 2190-619X

References 2

－［Loader 2000］Ralph Loader，Finitary PCF is not decidable，Theoretical Computer Science，Volume 266，Issues 1－2，2001，Pages 341－364，ISSN 0304－3975， https：／／doi．org／10．1016／S0304－3975（00）00194－8．
－［CLUP］Yannick Forster，Dominique Larchey－Wendling，Andrej Dudenhefner， Edith Heiter，Dominik Kirst，et al．． A Coq Library of Undecidable Problems，CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages，Jan 2020，New Orleans，United States．$\langle 10.1017 /$ S0960129597002302〉．〈hal－02944217〉

Decidability problems in Loader's proof

Definition

- $\operatorname{SR}\left(R, W_{0}, W\right):=W_{0} \Rightarrow_{R}^{*} W$
- $\operatorname{SATIS}\left(R, W_{0}, W\right):=\exists t . w_{0}, r_{1}, \ldots, r_{|R|}, x_{1}, \ldots, x_{2|W|+2} \vdash t: \mathbb{B}$ $\forall E n c \in \mathcal{E}$. t satisfies W w.r.t. Enc, W_{0}, R
- CIE-SYS: Contains lists of pairs of PCF terms, such that $s_{i}, t_{i}: \mathcal{B}$ and $s_{i} \leq t_{i}$.
- CE-SYS: Contains lists of pairs of PCF terms, such that $s_{i}: \mathcal{B}$, $b_{i} \in\{$ true, false $\}$ and $s_{i} \simeq b_{i}$.
- CE: Contains pairs of PCF terms s, t, such that they are contextually equivalent.

Observational preorder - formal definition

Definition (Observational preorder)

- $s \leq t$ iff $s=\perp$ or $s=t$ for $s, t \in\{$ true, false $\}$
- \leq is extended to closed terms of type \mathbb{B} by comparing normal forms
- For $\emptyset \vdash s, t: A \rightarrow B: f \leq g$ iff for all closed s, t of type A we have $f s \leq g t$
- For $\Gamma \vdash s, t: A: s \leq t$ iff this is the case for all substitutions of closed terms for the free variables in s, t

Proof sketch of forward direction

Proof.

Induction on derivation of W.

- $W=W_{0}$
- $t:=E n c W_{0} w_{1} \ldots w_{2 \mid} W_{0} \mid j$
- Satisfies W_{0} by reflexivity
- Assume $W=D_{1} C D_{2}$ derivable, $D_{1} C D_{2} \Rightarrow_{R} D_{1} C^{\prime} D_{2}$
- By IH, exists t satisfying W, define t^{\prime} as:

$$
\begin{aligned}
t^{\prime}:= & F_{\left(c, c^{\prime}\right), E n c} \\
& \left(\lambda y_{1} \ldots y_{2|C|} i j . t\left[x_{1}, \ldots, x_{2\left|D_{1}\right|}, y_{1}, \ldots, y_{2|C|}, z_{1}, \ldots, z_{2\left|D_{2}\right|}, i, j\right]\right) y_{1}^{\prime} \ldots y_{2\left|C^{\prime}\right|}^{\prime} i^{\prime} j^{\prime}
\end{aligned}
$$

- As t satisfies W :

$$
\begin{aligned}
& t\left[x_{1}, \ldots, x_{2\left|D_{1}\right|}, y_{1}, \ldots, y_{2|C|}, z_{1}, \ldots, z_{2\left|D_{2}\right|}, i, j\right] \geq \\
& \text { Enc } W x_{1} \ldots x_{2\left|D_{1}\right| y_{1} \ldots y_{2 \mid C}\left|z_{1} \ldots z_{2\left|D_{2}\right|}\right| j}
\end{aligned}
$$

- Claim follows now by definition of rule encodings

Preliminaries for backwards direction

Lemma

If t satisfies W, then there exists t^{\prime} with all the following reductions applied satisfying W.

- Spine reduction
- Rib reduction
- Chain reduction

Proof sketch of backwards direction

Assume that t satisfies word with all the previous reductions applied.

- t has either the form Enc $W_{0} a_{1} \ldots a_{2 \mid} W_{0} \mid j$ or
$F_{\left(C, C^{\prime}\right)}\left(\lambda y_{1} \ldots y_{2|C|} i j . s\right) a_{1} \ldots a_{2}\left|C^{\prime}\right| i^{\prime} j^{\prime}$ (because of the reductions and technical lemmas)
- $t=E n c W_{0} a_{1} \ldots a_{2 \mid} W_{0} \mid j:$

Implies that $W=W_{0}$ (clearly derivable)

- $t=F_{\left(C, C^{\prime}\right)}\left(\lambda y_{1} \ldots y_{2|C|} i j . s\right) a_{1} \ldots a_{2\left|C^{\prime}\right|^{\prime} i^{\prime}}$ we can deduce that rule $\left(C, C^{\prime}\right)$ has been applied and s satisfies $W=D_{1} C D_{2}$, then claim follows by IH

Spine reduction

Definition (Spinal sub-terms)

- s is spinal sub-term of itself
- Spinal sub-terms of s are also spinal sub-terms of $R_{i}(\lambda \bar{y} \cdot s) \bar{a}$

Definition

- The coccyx is the unique spinal sub-term not of the form $R_{i}(\lambda \bar{y} . s) \bar{a}$
- A term has reduced spine if its coccyx has form $W_{0} \bar{a}$

Rib reduction

Let t have reduced spine.

Definition (Rib sub-terms)

- If $t=W_{0} a_{1} \ldots a_{k}$, its rib sub-terms are $\left\{a_{1}, \ldots, a_{k}\right\}$
- If $t=R_{i}(\lambda \bar{y} . s) a_{1} \ldots a_{k}$, then the set of its rib sub-terms is then union of $\left\{a_{1}, \ldots, a_{k}\right\}$ with the set of rib sub-terms of s

Definition (Reduced ribs)

A term t with reduced spine has reduced ribs if W_{0}, R_{i} have no occurences in the rib sub-terms of t.

Rib sanity

Definition (Classification)

Consider terms of the form $W_{0} a_{1} \ldots a_{2 /+2}$ and $R_{i}\left(\lambda y_{1} \ldots y_{2 k+2} \cdot b\right) a_{1} \ldots a_{2 k+2}$

- $a_{2 i-1}$ are odd sub-terms
- $a_{2 i}$ are even sub-terms
- $a_{1} \ldots a_{2 \prime}$ are positional sub-terms
- $a_{2 i+1}, a_{2 i+2}$ are control sub-terms

Variables are classified in the same way.

Chain reduction and Linearity

Definition (Chain reduction)

A term t is chain reduced iff for each spinal sub-term in the form $R_{i}(\lambda \bar{y} i j . f \bar{b} \alpha \beta) \bar{a}$, we have that $\beta=j$.

Lemma (Linearity)

If $t\left[W_{0}, \bar{R}, x_{1}, \ldots, x_{2 n+2}\right]$ satisfies W and has all the previous reductions applied, then each x_{i} occurs exactly once in t.

