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Abstract

PCF (Programming Computable Functions) is an idealised functional program-
ming language introduced by Plotkin in 1977. It has been inspired by work of Scott
as well as Platek and has proved to be of great importance in practice by serving as
basis for the design of functional programming languages such as standard ML and
Haskell. Nevertheless, the full abstraction problem, posing the question whether
there exists a fully abstract model for PCF that is both concrete and independent of
syntax, has been open for decades.

In 2001, Loader provided a negative answer to this problem by proving contextual
equivalence undecidable for a severely restricted version of PCF called PCF,. A
solution of the full abstraction problem would entail the decidability of contextual
equivalence on PCF - and in particular on PCF,, which is why Loader’s result ex-
cluded the existence of such a model. In Loader’s undecidability proof, which is
well-known to be full of intricate technical arguments and contains barely any ex-
amples, the undecidability of contextual equivalence on PCF, is deduced from that
of string rewriting.

In this thesis, we point out that Loader’s arguments can be turned into a chain of
four many-one reductions and mechanise part of it in the Coq proof assistant in
the setting of synthetic undecidability. To be precise, we mechanise observational
equivalence — an equivalence relation used in Loader’s proof agreeing with contex-
tual equivalence, as well as all reductions but the first in the chain. Furthermore,
we provide insightful examples and present nontrivial details that are left out in
Loader’s paper, making the result more accessible to non-expert readers and lay-
ing a foundation for future work mechanising the remaing reduction.
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Chapter 1

Introduction

PCF (Programming Computable Functions) is an idealised functional program-
ming language inspired by Platek [40] and introduced by Plotkin in 1977 [41]] based
on a famous unpublished manuscript written by Scott in 1969, which has eventu-
ally been published later [48]]. It is an extension of the simply typed lambda calcu-
lus with a fixed point combinator at all types, natural numbers as base type and a
match on natural numbers. In this thesis, we focus on an undecidability result of
Loader [27]], which provided a negative answer to a long-standing open problem
concerning PCF called the full abstraction problem.

Historically, PCF has proved to be of high importance: Scott’s work on PCF as
model for computability and his axiomatic proof system based on PCF terms [48]]
formed the theoretical foundation of LCF (Logic for Computable Functions), an
interactive theorem prover developed by Milner[34]. Furthermore, the design of
functional programming languages such as standard ML [35]] and Haskell [52] is
inspired by PCFEI

Since the introduction of PCF, Computer scientists have been looking for decades
for a—in some sense natural —model of PCF. In particular, the model should be fully
abstract, i.e. two PCF terms should have the same presentation in the model if and
only if they are contextually equivalent. Contextual equivalence is an equivalence
relation on a calculus with two terms being in relation if and only if they have the
same observational behaviour, i.e. in contexts the terms evaluate to booleans, they
evaluate to the same boolean. The problem of finding a fully abstract model that
is both concrete and independent of syntax is called the full abstraction problem.
The first fully abstract model for PCF was given by Milner in 1977 [133], but was
considered not satisfactory, as it was based on the syntax of PCFE] In the 1990s,

I"Higher-Order Computability" by Longley and Normann [29, p. 279]: "Indeed, PCF has in prac-
tice proved valuable as a basis for the design of functional programming languages such as Standard
ML and Haskell."

2"Finitary PCF is not decidable" by Loader [27) p. 342]: "[...lit uses a term model construction
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two fully abstract models for PCF have been developed using game semantics [[1,
24 and Kripke logical relations [37]. However, it is not precisely defined what
"concrete" and "independent of syntax" mean in this context, which is why one
cannot easily point out which — if any — model is a good solution to the problem.

A criterion a sufficiently concrete model should fulfill - and which none of the
above models does — is that for finitary parts of PCEF, i.e. restrictions of PCF to a
finite base type, the presentation in the model should be computable and the objects
representing the terms should be finitely represented and belong to a decidable set.
If a fully abstract model with this property existed, one could use it to decide if two
terms of a finitary part of PCF have the same observational behaviour. To determine
if such models can exist, Jung and Stoughton asked whether this decision problem
is even decidable [25]].

Surprisingly, a negative answer to this long-standing open problem has been pro-
vided: In 2001, Loader published a paper proving contextual equivalence unde-
cidable even on a finitary part of PCF with strongly normalising reduction relation
called PCF; [27]. In PCF;, the base type is restricted to the booleans containing
the standard boolean values as well as a third value representing an error. This re-
sult implies that no fully abstract model satisfying the previous criterion can exist,
as such a model could be used to decide contextual equivalence on this severely
restricted calculus. However, Loader’s proof is well-known to be long and full of
intricate technical arguments about the structure of certain PCF, termsE] More-
over, the original paper contains barely any examples illustrating the highly tech-
nical proof. In the proof, the undecidability of contextual equivalence on PCF,
is deduced from that of string rewriting. String rewriting (SR), also called word
problem for semi-Thue systems, is a well-known decision problem which has been
introduced by Thue in 1914 [53]] and proved undecidable independently by Post
in 1947 [43]] and Markov in 1948 [30, 31]]. It is the problem, given an initial string
and a target string, whether one can obtain the target string by rewriting the initial
string with a fixed set of rewriting rules. For instance, if there is a rule (e, f), then a
string of the form aec can be rewritten to afc.

In this thesis, we point out that Loader’s arguments can be turned into a reduc-
tion chain consisting of four reductions. String rewriting does not have a similar
structure as the contextual equivalence or an obvious relation to PCF; at all, which
is why it is of particular ingenuity how to encode strings and rewriting rules into
PCF;. In fact, the main difficulty of the proof lies in establishing a connection be-

that does not tell us what mathematical structures are appropriate for modelling the calculus, and
does not give useful techniques for reasoning about the model"

3"Higher-Order Computability” by Longley and Normann [29, p. 342]: "Whilst the theorem it-
self is of fundamental importance, the proof is long and technical, and consists of intricate syntactic
arguments which in themselves shed little light on the nature of sequential functionals."



tween SR and certain PCF, terms, whereas the remaining reductions leading to-
wards general contextual equivalence are rather straightforward.

The purpose of this thesis is both to give a formal account of Loader’s proof, and in-
troduce the reader to Loader’s intricate technical arguments by providing insightful
examples and explanations. Formalising such a highly technical proof on paper can
easily cause errors in the details. Here, proof assistants like Coq [51]], Lean [[12], and
Isabelle [136] come into play — computer programs designed to support in proving
mathematical statements and verifying their correctness. Proof assistants can act as
link between a full formalisation and the human reader: They provide both a level
of informal reasoning by advanced automation as well as complex book-keeping of
involved details beyond what is possible on paper with reasonable efforts. While
one can be extremely sure that a theorem mechanised in a proof assistant is valid,
this usually involves a lot of technical overhead as the proof needs to be given in
full detail, including lemmas one would skip over in an informal proof (although
they might not be easy to prove!). Even if there is no doubt that a result is correct, it
can be worthwhile work to mechanise it, as this enforces choosing definitions very
carefully to reduce technicalities as well as understanding the very details of the
proofs, and thus may lead to simplifications of proofs and statements.

For our mechanisation, we work with the Coq proof assistant [51]]. It is — as many
proof assistants — based on intuitionistic type theory, which goes back to Martin-
Lof [32]. To be precise, the formalism behind Coq is the Calculus of Inductive Con-
structions (CIC) [38]139], which extends the Calculus of Constructions [9]]. When
inspecting the meta-theory carefully, it turns out every function definable in CIC is
computable - a function defined in CIC is essentially an executable program. Fur-
thermore, note that Coq’s logic is intuitionistic, which means the law of excluded
middle LEM := VP: P. PV =P is not assumed.

There are two main approaches to formalising computability theory in a proof as-
sistant: First, one could follow the textbook development and choose a concrete
model of computation, e.g. Turing machines. While this approach is possible in
proof assistants, it would require many technical results about the expressiveness
of the specific model, e.g. mechanising each Turing machine used to prove a func-
tion computable. Second, if the proof assistant relies on a meta-theory only permit-
ing to define computable functions — as for example Coq does — one can also use a
synthetic approach, which goes back to Richman and Bridges [44) 8], and was de-
veloped further by Bauer [6, 7]]. In such a setting, it is natural to treat all functions
as the function space of computable functions. Thus, no details about a model of
computation need to be considered, facilitating the work tremendously.

While this yields a straight-forward definition of decidability and reductions, it is
more diffifult when turning to undecidability: The assumption that every predi-
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cate, i.e. a function of type X — P for a type X, is decidable, is consistent in axiom-
free Coq as observed by Werner [56]. Thus, in order to obtain synthetic undecid-
ability results, one needs to assume further axioms if one defines undecidability
as the negation of decidability as done by Bauer [6, [7]. Instead, to maintain an
axiom-free setting, one can introduce a notion of synthetic undecidability relative
to a base problem informally known not to be enumerable, e.g. the complement
of a fixed Halting problem, and then call a problem undecidable if its decidability
implies the enumerability of the base problem.

Forster, Kirst, and Smolka [19] introduced this approach and laid the foundations
of synthetic undecidability in the Coq proof assistant. Since it is usually not possible
with reasonable efforts to reduce directly from the Halting problem, it is desirable
to maintain a library containing many undecidable problems, such that there is a
large variety of problems to reduce from. And indeed, Forster et al. created such a
library, namely the Coq Library of Undecidability Proofs [20], containing undecid-
ability proofs for many decision problems in Coq. The work in this thesis towards
a mechanisation of the undecidability of contextual equivalence in PCF, is in fact
based on the Coq Library of Undecidability Proofs.

1.1 Contribution

To the best of our knowledge, we make the first contribution towards the mechani-
sation of Loader’s proof of the undecidability of contextual equivalence on PCF,.
We mechanised PCF,, contextual equivalence and several properties of these two
notions. In particular, we mechanised that observational equivalence agrees with
contextual equivalence, which is only postulated, but essential in Loader’s proof.
Furthermore, we turned Loader’s proof into a reduction chain consisting of four
many-one reductions and mechanised the reductions appearing in this chain, ex-
cept for the first reduction, which starts from the complement of SR. We attempted
to mechanise the forward direction of this reduction, but due to a lack of time,
could not complete it. We did not mechanise the backward direction of this reduc-
tion, which is the most laborious part of the proof, as it requires numerous syn-
tactical arguments, and whose mechanisation therefore would involve significant
overhead.

However, we present the full proof on paper, providing additional explanations
and details left outin Loader’s proof. We also contribute insightful examples as well
as technical observations regarding the encodings of rewriting systems into PCF,,
which in our opinion shed a little more light on this highly technical, intransparent
result.

Overall, we contribute a foundation for future work aiming at a complete mecha-
nisation of Loader’s result, and an introduction to Loader’s proof, making it more
accesible to non-expert readers.
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1.2 Overview

The structure of the thesis is the following: In Chapter [2| we introduce the type-
theoretical background of this project and the synthetic approach to undecidabil-
ity we have taken. Chapter 3|introduces PCF, as well as contextual equivalence
and presents several useful results about these concepts — inter alia, the observa-
tional preorder is introduced, which is used in Loader’s proof to characterise con-
textual equivalence. In Chapter [4 we introduce the decision problems in the re-
duction chain from the complement of string rewriting to contextual equivalence
and present all but the first reduction. In Chapter 5, we proceed with the forward
direction of the remaining reduction, whereas we discuss the backward direction
in Chapter[6] Chapter[7|presents related systems in which contextual equivalence
is in fact decidable and outlines key differences between these systems and PCF,.
Furthermore this is where related undecidability results are discussed. In Chap-
ter [8, we summarise our work, add further comments on our Coq mechanisation
and open problems as well as on possible future work.



Chapter 2

Preliminaries

In this chapter, we introduce basic definitions from Coq’s type theory and synthetic
undecidability to establish a formal basis for our work.

2.1 Constructive Type Theory

We work in the constructive type theory of the proof assistant Coq [51]], which is
based on CIC [39, 9] and goes back to Martin-Lof [32]. In this type theory, the
universe of types is denoted by T and there is also an impredicative subuniverse
of propositions, denoted by P. For the type of functions from X to Y, the notation
X — Yis used. There is also the dependent function type Vx: X. T(x), where the
return type T(x) of the function depends on the input x.

The following types are frequently used in our work:

n:N:=0|S(n) (natural numbers)
Bui=t|f (booleans)

L: LX) z:=0]x:L whereX: T, x: X (lists)
X+Y:=L(x)|R(y) whereX,Y: T, x: X,y:Y (sum types)
XxYu=(x,y) where X;Y: T, x: X,y:Y (product types)
O(X) :== None|™x" where X: T, x: X (option types)

The common arithmetic operations on natural numbers are denoted by (+,—,).
Now consider two lists A,B: £(X) where X: T. The concatenation of A and B is
denoted by A 4 B and the length of A by |A|. The proposition x € A means that x is
contained in A. For a list with elements x1, ..., x, the bracket notation [x1, ..., Xxu]
is usually used throughout this thesis.

In this type theory, there are also the usual propositions and propositional connec-
tives: truth, falsity, conjunction (), disjunction (V) and implicaton (— ). Nega-
tion of a proposition p (—p) is defined as p implies falsity and equivalence (<) is
definedasp«q:=(p— q) N\ (q— p)-
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There are also existential quantifiers in the type theory, modelled as proposition
J(p: X — P): P. Existential quantifiers can only be eliminated when proving a
proposition.

A computational alternative for 3 in the sense that it can be eliminated in arbitrary
contexts is the dependent pair type Z(p: X — T): T, which does not underly the
previously mentioned restriction as it is not a proposition. Note that it does not
hold in general that 3p implies Xp. When writing "there exists" it is referred to 3,
and to Z when writing "one can compute".

2.2 Synthetic Undecidability Theory

In this section, the basic notions of synthetic undecidability in Coq is formally in-
troduced, following the work of Forster, Kirst, and Smolka [[19]], which goes back to
Richman and Bridges [144)} 8] as well as Bauer [6,[7]. To model decision problems,
predicates are used, i.e. functions of type X — PP for a type X. First, the complement
of a predicate is introduced.

Definition 2.1/ Let X be a type. For a predicate P, its complement P is defined by P x =
—P x for x: X.

Now, one can define decidability and enumerability following the observation that
every function in axiom-free CIC is computable — this is because a function defined
in CIC is essentially a program coming with an algorithm of how to compute it.
This permits avoiding concrete models of computation such as Turing machines.

Definition 2.2 Let P: X — P be a predicate on type X.
1.| P is called decidable iff there exists a function f: X — B such that

Vx.Px— fx=t.

2.| P is called enumerable iff there exists a function f: N — O(x) such that

Vx.Px<< dn.fn="x"\

3. X is called enumerable iff there exists a function f: N — O(x) such that

Vx. In. fn="x"

Next, undecidability is defined following the motivation from Chapter I Recall
that in axiom-free Coq, the assumption that every predicate is decidable is consis-
tent due to Werner [56]. To avoid assuming axioms in Coq or rolling back to a
concrete model of computation and establish undecidability results with respect to


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Definitions.html#complement
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Definitions.html#decidable
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Definitions.html#enumerable
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.EnumerabilityFacts.html#enumerable__T
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this model, one can establish a notion of synthetic undecidability relative to a fixed
base problem. The chosen base problem should be widely accepted to be undecid-
able, e.g. known to be undecidable in the usual computational models. We follow
the development of the Coq Library of Undecidability Proofs by Forster et al. [20]
and choose the complement of a fixed Halting problem Halt as base problem. It is
known that the chosen Halting problem is undecidable and that its complement is
not enumerable. This leads to the following definition:

Definition 2.3 (Undecidability) A predicate P: X — P on X is called undecidable iff
the assumption that it was decidable implies Halt to be enumerable.

With this definition, both v and Halt can be shown undecidable.

Lemma 2.4
1. Halt is undecidable.
2. Halt is undecidable.

The proof of (1) relies on decidable predicates on enumerable types also to be enu-
merable. As Halt and thus also Halt are defined on enumerable types, the result
follows. One then can obtain (2) by using the following result, which relies on the
fact that a decider for P can be used to construct a decider for P.

Lemma 2.5 Let P: X — P be a predicate. If P is undecidable, then P is undecidable.

Note that when proving a problem undecidable, it is uncommon to prove the defin-
ing implication directly. A common way to prove problems undecidable in text-
book presentations of undecidability is by reducing from problems already proven
undecidable. Thus, it is desirable for this synthetic version of undecidability to be-
have well with a notion of reductions such that this technique can also be used for
synthetic undecidability —so the above result forms a basis for further undecidabil-
ity results. Now, the definition of many-one reductions and the relevant lemmas
are briefly presented.

Definition 2.6 (Many-one reductions) A predicate P: X — P is many-one reducible
to Q: Y — P iff there exists a function f: X — Y such that

¥x.Px < Q (fx).

In this case we write P <m Q.

Note that decidability transports backwards and undecidability forwards along re-
ductions.


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Undecidability.html#undecidable
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.TM.SBTM_undec.html#complement_SBTM_HALT_undec
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.TM.SBTM_undec.html#SBTM_HALT_undec
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Undecidability.html#undecidability_from_complement
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Definitions.html#reduces
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Lemma 2.7 LetP: X — P, Q:Y — PP be predicates.
1.| If Q is decidable and P < Q, then P is decidable.
2. If P is undecidable and P <., Q, then Q is undecidable.

Hereby, (1) follows easily by considering the composition of the decision function
for Q with the reduction function, and (2) follows immediately from (1) as well as
Definition[2.3]

Furthermore, many-one reductions are transitive — again by composition.

Lemma 2.8 LetP: X - P, Q: Y — P, R: Z — PP be predicates. If P <m Q and Q <m R,
then P <; R.

A many-one reductions from P to Q induces a many-one reduction from P to Q. The
reduction function of the first reduction is also a valid for the second reduction.

Lemma2.9 LetP: X — P, Q: Y — P be two predicates. If P <, Q holds, then P <,y Q
also holds.

Note that these simple results about many-one reductions provide together with
Lemma [2.4] a technique to show a vast variety of decision problems undecidable
in the synthetic setting. And in fact, this is done in the Coq Library of Undecid-
ability Proofs by Forster et al. [20]]. This library contains undecidability results for
various decision problems, i.e. reduction chains from the above mentioned halting
problem and its complement. It may be observed that Lemma (2) permits to
start reductions from other undecidable problems than the base problem in order
to show a problem undecidable, which in many cases tremendously facilitates the
proofs: One may start the reduction from a problem with a more similar structure
and less technical details than the formal semantics of Turing machines.

2.3 String Rewriting (SR)

Next, string rewriting is introduced, from which the reduction chain showing con-
textual equivalence on PCF, undecidable starts. String rewriting systems are also
called semi-Thue systems and go back to Thue [53]], shown undecidable in textbook
decidability theory independently by Post in 1947 [43]] and Markov in 1948 [30, 31]].
A rewriting rule consists of a pair of strings (e, f) and permits to rewrite a string of
the form aec into afc.

Formally, the booleans B are fixed as finite alphabet, where the boolean value t is
identified with the PCF; term true — we proceed analogously with f. Strings (also
called words) are modelled as lists £(B) over the alphabet B. Rewriting rules are
represented by pairs of strings £(B) x £(B), and string rewriting systems, which


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.ReducibilityFacts.html#dec_red
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Undecidability.html#undecidability_from_reducibility
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.ReducibilityFacts.html#reduces_transitive
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.ReducibilityFacts.html#reduces_complement
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consist of finitely many rewriting rules, by a list of rewriting rules £(£(B) x £(B)).
For the sake of legibility, ab is used as notation for a + b, the concatenation of
strings a, b. Now the application of a single rewriting rule =g and its reflexive,
transitive closure =} are formally defined.

Definition 2.10 (String rewriting relation) The binary relations on words| =g, =%
are defined by the following rules:

(e,f) €R a=xb b =xc
aec =y afc a=%a a =%c

Note that one equivalently could define =% with = and =} swapped in the
premise of the third rule, as done in the Coq Library of Undecidability Proofs[20].
However, the above definition turns out to be useful in the reduction in Chapter
and Chapter [fl when doing induction on the derivation of certain words.

It has been proven by Davis [[10] that there is a list of rules R over any alphabet
with only two letters, such that the following problem, called string rewriting, word
problem or reachablility problem for semi-Thue systems, is undecidable in textbook
decidability theory: E]

SRg[a: £L(B),b: L(B)):=a =} b

Davis, who worked with Turing machines as computational model, took the fol-
lowing apporach: He argues that Turing machines can be translated into rewriting
systems on some finite alphabet I' in the sense that the Turing machine outputs a
word on a given input if and only if the word is derivable in the system from the
initial word, which corresponds to the input of the Turing machine. It then easily
follows that for each recursively enumerable problem, there is a string rewriting
system such that a word is contained in the problem if and only if it can be derived
in the system from any word of a certain form — the proof is by translating the Turing
machine enumerating the problem into a string rewriting system. Also note that
any rewriting system on any finite alphabet I' can be translated into a rewriting sys-
tem on any binary alphabet preserving derivability. The result is then obtained by
considering a string rewriting system corresponding to an undecidable, recursively
enumerable problem and then turning this system into a system on the respective
binary alphabet.

String rewriting is usually presented in a version where the rules R are not fixed, but
provided as an additional argument. That version of string rewriting has been inde-
pendently proven undecidable in textbook decidability theory by Post in 1947 [43]]

I"Computability and Unsolvability" by Davis[[I0, p. 93]: "There exists a semi-Thue system whose
alphabet consists of two letters and whose decision problem is recursively unsolvable."


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.SR.html#rew
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.SR.html#rew
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.SR.html#rewt
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.SR.html#SR
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and Markov in 1948 (30, 31]]: Both proved the word problem for Thue systems —
semi-Thue systems with symmetric rewriting rules — undecidable, which implies
the undecidability of the word problem for semi-Thue systems. Post achieved this
by reducing from the printing problem for Turing machines, while Markov reduced
from Post canonical systems [42]] — a more complex string rewriting problem.

In particular, the Coq Library of Undecidability Proofs[20] contains an undecid-
ability result about string rewriting by Forster, Heiter, and Smolka [[18]]. However,
the version from the library differs from the version presented above: It is the ver-
sion where the rewriting rules are not fixed, but provided as argument. For the
remainder of this thesis, the following is assumed.

Axiom 2.11' There exists a list of rules R = [(e1,f1),..., (en, N)] over the alphabet B
such that SR is undecidable, where

SR: (£(B) x £(B)) - P := SRg.

Because of Davis’ results in textbook undecidability [[10] discussed in Section 2.3}
it is reasonable to assume Axiom 2.11]

Why exactly fixing a set of rules is important for our purposes, becomes clear in
the reduction from SATIS to PS in Section[4.1 We remark that in Loader’s original
proof [27], it is not only a set of rewriting rules fixed, but also an initial word. As
this turns out not to be necessary, the initial word remains in our development an
argument of SR.


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.undecidability.html#SR_undec

Chapter 3

Programming Computable Functions

In this chapter, we formally introduce PCF,. In Section the syntax is defined, es-
tablishing which form the types and terms of PCF, have. Afterwards, in Section
the typing rules of PCF, are given, categorising well-typed terms into booleans and
functions, before we fix a semantics in Section 3.3|to assign meaning to the terms,
i.e. specify the reduction relation. Furthermore, in Section[3.4|contexts are defined —
terms with a hole, which one can fill with a term — as well as contextual equivalence,
which is an equivalence relation with two terms being equivalent if and only if they
are indistinguishable in their observational behaviour. Also, an alternative charac-
terisation of contextual equivalence using logical relations is presented, which will
later be useful in Loader’s undecidability proof.

3.1 Syntax

The syntax of PCF; is divided into two parts, namely terms and types. PCF; is an
extension of simply typed A-calculus (STLC) with the booleans B as base type and
a conditional.

Definition 3.1 (PCF;) The types ty and terms tm of PCF, are defined by by

T, To:ty:=B| T = T,

s,t,uw:ffmiz=Ax.s |st|x|if s thent else u|true|false| L

The types of PCF, consist of booleans (B) and function types (T; — T,). Terms
consist of lambda-abstractions (Ax. s), function applications (s t), variables (x),
conditionals (if s thent else u) and boolean constants true, false and L.

Here, B comes with the three constants true, false and L. The third constant of
B, called 1, may be unexpected as the booleans usually only consist of the two
standard truth values. However, in this calculus, L is an error constant at type
B, i.e. one can think of it as placeholder for errors, relating to full PCF’s ability to
diverge.


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html#ty
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html#tm
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html#ty
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html#tm
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Note that on paper, named syntax is used to increase readibility and call the names-
pace of the variables var, whereas in Coq the de Bruijn indices are used for variables,
which usually leads to less technical overhead. To be precise, we use in Coq the
tool "Autosubst 2" for substitutions, which has been developed by Stark, Schéfer
and Kaiser [50] and is based on "Autosubst" by Schifer, Tebbi and Smolka [45]].
Therefore, lambda-abstractions have in the mechanisation the form A.t rather than
Ax.t. The key idea behind the de Bruijn representation is, instead of attaching to
each A a name and referring to it, variables are represented by a natural number
called de Bruijn index that indicates the "distance” to its binder. For example, the
term Ax.Ay.y x can be represented by A.A.(Var 0) (Var 1). This technique has been
developed by de Bruijn in 1972 [[11]].

In this work, parallel substitutions denoted by o: var — tm are used, i.e. functions
from variables to terms. The notation t[o] is used for the term resulting from apply-
ing o to all free variables in t. Furthermore, we follow the Barendregt convention
assuming that the bound variables chosen in our terms are always different from
the free variables [5]. Thus, substitutions can be assumed to be capture avoiding.
The notation ofs/x] is used for the substitution o extended with the mapping of
binder x to term s. The identity substitution mapping each variable to itself is de-
noted by id. The single point substitution replacing variable x by term t in term s is
denoted by s[t/x]. Note that this is notation for s[id[t/x]]. Similarly, the substitution
of finitely many variables x1, ..., xn by terms t;, ..., t, in term s is denoted by
s[t1/x1, ..., tn/xn] and is notation for s[id[ty/x1, ..., tn/xn]l.

Renamings of variables, which can be seen as a special case of substitutions where
each variable is mapped to another variable, are on paper modelled as functions
r: var — var. The notation t[r] is used for the term resulting from applying r to all
free variables in t.

3.2 Typing

In this section, typing rules for PCF, are introduced to classify the well-typed terms
into booleans and (simply typed) functions based on their syntax. To achieve this,
we inductively define a typing judgement I-.

For ' t: T, we say "term t has type T in (typing) context I'". If a term t has some
type in typing context I' then it is called t well-typed in T

Hereby, the typing context keeps track of the types of variables. On paper, we
model typing contexts as lists of pairs of variables and types, where each pair (x, A)
in the list indicates that variable x has type A in the corresponding context. For typ-
ing contexts, we use the suggestive notation x: A for (x, A). Note that in the mecha-
nisation, storing the variable can be admitted and typing contexts are modelled as
lists of types with the convention that the nth free variable is assumed to have the



14 Programming Computable Functions

nth element of the context as type. For example, Var 2 refers in the term A.Var 2 to
the free variable with index 1, which would in context [B — B;B] have type B. If a
variable refers to an index greater or equal than the length of the context, the term
containing the variable has no type in the context.

Definition 3.2 (Typing for PCF;) Thetyping judgementt-: L(varxty) — tm — ty —
IP for PCF; is defined by the following rules:

x:ThaTkHt: T N'eEs: Ty =T, TH: Ty (x,A)eT
FrEAxt: T1 — T, N'eEst: Ty N'eEx: A
'Fs: B T'Et: B THu: B
['Hif sthentelseu: B N'-1:B
It true: B Ik false: B

The rules for lambda-abstractions and function applications follow standard pre-
sentations of the STLC. For the conditional, all subterms are expected to be of type
B and then it is also assigned type B. It is discussed in Section 3.3 why we decided
not to use a more general typing rule. The three constants true, false, L are uncon-
ditionally of type B.

Terms having a type in the empty context are called closed. We sometimes refer to
them as programs.

The following is an important lemma about typed terms and substitutions:

Lemma 3.3 For typing context T, type A, term t with T' - t: A and substitution oy, 02,
we have

(VxA. (x: A)eT — o01(x) =02(x)) = tloy] = tloa].
The proof is by induction on the typing judgement of t.

Definition 3.4 (Typed substitutions) The typing judgement o: T — T for substitu-
tions is defined by:

ol =T = WWA.(x: A)eT — TFox): A
The intuition behind o: " — T is that every variable having a type in context I' is

replaced by a term that has in context '’ the same type.

The key lemma describing typed substitutions is the following. It is proven by
induction on the typing judgement of t.

Lemma 3.5 For type A, typing contexts T, T'', substitution o with o: " — T and term t
with T+ t: A, it holds that T’ F t[o]: A.


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#subst_charact_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#subst_well_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#subst_preserves
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Similarly, one can define a typing judgement for variable renamings.

Definition 3.6 (Typed renamings) The typing judgement o: T'" — T for substitutions
is defined by:
o:T" =T = WA. (x: A) el — (r(x): A)eT’

As for substitutions, the following lemma holds.

Lemma 3.7 For type A, typing contexts T', T, renaming r with v: T/ — T and term t
with T+ t: A, it holds that T' & tlr]: A.

3.3 Operational Semantics

Next, we define a semantics for PCF, to assign meaning to the terms. The semantics
we give is operational, i.e. a reduction relation > for PCF, describing the evaluation
steps of terms is defined. One can think of this as execution rules of a programming
language.

The semantics is call-by-name, i.e. arguments of a function do not need to be eval-
uated before the B-reduction substituting them into the function’s body may be
performed.

Definition 3.8 (Operational Semantics) The reduction relation = tm — tm — P is
inductively defined by the following rules:

s>s’' t-t s>s’
st=s't st>=st’ (Ax.s) t = s[t\x] A.s = As’

s>=s’

if sthentelseu > if s’ thentelseu if truethentelseu >t
t>-t

if sthentelseu > if sthent’ elseu if false thentelseu > u
u=u

if sthentelseu > if s thentelseu’ if | thentelseu> L

if (if sthentelseu)thenvelsew = if sthen (if t thenvelsew) else (if uthenvelsew)

The reflexive and transitive closure of > is denoted by ~*.

Firstly, in every construct (including lambda-abstractions) it is possible to execute a
reduction step of any subterm. Furthermore, 3-reductions are added to the seman-
tics, whereby the single point substitution replaces the variable by the argument of


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#ren_well_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#ren_preserves'
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#step
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#steps
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#steps
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the function. For the conditional, rules are added for the cases when the condition
is one of the three boolean constants: In the case it is true, the conditional reduces to
the term after then and if it is false to the term after else. However, if the condition
is L, the conditional reduces to L, following the intuition that L represents non-
termination and the evaluation of the conditional never terminates as its condition
does not. Lastly, a rule is added enabling conditionals with another conditional in
their condition to shift the latter into their then and else cases in a way preserving
evaluation, i.e. both terms evaluate to the same term.

Note that the operational semantics presented above slightly differs from Loader’s.
Loader also adds n-expansion to the semantics, i.e. a variable f of type A — B may
step to Ax. f x and a variable x of type B may step to if x then true else false, both
only in a context where they are not yet expanded. This makes defining the re-
duction relation a lot more complicated, as both the type of the terms and the in-
formation if they are expanded must be tracked. However, this does not affect the
undecidability of contextual equivalence: Contextual equivalence only involves the
evaluation behaviour of closed boolean terms, which is obviously uneffected by
adding n-expansions to the reduction relation. This means that two terms in the
calculus with n-expansions are contextually equivalent iff this is the case in the cal-
culus without n-expansion. Thus, the former is decidable iff the latter is. In his
paper, Loader even indicates that the precise reduction relation chosen is not es-
sential in the proof]T|

It is said that s is normal if there is no term t such thats = t. If s =* t holds and t
is normal, it is said that t is the normal form of s. Note that the only normal forms
of closed boolean terms are true, false, and L — these are called boolean values.
Moreover, it is said s evaluates to v if s =* v and v is a boolean value, and in this
case we write s || t. Observe that this notion of evaluation only makes sense for
boolean terms.

Note that although the error constant L relates to non-termination in full PCF, it is
still a normal form in PCF, .

While the reduction relation is not deterministic, as e.g. in conditionals each sub-
term can reduce, it has the following three useful properties:

Fact 3.9 Reduction on PCF; has the following properties:

1. Weak normalisation on closed boolean terms with computable normal form, i.e. for
term s s.t. ) = s: B, one can compute a boolean value v s.t. s | v.

!"Finitary PCF is not decidable" by Loader [27] p. 344]: "As the calculus is strongly normalising
and Church-Rosser [...], there is no need here to be overly concerned with a precise presentation of
the operational semantics."


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#weak_normalisation_comp
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2.| Church-Rosser property (also called confluent), i.e. for terms s, t,us.t. s =* t, s >=*
u, there exists a termv s.t. t =* vand u =* v.

3. Type preservation, i.e. for context T', term s, type A s.t. T+ s: A and term t s.t.
s >*1t,it holds that T - t: A.

We did not mechanise the above stronger version of weak-normalisation (1) as well
as the Church-Rosser property (2) in order to focus on the more interesting results.

The relatively short proof of type preservation (3) proceeds by proving the result
first for single reduction steps > and then lifting it to multiple steps >*. For sin-
gle reduction steps, the result is proven by induction on the s >~* t and the using
inversionon 'k s: A.

For type preservation to hold, it is important that all conditionals have type B since
all conditionals can step to L, a term of type B when the condition is L, regardless
of their other subterms. An alternative would be to make L typeable at any type,
then conditionals of any type could be allowed. However, this would lead to a more
general calculus, which is not necessary, as even in this simplification contextual
equivalence turns out to be undecidable.

Observe that the Church-Rosser property implies that normal forms are unique.

Note that (1) is a stronger property than just weak normalisation on closed boolean
terms. It is essential that the normal form is computable such that functions can
make a case disctinction on it in the following sense.

Lemma 3.10/ There is a function of the type

Vi. (0 Ft: B) — (t{ true + t | false + t{§ L).

Reduction in PCF; is also strongly normalising on arbitrarily typed terms, i.e. for
context ', term s, t, type A with ' s: A and s >* t, there exists a term u such that
t evaluates to u. But this result is not necessary for our purposes.

3.4 Contexts and Contextual Equivalence

In the next section, we aim at introducing contexts on PCF,, which can be seen as
terms with a hole, and contextual equivalence on PCF,. Firstly, in Section m
contexts as well as an operation to fill a term into a context are defined. Further-
more, typing rules for contexts are given, which describe the type of the resulting
term when filling a context with a term of a certain type. In Section[3.4.2} contextual
equivalence for PCF, is defined, considering two terms equivalent if they evaluate
to the same boolean in all appropriate contexts. Lastly, a characterisation of contex-
tual equivalence using the so called observational preorder is given in Section[3.4.3|
— a logical relation which is essential for Loader’s proof.


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#church_rosser
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#type_preservation
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#base_eval
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3.4.1 Contexts

Intuitively, a context is a PCF, term with exactly one hole in it. Hereby, also the
entire context can be a hole, which is denoted by e.

Definition 3.11 (Contexts) Contexts ctxt on PCF, are inductively defined by the fol-
lowing rules:

C:ctxt:=e|Cs|sC|Ax.C|if Cthenselset|if sthenCelset|if sthentelseC

where s, t: tm,

Next, it is straightforward to define an inductive function filling a given PCF, term
into a context:

Definition 3.12 (Context filling) The filling of a PCF, term s into a context C is de-
noted by Cls]. It is defined by the following rules.

o[s] =5

(A.C)[s] :==A.(Cl[s]) (if C thentelse u)[s] :=if (C[s]) thentelseu
(t C)[s] :=t (Cls]) (if t then C else u)[s] := if t then (C[s]) elseu

(Ct)[s]:=(C[s]) t (if t then u else C)[s] := if t then u else (Cls])

Similarly, one can define the notion of composition of contexts.

Definition 3.13 (Context composition) The composition of two contexts C, C' is de-
noted by C o C'. It is defined by the following rules.

eoC':=C’
(A.C)oC':=A.(CoC (if Cthentelseu)oC’ :=if (CoC’) thentelseu
(tC)oC :=t(CoC’) (if t then Celseu)oC’ :=if tthen (CoC’) elseu

(Ct)oC':=(CoC)t (if t thenu else C)o C’:=if t thenu else (Co C’)

The following is a straightforward property about context composition.
Fact 3.14 For a PCF; term t and contexts C, C’, it holds that (C o C')[t] = C[C[t]].
Now, we define a typing judgement C: (I, T;) ~ (I, T,) for contexts. Hereby,

C: (I, Ty) ~ (I, T2) can be thought of intuitively as that for any term t with T" - t: Ty,
it holds that I'" + C[t]: T,. This leads to the following definition.


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#pctxt
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#fill
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#comp
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#ctxt_comp_fill
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Definition 3.15 (Typing for contexts) For context C, typing contexts T', T/, types Ty,
Ty, T3, and PCF, terms s t, the typing judgement for contexts is defined by the following
rules:
C: (I, Ty) ~ (T2 =T’ T3)
.:(F,T1)w(F,T1) Ax.C: (F,T])W(FI,T2—>T3)

C: (F,T1) ~ (r/,Tz — T3) F’ Ft: Tz C: (F,T1) ~ (r,,Tz) F’ Ft: Tz — T3
Ct: (F,T1)W(FI,T3) tC: (F>T1)W(FI)T3)

C:M)~T'B) IMks: B TI"MFt: B IT"kFs: B C:(IT1)~(T,B) T"Ft: B

if Cthenselset: (I,T;) ~ (I',B) if sthen Celset: (I, Tq) ~ (I, B)

MeEs: B I'"Ft: B C:(I,T7) ~ (T, B)
if sthentelse C: (I, Ty) ~ (I',B)

And with this definition, the following fact holds, matching the previously pre-
sented intuition for context typings.

Fact3.16/ IfT+t: Tand C: (I,T) ~ (I'",T'), then T’ += C[t]: T'.

3.4.2 Contextual Equivalence (CE)

Finally, we introduce contextual equivalence and give an alternative characterisa-
tion using a logical relation, which is used in the proof of its undecidability.

Definition 3.17 (Contextual Equivalence)| Contextual equivalence in typing context
I"at type T is defined as a binary relation =. on PCF, terms in the following way:

MEs=ct:T := VCv. C: (T, T) ~ (0,B) — (Cls] | v+ Clt] §v)

The decision problem whether two given closed terms are contextually equivalent
is called CE.

Definition 3.18 (CE) Fortype T, and termss, twith() - s: Tand O & t: T, the predicate
CE is defined by
CE(s,t,T) == DFs=t: T.

Intuitively, two terms are contextually equivalent if and only if they cannot be dis-
tinguished in their observational behaviour, i.e. they always evaluate to the same
term in all contexts resulting in a closed term of type boolean. Here, only booleans
are considered observational results as for functions, it is not "easy to observe" if
they are equal.

Fact 3.19/ For each typing context T and type A, the contextual equivalence is an equiva-
lence relation when restricted to PCF; terms of type A in context T.


https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#ctxt_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#fill_type
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#cont_equiv
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3.4.3 Characterisation of Contextual Equivalence

When proving contextual equivalence undecidable, the following logical relation
called observational preorder turns out to be useful, as it can be used to establish a
characterisation of contextual equivalence. In this subsection, we outline the proof
of this characterisation. This is of particular interest since in Loader’s paper [27],
this is (together with few useful results to obtain it) only stated and not proven.
For the work on the logical relations in this subsection, we took inspiration from
the work of Dreyer et al. [14] as well as Ahmed [2].

First, observational preorder is defined on boolean terms typed in the empty con-
text.

Definition 3.20 (Observational Preorder) Observational preorder on booleans is de-
fined in multiple layers.

1. First, it is inductively defined for boolean terms typed in the empty context via the
binary relation <y:

s<pt u= Ci(sy L) Ca(Fv.sv Ativ)

2. It is then lifted to arbitrarily typed terms in the empty context by induction on the
type.

s<.t:B =s<p t
s<ct: A= B :=forall s’ t' withOFs: A,0Ft: Aands’ <. t': A,
it holds that s s’ <. tt’: B.

3. Finally, it is defined for terms of any type in any context.

I's <o t: A := forall o with o: ) — T it holds that o(s) <. o(t): A.

Next, we would like to show that observational preorder is indeed a preorder, i.e.
it is reflexive and transitive. Note that most of the results about observational pre-
order presented here, may first be proven for closed terms and <. (for example by
induction on the type) before it is easily lifted to open terms and <,. However,
for the proof of reflexivity, this is not possible as then the induction hypothesis is
too weak in the case of Function types. If one tries to prove it for open terms by
induction on the typing judgement, the induction still does not go through: In the
A-case, one needs to proove I' - (Ax.e) s <, (Ax.e) t: A — B for arbitrary s, t such
that 0 - s <, t: A with only the assumption x: A,T' - e <, e: B. Asby the definition
of <, on can only substitute x by the same term on both sides of x: A F e <, e: B,
this proof does not go through. We therefore generalise <, in the following way:
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Definition 3.21 (Strong Observational Preorder) The strong observational preorder
in typing context " at type T is defined as binary relation </ on PCF, terms on closed terms
in the same way as <, and on open terms as:

Mes <t A =forall o1, oy withoy: 0 — T, 02: 0 — Tand
Vx A. (x: A)eT — o1(x) <c 02(x): A, we have 01(s) <c 02(t): A

One can then prove the following facts to obtain reflexivity of <{:

Lemma 3.22  For each typing context T', type A, and terms s, t it holds that
L Ifs>=s',t=t'and Tk s’ <[ t': AthenT Fs <] t: A
2.THt: A —» THtL, tr A
TEs< t:A = Ths<, tr A

4/ THt: A = Tt t: Al

Proof First (1) is proven for the special case I' = ) by induction on A and then
lifted to the general case, afterwards. Next, one proves (2) by induction on the
typing judgement, where (1) is used in the case of lambda-abstractions. One can
then conclude (4) for the special case I' = (), which we need to prove (3). Finally,
(4) can be obtained in its general form by using (2) and (3). O

Now transitivity can easily derived by induction on the type for closed terms and
then lifting the result to open terms. Note that in the induction case of function
types, reflexivity is used.

Lemma 3.23/ For typing context T', type A and terms s, t, uwithTFs: A, THt: Aand
FFw: AitholdsthatTHs <o t: A = THt<, w:A = TEFs<,u: A

The desired result now follows easily from Lemma (4) and Lemma

Fact 3.24/ For each typing context T and type A the observational preorder is a preorder
when restricted to PCF, terms of type A in context T

Now, observational equivalence is introduced, which means that observational pre-
order holds in both directions.

Definition 3.25 (Observational Equivalence) For terms s, t, typing context T' and
type T we define

FEs=gt:A = ThEs<ct:AANATHt,s: A
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From Fact it easily follows that observational equivalence is an equivalence
relation.

Lemma 3.26/ For each typing context T' and type A the observational equivalence is an
equivalence relation when restricted to PCF, terms of type A in context T

We now establish the fact that observational preorder and contextual equivalence
agree, which will be used later in Loader’s undecidability proof.

Theorem 3.27 (Characterisation of observational equivalence) Fora type A, typ-
ing context T', terms s, t with '+ s: A, and ' t: A, the following holds:

Es=ct:A & ITkEs=,t: A

In order to prove this theorem, the following properties about observational pre-
order are useful:

Fact 3.28 Observational preorder has the following properties:
1) Fors, t with ) - s =, t: B, it holds that Vv.s | v < t{v.
2.| For f, g of type A — B in context T, it holds that

NMN-f<og:A—=B <« Wx.0kFx: A - I'Efx<,gx:B.

3. Fors,s" withT s: A,itholdsthats = s’ — TFs<,s’': A
4| Fors, twithTFs: A,TFt: Aand C: (T,A) ~ (T, B), it holds that

FFs<,t:A — T'FCls] < Clt]: B.

Proof (1) can be proven directly using the definition of observational preorder on
B. One proves (2) and (3) by first considering I' = ), in which (2) is proven by
induction on A and (3) can be proven directly — before lifting them to the general
case. Finally, (4) is proven directly by induction on the typing judgement of the
context, as restricting I or I'" would not simplify the proof. O

We have now all lemmas in hand to prove that observational preorder in both di-
rections characterises contextual equivalence.

Proof (Theorem For the forward direction, it suffices to prove ' s <, t: A,
as =, is symmetric. This is first proven for I' = () by induction on A, which is stan-
dard. Thenitislifted to an arbitrary I by simulating the substitution of closed terms
for the free variables of s and t with a context of lambda-abstractions capturing the
free variables of s and t. Hereby, the concept of context composition is needed: One
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context comes from the definition of contextual equivalence (the context in which
the two terms should behave the same) and the other one is the context used to
capture the free variables of the terms.

For the backward direction, one obtains for any C with C: (T, A) ~ (I'/,B) that () -
Cls] =, Clt]: B by Fact (4). Then, the claim follows by Fact and Fact
(1). O

The following results about observational equivalence and contextual preorder that
turn out to be useful in later chapters:

Lemma 3.29/ For typing contexts T', T/, type A, term t with T" - t: A and substitution
01,0 witho1:T' — T, 02: " — T, it holds that

(Wx. (x: A) el = T'Foi(x)=c 02(x): A) = T+ tlog] = tloa]: A.

The proof relies on the fact that the <] is reflexive and implies <,.

Lemma 3.30/ For typing context ', type A, terms t, t’ with T+ t: Aand t =* t', it holds
thatTHt=.1t": A.

The proof is by first lifting Fact[3.28](3) to multiple steps using a standard induction
on the steps. Then, a dual version of Fact (3) is proven, where <, is replaced
by >,, using the same techniques as before. The result can then again be easily to
multiple steps. Finally, the claim follows from these two results.

Lemma 3.31 For typing context I and term t with t: ) — B, it holds that
1.THtrue<, t:B < tltrue < T'Ftrue=.t:B

2/ THfalse <o t: B < t{false < THfalse=.1t:B

This result follows immediately from the definition of <, and =,.

Given an inequality between two terms, it still holds after renaming the variables
in the terms in the new context.

Lemma 3.32/ For typing context T', T, renaming v with v: T — T, type A and terms s, t

withT s <o t: A, it holds that T' + s[r] <, tir]: A

The proof is by using the definition of <, and considering the composition of the
substitution obtained when proving the desired inequality with the renaming r.
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Chapter 4

Decision problems appearing in Loader’s Proof

Next, we explain the reduction chain in detail used to prove contextual equivalence
on PCF, even for closed terms (CE) undecidable, following Loader’s proof [27]]:

SR < SATIS < PS < RPS <, CE

According to transitivity of reductions, this chain induces a reduction from SR to
CE. The undecidability of CE then follows from that of SR, as undecidability is
transported forwards along reductuctions and SR is undecidable. This leads to the
following theorem.

Theorem 4.1 Contextual equivalence for closed terms on PCF, (CE) is undecidable.

It remains to establish the reductions of the above chain. The first three of these are
first established without the complements, which then induces the version with
complements. So the reductions we actually present are the following;:

SR <, SATIS <, PS <,y RPS RPS <, CE

In this chapter, all decision problems involved are formally defined and the proofs
of all but one reduction are given, namely the reduction from string rewriting to
satisfiability of words. In fact, SR is not only many-one reducible to SATIS but
the two problem are even equivalent in the sense that for string a, b, it holds that
SR(a,b) < SATIS(a,b). As this part of the proof, connecting string rewriting sys-
tems with terms in PCF,, is by far the most intricate, we dedicate it both Chapter
and Chapter [f]

Note that from Theorem 4.1} the undecidability of contextual equivalence on PCF,
for terms typed in arbitrary contexts follows.

Definition 4.2 (CE’) For typing context T, type T, and terms s, t with T' & s: T and
'+ t: T, the predicate CE’ is defined by

CE'(TI,s,t,T) = Tks=ct:T.
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Corollary 4.3 Contextual equivalence on PCF is undecidable for arbitrary typed terms.

Proof It is easy to see that CE is many-one reducible to CE” with the following
reduction function:

f(s) t, T) = ((Z)) Sy t, T)

The correctness follows immediatly from the definitions of CE and CE’. Thus, the
undecidability of CE’ follows from that of CE again as undecidability is transported
forwards along reductions. O

In Section[4.3] it is also explained why Theorem [4.1|entails that contextual equiva-
lence on PCF, is undecidable for arbitrary typed terms.

4.1 Reducing Satisfiability of Words to Preorder Systems

In this section, the second reduction of the chain is discussed.

SR <,n SATIS <, PS <in RPS <,y CE

Before giving the reduction, the two involved decision problems are defined, fol-
lowing Loader’s original work [27]]: In Section the notion of satisfiability of
words (SATIS) is defined, i.e. what it means for a PCF, term to satisfy an instance
of SR, namely an initial string and a target string. Then, preorder sytems (PS) are
introduced in Section[4.1.2} the problem whether there exists a PCF, term satisfying
finitely many inequalities at once.

4.1.1 Satisfiability of Words (SATIS)

Since SATIS establishes a connection between string rewriting systems and PCF,
terms, which have quite a different structure, we first explain how to encode words
and rewriting rules into PCF,.

Word Encodings

As the following PCF, type will regularly appear for the remainder of this thesis,
the following notation is introduced:

T(a) = B—---—B—B where aisaword.
| S ———
2|al+2

There are two kind of word encodings, namely true- and false-encodings.

Definition 4.4 (Word encoding) Letv € [true, false]. A function Enc: £L(B) — tm is
a v-encoding iff for all words a, ) = Enc(a): T(a)and

0+ Enc(a) <o M1 ...X2q)+2.v: T(a)
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Intuitively, the above inequality means that the function Enc(a) only returns v and
L. Hereby, each symbol of the word is represented by two of the function’s argu-
ments: The first symbol by the first two argments, the second by the next two and
so on. The last two arguments of the function do not represent any symbol In par-
ticular, a word encoding may ignore the word’s symbols and provide for each word
any function of the correct type only returning v and L. Note that there is a duality
between word encodings: Each true encoding can be transformed into a false encod-
ing by returning for all words and arguments false if the original encoding would
have returned true and L otherwise. This check can easily be performed in PCF,
with a conditional. In the same way, one can obtain a true encoding from a false
encoding. We call such encodings duals. In his paper, Loader presents 16 word en-
coding together with their respective dual, so overall 32 encodings [27]]. The list of
these encodings is denoted by €. All these encodings can be found in Appendix
Note that most of Loader encodings — all but one encoding and its dual —ignore the
symbols of the encoded words and only take the length of the word into account.

Now, some examples of word encodings are presented. To increase legibility, we
do not give the explicit PCF; terms the encodings return for each word, but instead
specify what these functions should evaluate to. It is rather obvious that functions
with this behaviour can be constructed in PCF, by nesting conditionals.

o Consty(a) sy ... syq t1t2=v
The constant encoding always returns v and never L, disregarding all argu-
ments.
v Vk.1<k<]q
e PosOdd,(a) s1 s ... s|q S\/a| )ty = — (sy | true V sy | false)

1 otherwise
This encoding returns v iff all the arguments at odd positions evaluate to true
or false, disregarding the last two arguments t; and t;.

o leta=aj...an.

v Vk.1<k<]|a = (s ax N\ s/ Ja
Word, (a) s1 s} ... snsy t1t2 = lal (s1c & ax K axd
1 otherwise
The Word-v encodings return v iff the arguments correspond exactly to the
symbols of the encoded word, disregarding the last two arguments t; and t,.

These are the only two encodings taking the words’ symbols into account.
Rule Encodings
Next, it is i