
Saarland University
Faculty of Mathematics and Computer Science

Bachelor’s Thesis

The Undecidability of Contextual
Equivalence on PCF2 – Towards a

Mechanisation in Coq

Author
Fabian Andreas
Brenner

Supervisor
Prof. Dr. Gert

Smolka

Advisors
Dr. Yannick Forster,
Dr. Dominik Kirst

Reviewers
Prof. Dr. Gert Smolka
Dr. Yannick Forster

Submitted: 20th August 2024

ii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.
Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 20th August, 2024

Abstract

PCF (Programming Computable Functions) is an idealised functional program-
ming language introduced by Plotkin in 1977. It has been inspired by work of Scott
as well as Platek and has proved to be of great importance in practice by serving as
basis for the design of functional programming languages such as standardML and
Haskell. Nevertheless, the full abstraction problem, posing the question whether
there exists a fully abstract model for PCF that is both concrete and independent of
syntax, has been open for decades.
In 2001, Loader provided a negative answer to this problem by proving contextual
equivalence undecidable for a severely restricted version of PCF called PCF2. A
solution of the full abstraction problem would entail the decidability of contextual
equivalence on PCF – and in particular on PCF2, which is why Loader’s result ex-
cluded the existence of such a model. In Loader’s undecidability proof, which is
well-known to be full of intricate technical arguments and contains barely any ex-
amples, the undecidability of contextual equivalence on PCF2 is deduced from that
of string rewriting.
In this thesis, we point out that Loader’s arguments can be turned into a chain of
four many-one reductions and mechanise part of it in the Coq proof assistant in
the setting of synthetic undecidability. To be precise, we mechanise observational
equivalence – an equivalence relation used in Loader’s proof agreeing with contex-
tual equivalence, as well as all reductions but the first in the chain. Furthermore,
we provide insightful examples and present nontrivial details that are left out in
Loader’s paper, making the result more accessible to non-expert readers and lay-
ing a foundation for future work mechanising the remaing reduction.

Acknowledgements

First and foremost, I would like to thank my advisors, Yannick and Dominik, for
their extremely helpful support during this project. I am very grateful for the fre-
quent and incredibly valuable feedback as well as the insightful discussions.
Of course, I also would like to thank Professor Smolka for introducing me to the
field of constructive type theory and giving me the opportunity to write my Bach-
elor’s thesis at his group.
Furthermore, I owe gratitude to Professor Groves for his exceptionally inspiring
lectures, his active support, and numerous recommendation letters.
Moreover, I would like to acknowledge Professor Reineke for mentoringme during
my Bachelor’s studies.
I also thank all my friends for cheering my up when I was stressed. Especially, I
would like to thank Ben, Christian, and Haoyi for proofreading parts of this thesis.
Special thanks also goes to Janis for countless fruitful discussions and collabora-
tions.
Last but not least, I owe my full gratitude to my family for their trust and unwaver-
ing support.

Contents

Abstract iii

1 Introduction 1
1.1 Contribution . 4
1.2 Overview . 5

2 Preliminaries 6
2.1 Constructive Type Theory . 6
2.2 Synthetic Undecidability Theory . 7
2.3 String Rewriting (SR) . 9

3 Programming Computable Functions 12
3.1 Syntax . 12
3.2 Typing . 13
3.3 Operational Semantics . 15
3.4 Contexts and Contextual Equivalence 17

3.4.1 Contexts . 18
3.4.2 Contextual Equivalence (CE) 19
3.4.3 Characterisation of Contextual Equivalence 20

4 Decision problems appearing in Loader’s Proof 24
4.1 Reducing Satisfiability of Words to Preorder Systems 25

4.1.1 Satisfiability of Words (SATIS) 25
4.1.2 Preorder Systems (PS) . 31

4.2 Reducing Preorder Systems to Restricted Preorder Systems 33
4.2.1 Restricted Preorder Systems (RPS) 33

4.3 Reducing RPS to Contextual Equivalence 34

5 Equivalence of SR and SATIS: Forward direction 36
5.1 Examples of terms satisfying words . 36
5.2 Proof of the forward direction . 40

vi Contents

6 Equivalence of SR and SATIS: Backward Direction 43
6.1 Descent funtions . 45
6.2 Structural reductions . 46
6.3 Correctness Proof . 51

7 Related Work 57
7.1 Decidability of PCF1 . 57
7.2 Decidability of STLC with sum and product types 60
7.3 Related Undecidability Results . 61

8 Conclusion 63
8.1 Coq Mechanisation . 63
8.2 Open problems . 65

A Appendix 67

Bibliography 69

Chapter 1

Introduction

PCF (Programming Computable Functions) is an idealised functional program-
ming language inspired by Platek [40] and introduced by Plotkin in 1977 [41] based
on a famous unpublished manuscript written by Scott in 1969, which has eventu-
ally been published later [48]. It is an extension of the simply typed lambda calcu-
lus with a fixed point combinator at all types, natural numbers as base type and a
match on natural numbers. In this thesis, we focus on an undecidability result of
Loader [27], which provided a negative answer to a long-standing open problem
concerning PCF called the full abstraction problem.
Historically, PCF has proved to be of high importance: Scott’s work on PCF as
model for computability and his axiomatic proof system based on PCF terms [48]
formed the theoretical foundation of LCF (Logic for Computable Functions), an
interactive theorem prover developed by Milner[34]. Furthermore, the design of
functional programming languages such as standard ML [35] and Haskell [52] is
inspired by PCF.1

Since the introduction of PCF, Computer scientists have been looking for decades
for a – in some sense natural –model of PCF. In particular, themodel should be fully
abstract, i.e. two PCF terms should have the same presentation in the model if and
only if they are contextually equivalent. Contextual equivalence is an equivalence
relation on a calculus with two terms being in relation if and only if they have the
same observational behaviour, i.e. in contexts the terms evaluate to booleans, they
evaluate to the same boolean. The problem of finding a fully abstract model that
is both concrete and independent of syntax is called the full abstraction problem.
The first fully abstract model for PCF was given by Milner in 1977 [33], but was
considered not satisfactory, as it was based on the syntax of PCF.2 In the 1990s,

1"Higher-Order Computability" by Longley and Normann [29, p. 279]: "Indeed, PCF has in prac-
tice proved valuable as a basis for the design of functional programming languages such as Standard
ML and Haskell."

2"Finitary PCF is not decidable" by Loader [27, p. 342]: "[. . .]it uses a term model construction

2 Introduction

two fully abstract models for PCF have been developed using game semantics [1,
24] and Kripke logical relations [37]. However, it is not precisely defined what
"concrete" and "independent of syntax" mean in this context, which is why one
cannot easily point out which – if any – model is a good solution to the problem.
A criterion a sufficiently concrete model should fulfill – and which none of the
above models does – is that for finitary parts of PCF, i.e. restrictions of PCF to a
finite base type, the presentation in themodel should be computable and the objects
representing the terms should be finitely represented and belong to a decidable set.
If a fully abstract model with this property existed, one could use it to decide if two
terms of a finitary part of PCF have the same observational behaviour. To determine
if such models can exist, Jung and Stoughton asked whether this decision problem
is even decidable [25].
Surprisingly, a negative answer to this long-standing open problem has been pro-
vided: In 2001, Loader published a paper proving contextual equivalence unde-
cidable even on a finitary part of PCF with strongly normalising reduction relation
called PCF2 [27]. In PCF2, the base type is restricted to the booleans containing
the standard boolean values as well as a third value representing an error. This re-
sult implies that no fully abstract model satisfying the previous criterion can exist,
as such a model could be used to decide contextual equivalence on this severely
restricted calculus. However, Loader’s proof is well-known to be long and full of
intricate technical arguments about the structure of certain PCF2 terms.3 More-
over, the original paper contains barely any examples illustrating the highly tech-
nical proof. In the proof, the undecidability of contextual equivalence on PCF2
is deduced from that of string rewriting. String rewriting (SR), also called word
problem for semi-Thue systems, is a well-known decision problem which has been
introduced by Thue in 1914 [53] and proved undecidable independently by Post
in 1947 [43] and Markov in 1948 [30, 31]. It is the problem, given an initial string
and a target string, whether one can obtain the target string by rewriting the initial
string with a fixed set of rewriting rules. For instance, if there is a rule (e, f), then a
string of the form aec can be rewritten to afc.
In this thesis, we point out that Loader’s arguments can be turned into a reduc-
tion chain consisting of four reductions. String rewriting does not have a similar
structure as the contextual equivalence or an obvious relation to PCF2 at all, which
is why it is of particular ingenuity how to encode strings and rewriting rules into
PCF2. In fact, the main difficulty of the proof lies in establishing a connection be-
that does not tell us what mathematical structures are appropriate for modelling the calculus, and
does not give useful techniques for reasoning about the model"

3"Higher-Order Computability" by Longley and Normann [29, p. 342]: "Whilst the theorem it-
self is of fundamental importance, the proof is long and technical, and consists of intricate syntactic
arguments which in themselves shed little light on the nature of sequential functionals."

3

tween SR and certain PCF2 terms, whereas the remaining reductions leading to-
wards general contextual equivalence are rather straightforward.
The purpose of this thesis is both to give a formal account of Loader’s proof, and in-
troduce the reader to Loader’s intricate technical arguments by providing insightful
examples and explanations. Formalising such a highly technical proof on paper can
easily cause errors in the details. Here, proof assistants likeCoq [51], Lean [12], and
Isabelle [36] come into play – computer programs designed to support in proving
mathematical statements and verifying their correctness. Proof assistants can act as
link between a full formalisation and the human reader: They provide both a level
of informal reasoning by advanced automation as well as complex book-keeping of
involved details beyond what is possible on paper with reasonable efforts. While
one can be extremely sure that a theorem mechanised in a proof assistant is valid,
this usually involves a lot of technical overhead as the proof needs to be given in
full detail, including lemmas one would skip over in an informal proof (although
theymight not be easy to prove!). Even if there is no doubt that a result is correct, it
can be worthwhile work to mechanise it, as this enforces choosing definitions very
carefully to reduce technicalities as well as understanding the very details of the
proofs, and thus may lead to simplifications of proofs and statements.
For our mechanisation, we work with the Coq proof assistant [51]. It is – as many
proof assistants – based on intuitionistic type theory, which goes back to Martin-
Löf [32]. To be precise, the formalism behind Coq is the Calculus of Inductive Con-
structions (CIC) [38, 39], which extends the Calculus of Constructions [9]. When
inspecting the meta-theory carefully, it turns out every function definable in CIC is
computable – a function defined in CIC is essentially an executable program. Fur-
thermore, note that Coq’s logic is intuitionistic, which means the law of excluded
middle LEM := ∀P : P. P ∨ ¬P is not assumed.
There are two main approaches to formalising computability theory in a proof as-
sistant: First, one could follow the textbook development and choose a concrete
model of computation, e.g. Turing machines. While this approach is possible in
proof assistants, it would require many technical results about the expressiveness
of the specific model, e.g. mechanising each Turing machine used to prove a func-
tion computable. Second, if the proof assistant relies on ameta-theory only permit-
ing to define computable functions – as for example Coq does – one can also use a
synthetic approach, which goes back to Richman and Bridges [44, 8], and was de-
veloped further by Bauer [6, 7]. In such a setting, it is natural to treat all functions
as the function space of computable functions. Thus, no details about a model of
computation need to be considered, facilitating the work tremendously.
While this yields a straight-forward definition of decidability and reductions, it is
more diffifult when turning to undecidability: The assumption that every predi-

4 Introduction

cate, i.e. a function of type X → P for a type X, is decidable, is consistent in axiom-
free Coq as observed by Werner [56]. Thus, in order to obtain synthetic undecid-
ability results, one needs to assume further axioms if one defines undecidability
as the negation of decidability as done by Bauer [6, 7]. Instead, to maintain an
axiom-free setting, one can introduce a notion of synthetic undecidability relative
to a base problem informally known not to be enumerable, e.g. the complement
of a fixed Halting problem, and then call a problem undecidable if its decidability
implies the enumerability of the base problem.
Forster, Kirst, and Smolka [19] introduced this approach and laid the foundations
of synthetic undecidability in theCoqproof assistant. Since it is usually not possible
with reasonable efforts to reduce directly from the Halting problem, it is desirable
to maintain a library containing many undecidable problems, such that there is a
large variety of problems to reduce from. And indeed, Forster et al. created such a
library, namely the Coq Library of Undecidability Proofs [20], containing undecid-
ability proofs for many decision problems in Coq. The work in this thesis towards
a mechanisation of the undecidability of contextual equivalence in PCF2 is in fact
based on the Coq Library of Undecidability Proofs.
1.1 Contribution
To the best of our knowledge, we make the first contribution towards the mechani-
sation of Loader’s proof of the undecidability of contextual equivalence on PCF2.
We mechanised PCF2, contextual equivalence and several properties of these two
notions. In particular, we mechanised that observational equivalence agrees with
contextual equivalence, which is only postulated, but essential in Loader’s proof.
Furthermore, we turned Loader’s proof into a reduction chain consisting of four
many-one reductions and mechanised the reductions appearing in this chain, ex-
cept for the first reduction, which starts from the complement of SR. We attempted
to mechanise the forward direction of this reduction, but due to a lack of time,
could not complete it. We did not mechanise the backward direction of this reduc-
tion, which is the most laborious part of the proof, as it requires numerous syn-
tactical arguments, and whose mechanisation therefore would involve significant
overhead.
However, we present the full proof on paper, providing additional explanations
anddetails left out in Loader’s proof. We also contribute insightful examples aswell
as technical observations regarding the encodings of rewriting systems into PCF2,
which in our opinion shed a little more light on this highly technical, intransparent
result.
Overall, we contribute a foundation for future work aiming at a complete mecha-
nisation of Loader’s result, and an introduction to Loader’s proof, making it more
accesible to non-expert readers.

1.2. Overview 5

1.2 Overview
The structure of the thesis is the following: In Chapter 2, we introduce the type-
theoretical background of this project and the synthetic approach to undecidabil-
ity we have taken. Chapter 3 introduces PCF2 as well as contextual equivalence
and presents several useful results about these concepts – inter alia, the observa-
tional preorder is introduced, which is used in Loader’s proof to characterise con-
textual equivalence. In Chapter 4, we introduce the decision problems in the re-
duction chain from the complement of string rewriting to contextual equivalence
and present all but the first reduction. In Chapter 5, we proceed with the forward
direction of the remaining reduction, whereas we discuss the backward direction
in Chapter 6. Chapter 7 presents related systems in which contextual equivalence
is in fact decidable and outlines key differences between these systems and PCF2.
Furthermore this is where related undecidability results are discussed. In Chap-
ter 8, we summarise our work, add further comments on our Coq mechanisation
and open problems as well as on possible future work.

Chapter 2

Preliminaries

In this chapter, we introduce basic definitions fromCoq’s type theory and synthetic
undecidability to establish a formal basis for our work.
2.1 Constructive Type Theory
We work in the constructive type theory of the proof assistant Coq [51], which is
based on CIC [39, 9] and goes back to Martin-Löf [32]. In this type theory, the
universe of types is denoted by T and there is also an impredicative subuniverse
of propositions, denoted by P. For the type of functions from X to Y, the notation
X → Y is used. There is also the dependent function type ∀x : X. T(x), where the
return type T(x) of the function depends on the input x.
The following types are frequently used in our work:

n : N ::= 0 | S(n) (natural numbers)
B ::= t | f (booleans)

L : L(X) ::= ∅ | x :: L where X : T, x : X (lists)
X+ Y ::= L(x) | R(y) where X, Y : T, x : X, y : Y (sum types)
X× Y ::= (x, y) where X, Y : T, x : X, y : Y (product types)
O(X) ::= None | ⌜x⌝ where X : T, x : X (option types)

The common arithmetic operations on natural numbers are denoted by (+,−, ·).
Now consider two lists A,B : L(X) where X : T. The concatenation of A and B is
denoted by A++ B and the length of A by |A|. The proposition x ∈ Ameans that x is
contained inA. For a list with elements x1, . . . , xn, the bracket notation [x1, . . . , xn]

is usually used throughout this thesis.
In this type theory, there are also the usual propositions and propositional connec-
tives: truth, falsity, conjunction (∧), disjunction (∨) and implicaton (→). Nega-
tion of a proposition p (¬p) is defined as p implies falsity and equivalence (↔) is
defined as p↔ q := (p→ q) ∧ (q→ p).

2.2. Synthetic Undecidability Theory 7

There are also existential quantifiers in the type theory, modelled as proposition
∃(p : X → P) : P. Existential quantifiers can only be eliminated when proving a
proposition.
A computational alternative for ∃ in the sense that it can be eliminated in arbitrary
contexts is the dependent pair type Σ(p : X → T) : T, which does not underly the
previously mentioned restriction as it is not a proposition. Note that it does not
hold in general that ∃p implies Σp. When writing "there exists" it is referred to ∃,
and to Σ when writing "one can compute".
2.2 Synthetic Undecidability Theory
In this section, the basic notions of synthetic undecidability in Coq is formally in-
troduced, following the work of Forster, Kirst, and Smolka [19], which goes back to
Richman and Bridges [44, 8] as well as Bauer [6, 7]. To model decision problems,
predicates are used, i.e. functions of type X → P for a type X. First, the complement
of a predicate is introduced.

Definition 2.1 Let X be a type. For a predicate P, its complement P is defined by P x :=

¬P x for x : X.

Now, one can define decidability and enumerability following the observation that
every function in axiom-free CIC is computable – this is because a function defined
in CIC is essentially a program coming with an algorithm of how to compute it.
This permits avoiding concrete models of computation such as Turing machines.

Definition 2.2 Let P : X → P be a predicate on type X.

1. P is called decidable iff there exists a function f : X → B such that

∀x. P x↔ f x = t.

2. P is called enumerable iff there exists a function f : N → O(x) such that

∀x. P x↔∃n. f n = ⌜x⌝.

3. X is called enumerable iff there exists a function f : N → O(x) such that

∀x. ∃n. f n = ⌜x⌝.

Next, undecidability is defined following the motivation from Chapter 1. Recall
that in axiom-free Coq, the assumption that every predicate is decidable is consis-
tent due to Werner [56]. To avoid assuming axioms in Coq or rolling back to a
concrete model of computation and establish undecidability results with respect to

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Definitions.html#complement
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Definitions.html#decidable
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Definitions.html#enumerable
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.EnumerabilityFacts.html#enumerable__T

8 Preliminaries

this model, one can establish a notion of synthetic undecidability relative to a fixed
base problem. The chosen base problem should be widely accepted to be undecid-
able, e.g. known to be undecidable in the usual computational models. We follow
the development of the Coq Library of Undecidability Proofs by Forster et al. [20]
and choose the complement of a fixed Halting problem Halt as base problem. It is
known that the chosen Halting problem is undecidable and that its complement is
not enumerable. This leads to the following definition:

Definition 2.3 (Undecidability) A predicate P : X → P on X is called undecidable iff
the assumption that it was decidable implies Halt to be enumerable.

With this definition, both v and Halt can be shown undecidable.

Lemma 2.4

1. Halt is undecidable.
2. Halt is undecidable.

The proof of (1) relies on decidable predicates on enumerable types also to be enu-
merable. As Halt and thus also Halt are defined on enumerable types, the result
follows. One then can obtain (2) by using the following result, which relies on the
fact that a decider for P can be used to construct a decider for P.

Lemma 2.5 Let P : X → P be a predicate. If P is undecidable, then P is undecidable.

Note that when proving a problem undecidable, it is uncommon to prove the defin-
ing implication directly. A common way to prove problems undecidable in text-
book presentations of undecidability is by reducing from problems already proven
undecidable. Thus, it is desirable for this synthetic version of undecidability to be-
have well with a notion of reductions such that this technique can also be used for
synthetic undecidability – so the above result forms a basis for further undecidabil-
ity results. Now, the definition of many-one reductions and the relevant lemmas
are briefly presented.

Definition 2.6 (Many-one reductions) A predicate P : X → P is many-one reducible
to Q : Y → P iff there exists a function f : X → Y such that

∀x.P x ↔Q (f x).

In this case we write P ⩽m Q.

Note that decidability transports backwards and undecidability forwards along re-
ductions.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Undecidability.html#undecidable
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.TM.SBTM_undec.html#complement_SBTM_HALT_undec
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.TM.SBTM_undec.html#SBTM_HALT_undec
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Undecidability.html#undecidability_from_complement
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Definitions.html#reduces

2.3. String Rewriting (SR) 9

Lemma 2.7 Let P : X → P, Q : Y → P be predicates.

1. If Q is decidable and P ⩽m Q, then P is decidable.

2. If P is undecidable and P ⩽m Q, then Q is undecidable.

Hereby, (1) follows easily by considering the composition of the decision function
forQwith the reduction function, and (2) follows immediately from (1) as well as
Definition 2.3.
Furthermore, many-one reductions are transitive – again by composition.

Lemma 2.8 Let P : X → P, Q : Y → P, R : Z → P be predicates. If P ⩽m Q and Q ⩽m R,
then P ⩽m R.

Amany-one reductions from P toQ induces amany-one reduction from P toQ. The
reduction function of the first reduction is also a valid for the second reduction.

Lemma 2.9 Let P : X → P, Q : Y → P be two predicates. If P ⩽m Q holds, then P ⩽m Q

also holds.

Note that these simple results about many-one reductions provide together with
Lemma 2.4 a technique to show a vast variety of decision problems undecidable
in the synthetic setting. And in fact, this is done in the Coq Library of Undecid-
ability Proofs by Forster et al. [20]. This library contains undecidability results for
various decision problems, i.e. reduction chains from the above mentioned halting
problem and its complement. It may be observed that Lemma 2.7 (2) permits to
start reductions from other undecidable problems than the base problem in order
to show a problem undecidable, which in many cases tremendously facilitates the
proofs: One may start the reduction from a problem with a more similar structure
and less technical details than the formal semantics of Turing machines.
2.3 String Rewriting (SR)
Next, string rewriting is introduced, from which the reduction chain showing con-
textual equivalence on PCF2 undecidable starts. String rewriting systems are also
called semi-Thue systems and go back to Thue [53], shownundecidable in textbook
decidability theory independently by Post in 1947 [43] andMarkov in 1948 [30, 31].
A rewriting rule consists of a pair of strings (e, f) and permits to rewrite a string of
the form aec into afc.
Formally, the booleans B are fixed as finite alphabet, where the boolean value t is
identified with the PCF2 term true – we proceed analogously with f. Strings (also
called words) are modelled as lists L(B) over the alphabet B. Rewriting rules are
represented by pairs of strings L(B) × L(B), and string rewriting systems, which

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.ReducibilityFacts.html#dec_red
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.Undecidability.html#undecidability_from_reducibility
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.ReducibilityFacts.html#reduces_transitive
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.Synthetic.ReducibilityFacts.html#reduces_complement

10 Preliminaries

consist of finitely many rewriting rules, by a list of rewriting rules L(L(B)×L(B)).
For the sake of legibility, ab is used as notation for a ++ b, the concatenation of
strings a, b. Now the application of a single rewriting rule ⇒R and its reflexive,
transitive closure ⇒∗

R are formally defined.

Definition 2.10 (String rewriting relation) The binary relations on words ⇒R, ⇒∗
R

are defined by the following rules:

(e, f) ∈ R

aec ⇒R afc a ⇒∗
R a

a ⇒∗
R b b ⇒R c

a ⇒∗
R c

Note that one equivalently could define ⇒∗
R with ⇒R and ⇒∗

R swapped in the
premise of the third rule, as done in the Coq Library of Undecidability Proofs[20].
However, the above definition turns out to be useful in the reduction in Chapter 5
and Chapter 6 when doing induction on the derivation of certain words.
It has been proven by Davis [10] that there is a list of rules R over any alphabet
with only two letters, such that the following problem, called string rewriting, word
problemor reachablility problem for semi-Thue systems, is undecidable in textbook
decidability theory: 1

SRR(a : L(B), b : L(B)) := a ⇒∗
R b

Davis, who worked with Turing machines as computational model, took the fol-
lowing apporach: He argues that Turing machines can be translated into rewriting
systems on some finite alphabet Γ in the sense that the Turing machine outputs a
word on a given input if and only if the word is derivable in the system from the
initial word, which corresponds to the input of the Turing machine. It then easily
follows that for each recursively enumerable problem, there is a string rewriting
system such that a word is contained in the problem if and only if it can be derived
in the system fromanyword of a certain form– the proof is by translating the Turing
machine enumerating the problem into a string rewriting system. Also note that
any rewriting system on any finite alphabet Γ can be translated into a rewriting sys-
tem on any binary alphabet preserving derivability. The result is then obtained by
considering a string rewriting system corresponding to an undecidable, recursively
enumerable problem and then turning this system into a system on the respective
binary alphabet.
String rewriting is usually presented in a versionwhere the rules R are not fixed, but
provided as an additional argument. That version of string rewriting has been inde-
pendently proven undecidable in textbook decidability theory by Post in 1947 [43]

1"Computability and Unsolvability" by Davis[10, p. 93]: "There exists a semi-Thue system whose
alphabet consists of two letters and whose decision problem is recursively unsolvable."

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.SR.html#rew
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.SR.html#rew
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.SR.html#rewt
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.external.SR.html#SR

2.3. String Rewriting (SR) 11

and Markov in 1948 [30, 31]: Both proved the word problem for Thue systems –
semi-Thue systems with symmetric rewriting rules – undecidable, which implies
the undecidability of the word problem for semi-Thue systems. Post achieved this
by reducing from the printing problem for Turingmachines, whileMarkov reduced
from Post canonical systems [42] – a more complex string rewriting problem.
In particular, the Coq Library of Undecidability Proofs[20] contains an undecid-
ability result about string rewriting by Forster, Heiter, and Smolka [18]. However,
the version from the library differs from the version presented above: It is the ver-
sion where the rewriting rules are not fixed, but provided as argument. For the
remainder of this thesis, the following is assumed.

Axiom 2.11 There exists a list of rules R = [(e1, f1), . . . , (eN, fN)] over the alphabet B
such that SR is undecidable, where

SR : (L(B)× L(B)) → P := SRR.

Because of Davis’ results in textbook undecidability [10] discussed in Section 2.3,
it is reasonable to assume Axiom 2.11.
Why exactly fixing a set of rules is important for our purposes, becomes clear in
the reduction from SATIS to PS in Section 4.1. We remark that in Loader’s original
proof [27], it is not only a set of rewriting rules fixed, but also an initial word. As
this turns out not to be necessary, the initial word remains in our development an
argument of SR.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.undecidability.html#SR_undec

Chapter 3

Programming Computable Functions

In this chapter, we formally introduce PCF2. In Section 3.1, the syntax is defined, es-
tablishingwhich form the types and terms of PCF2 have. Afterwards, in Section 3.2,
the typing rules of PCF2 are given, categorisingwell-typed terms into booleans and
functions, before we fix a semantics in Section 3.3 to assign meaning to the terms,
i.e. specify the reduction relation. Furthermore, in Section 3.4 contexts are defined –
termswith a hole, which one can fill with a term – aswell as contextual equivalence,
which is an equivalence relationwith two terms being equivalent if and only if they
are indistinguishable in their observational behaviour. Also, an alternative charac-
terisation of contextual equivalence using logical relations is presented, which will
later be useful in Loader’s undecidability proof.
3.1 Syntax
The syntax of PCF2 is divided into two parts, namely terms and types. PCF2 is an
extension of simply typed λ-calculus (STLC) with the booleans B as base type and
a conditional.

Definition 3.1 (PCF2) The types ty and terms tm of PCF2 are defined by by

T1, T2 : ty ::= B | T1 → T2

s, t, u : tm ::= λx.s | s t | x | if s then t else u | true | false | ⊥

The types of PCF2 consist of booleans (B) and function types (T1 → T2). Terms
consist of lambda-abstractions (λx. s), function applications (s t), variables (x),
conditionals (if s then t else u) and boolean constants true, false and ⊥.
Here, B comes with the three constants true, false and ⊥. The third constant of
B, called ⊥, may be unexpected as the booleans usually only consist of the two
standard truth values. However, in this calculus, ⊥ is an error constant at type
B, i.e. one can think of it as placeholder for errors, relating to full PCF’s ability to
diverge.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html#ty
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html#tm
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html#ty
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html#tm

3.2. Typing 13

Note that on paper, named syntax is used to increase readibility and call the names-
pace of the variables var, whereas in Coq the de Bruijn indices are used for variables,
which usually leads to less technical overhead. To be precise, we use in Coq the
tool "Autosubst 2" for substitutions, which has been developed by Stark, Schäfer
and Kaiser [50] and is based on "Autosubst" by Schäfer, Tebbi and Smolka [45].
Therefore, lambda-abstractions have in the mechanisation the form λ.t rather than
λx.t. The key idea behind the de Bruijn representation is, instead of attaching to
each λ a name and referring to it, variables are represented by a natural number
called de Bruijn index that indicates the "distance" to its binder. For example, the
term λx.λy.y x can be represented by λ.λ.(Var 0) (Var 1). This technique has been
developed by de Bruijn in 1972 [11].

In this work, parallel substitutions denoted by σ : var → tm are used, i.e. functions
from variables to terms. The notation t[σ] is used for the term resulting from apply-
ing σ to all free variables in t. Furthermore, we follow the Barendregt convention
assuming that the bound variables chosen in our terms are always different from
the free variables [5]. Thus, substitutions can be assumed to be capture avoiding.
The notation σ[s/x] is used for the substitution σ extended with the mapping of
binder x to term s. The identity substitution mapping each variable to itself is de-
noted by id. The single point substitution replacing variable x by term t in term s is
denoted by s[t/x]. Note that this is notation for s[id[t/x]]. Similarly, the substitution
of finitely many variables x1, . . . , xn by terms t1, . . . , tn in term s is denoted by
s[t1/x1, . . . , tn/xn] and is notation for s[id[t1/x1, . . . , tn/xn]].

Renamings of variables, which can be seen as a special case of substitutions where
each variable is mapped to another variable, are on paper modelled as functions
r : var → var. The notation t[r] is used for the term resulting from applying r to all
free variables in t.
3.2 Typing
In this section, typing rules for PCF2 are introduced to classify thewell-typed terms
into booleans and (simply typed) functions based on their syntax. To achieve this,
we inductively define a typing judgement ⊢.

For Γ ⊢ t : T , we say "term t has type T in (typing) context Γ". If a term t has some
type in typing context Γ then it is called t well-typed in Γ .

Hereby, the typing context keeps track of the types of variables. On paper, we
model typing contexts as lists of pairs of variables and types, where each pair (x,A)

in the list indicates that variable x has typeA in the corresponding context. For typ-
ing contexts, we use the suggestive notation x : A for (x,A). Note that in the mecha-
nisation, storing the variable can be admitted and typing contexts are modelled as
lists of types with the convention that the nth free variable is assumed to have the

14 Programming Computable Functions

nth element of the context as type. For example, Var 2 refers in the term λ.Var 2 to
the free variable with index 1, which would in context [B → B;B] have type B. If a
variable refers to an index greater or equal than the length of the context, the term
containing the variable has no type in the context.
Definition 3.2 (Typing for PCF2) The typing judgement⊢ : L(var×ty) → tm → ty →
P for PCF2 is defined by the following rules:

x : T1 :: Γ ⊢ t : T2

Γ ⊢ λx.t : T1 → T2

Γ ⊢ s : T1 → T2 Γ ⊢ t : T1

Γ ⊢ s t : T2

(x,A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ s : B Γ ⊢ t : B Γ ⊢ u : B
Γ ⊢ if s then t else u : B Γ ⊢ ⊥ : B

Γ ⊢ true : B Γ ⊢ false : B

The rules for lambda-abstractions and function applications follow standard pre-
sentations of the STLC. For the conditional, all subterms are expected to be of type
B and then it is also assigned type B. It is discussed in Section 3.3 why we decided
not to use a more general typing rule. The three constants true, false, ⊥ are uncon-
ditionally of type B.
Terms having a type in the empty context are called closed. We sometimes refer to
them as programs.
The following is an important lemma about typed terms and substitutions:
Lemma 3.3 For typing context Γ , type A, term t with Γ ⊢ t : A and substitution σ1, σ2,
we have

(∀x A. (x : A) ∈ Γ → σ1(x) = σ2(x)) → t[σ1] = t[σ2].

The proof is by induction on the typing judgement of t.
Definition 3.4 (Typed substitutions) The typing judgement σ : Γ ′ → Γ for substitu-
tions is defined by:

σ : Γ ′ → Γ := ∀x A. (x : A) ∈ Γ → Γ ′ ⊢ σ(x) : A

The intuition behind σ : Γ ′ → Γ is that every variable having a type in context Γ is
replaced by a term that has in context Γ ′ the same type.
The key lemma describing typed substitutions is the following. It is proven by
induction on the typing judgement of t.
Lemma 3.5 For type A, typing contexts Γ , Γ ′, substitution σ with σ : Γ ′ → Γ and term t

with Γ ⊢ t : A, it holds that Γ ′ ⊢ t[σ] : A.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#subst_charact_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#subst_well_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#subst_preserves

3.3. Operational Semantics 15

Similarly, one can define a typing judgement for variable renamings.

Definition 3.6 (Typed renamings) The typing judgement σ : Γ ′ → Γ for substitutions
is defined by:

σ : Γ ′ → Γ := ∀x A. (x : A) ∈ Γ → (r(x) : A) ∈ Γ ′

As for substitutions, the following lemma holds.

Lemma 3.7 For type A, typing contexts Γ , Γ ′, renaming r with r : Γ ′ → Γ and term t

with Γ ⊢ t : A, it holds that Γ ′ ⊢ t[r] : A.

3.3 Operational Semantics
Next, we define a semantics for PCF2 to assignmeaning to the terms. The semantics
we give is operational, i.e. a reduction relation≻ for PCF2 describing the evaluation
steps of terms is defined. One can think of this as execution rules of a programming
language.
The semantics is call-by-name, i.e. arguments of a function do not need to be eval-
uated before the β-reduction substituting them into the function’s body may be
performed.

Definition 3.8 (Operational Semantics) The reduction relation ≻ : tm → tm → P is
inductively defined by the following rules:

s ≻ s ′

s t ≻ s ′ t

t ≻ t ′

s t ≻ s t ′ (λ x.s) t ≻ s[t\x]

s ≻ s ′

λ.s ≻ λs ′

s ≻ s ′

if s then t else u ≻ if s ′ then t else u if true then t else u ≻ t

t ≻ t ′

if s then t else u ≻ if s then t ′ else u if false then t else u ≻ u

u ≻ u ′

if s then t else u ≻ if s then t else u ′ if ⊥ then t else u ≻ ⊥

if (if s then t else u) then v else w ≻ if s then (if t then v else w) else (if u then v else w)

The reflexive and transitive closure of ≻ is denoted by ≻⋆.

Firstly, in every construct (including lambda-abstractions) it is possible to execute a
reduction step of any subterm. Furthermore, β-reductions are added to the seman-
tics, whereby the single point substitution replaces the variable by the argument of

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#ren_well_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#ren_preserves'
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#step
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#steps
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#steps

16 Programming Computable Functions

the function. For the conditional, rules are added for the cases when the condition
is one of the three boolean constants: In the case it is true, the conditional reduces to
the term after then and if it is false to the term after else. However, if the condition
is ⊥, the conditional reduces to ⊥, following the intuition that ⊥ represents non-
termination and the evaluation of the conditional never terminates as its condition
does not. Lastly, a rule is added enabling conditionals with another conditional in
their condition to shift the latter into their then and else cases in a way preserving
evaluation, i.e. both terms evaluate to the same term.

Note that the operational semantics presented above slightly differs from Loader’s.
Loader also adds η-expansion to the semantics, i.e. a variable f of type A → B may
step to λx. f x and a variable x of type B may step to if x then true else false, both
only in a context where they are not yet expanded. This makes defining the re-
duction relation a lot more complicated, as both the type of the terms and the in-
formation if they are expanded must be tracked. However, this does not affect the
undecidability of contextual equivalence: Contextual equivalence only involves the
evaluation behaviour of closed boolean terms, which is obviously uneffected by
adding η-expansions to the reduction relation. This means that two terms in the
calculus with η-expansions are contextually equivalent iff this is the case in the cal-
culus without η-expansion. Thus, the former is decidable iff the latter is. In his
paper, Loader even indicates that the precise reduction relation chosen is not es-
sential in the proof.1

It is said that s is normal if there is no term t such that s ≻ t. If s ≻⋆ t holds and t

is normal, it is said that t is the normal form of s. Note that the only normal forms
of closed boolean terms are true, false, and ⊥ – these are called boolean values.
Moreover, it is said s evaluates to v if s ≻⋆ v and v is a boolean value, and in this
case we write s ⇓ t. Observe that this notion of evaluation only makes sense for
boolean terms.

Note that although the error constant ⊥ relates to non-termination in full PCF, it is
still a normal form in PCF2 .

While the reduction relation is not deterministic, as e.g. in conditionals each sub-
term can reduce, it has the following three useful properties:

Fact 3.9 Reduction on PCF2 has the following properties:

1. Weak normalisation on closed boolean terms with computable normal form, i.e. for
term s s.t. ∅ ⊢ s : B, one can compute a boolean value v s.t. s ⇓ v.

1"Finitary PCF is not decidable" by Loader [27, p. 344]: "As the calculus is strongly normalising
and Church-Rosser [. . .], there is no need here to be overly concerned with a precise presentation of
the operational semantics."

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#weak_normalisation_comp

3.4. Contexts and Contextual Equivalence 17

2. Church-Rosser property (also called confluent), i.e. for terms s, t, u s.t. s ≻⋆ t, s ≻⋆

u, there exists a term v s.t. t ≻⋆ v and u ≻⋆ v.

3. Type preservation, i.e. for context Γ , term s, type A s.t. Γ ⊢ s : A and term t s.t.
s ≻⋆ t, it holds that Γ ⊢ t : A.

Wedid not mechanise the above stronger version of weak-normalisation (1) as well
as the Church-Rosser property (2) in order to focus on the more interesting results.
The relatively short proof of type preservation (3) proceeds by proving the result
first for single reduction steps ≻ and then lifting it to multiple steps ≻⋆. For sin-
gle reduction steps, the result is proven by induction on the s ≻⋆ t and the using
inversion on Γ ⊢ s : A.
For type preservation to hold, it is important that all conditionals have type B since
all conditionals can step to ⊥, a term of type B when the condition is ⊥, regardless
of their other subterms. An alternative would be to make ⊥ typeable at any type,
then conditionals of any type could be allowed. However, this would lead to amore
general calculus, which is not necessary, as even in this simplification contextual
equivalence turns out to be undecidable.
Observe that the Church-Rosser property implies that normal forms are unique.
Note that (1) is a stronger property than just weak normalisation on closed boolean
terms. It is essential that the normal form is computable such that functions can
make a case disctinction on it in the following sense.
Lemma 3.10 There is a function of the type

∀t. (∅ ⊢ t : B)→ (t ⇓ true + t ⇓ false + t ⇓ ⊥).

Reduction in PCF2 is also strongly normalising on arbitrarily typed terms, i.e. for
context Γ , term s, t, type Awith Γ ⊢ s : A and s ≻⋆ t, there exists a term u such that
t evaluates to u. But this result is not necessary for our purposes.
3.4 Contexts and Contextual Equivalence
In the next section, we aim at introducing contexts on PCF2, which can be seen as
terms with a hole, and contextual equivalence on PCF2. Firstly, in Section 3.4.1,
contexts as well as an operation to fill a term into a context are defined. Further-
more, typing rules for contexts are given, which describe the type of the resulting
termwhen filling a context with a term of a certain type. In Section 3.4.2, contextual
equivalence for PCF2 is defined, considering two terms equivalent if they evaluate
to the same boolean in all appropriate contexts. Lastly, a characterisation of contex-
tual equivalence using the so called observational preorder is given in Section 3.4.3
– a logical relation which is essential for Loader’s proof.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#church_rosser
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#type_preservation
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#base_eval

18 Programming Computable Functions

3.4.1 Contexts
Intuitively, a context is a PCF2 term with exactly one hole in it. Hereby, also the
entire context can be a hole, which is denoted by •.

Definition 3.11 (Contexts) Contexts ctxt on PCF2 are inductively defined by the fol-
lowing rules:

C : ctxt ::= • |C s | s C | λx. C | ifC then s else t | if s thenC else t | if s then t elseC

where s, t : tm.

Next, it is straightforward to define an inductive function filling a given PCF2 term
into a context:

Definition 3.12 (Context filling) The filling of a PCF2 term s into a context C is de-
noted by C[s]. It is defined by the following rules.

•[s] := s

(λ.C)[s] := λ.(C[s]) (if C then t else u)[s] := if (C[s]) then t else u

(t C)[s] := t (C[s]) (if t then C else u)[s] := if t then (C[s]) else u

(C t)[s] := (C[s]) t (if t then u else C)[s] := if t then u else (C[s])

Similarly, one can define the notion of composition of contexts.

Definition 3.13 (Context composition) The composition of two contexts C, C ′ is de-
noted by C ◦ C ′. It is defined by the following rules.

• ◦ C ′ := C ′

(λ.C) ◦ C ′ := λ.(C ◦ C ′) (if C then t else u) ◦ C ′ := if (C ◦ C ′) then t else u

(t C) ◦ C ′ := t (C ◦ C ′) (if t then C else u) ◦ C ′ := if t then (C ◦ C ′) else u

(C t) ◦ C ′ := (C ◦ C ′) t (if t then u else C) ◦ C ′ := if t then u else (C ◦ C ′)

The following is a straightforward property about context composition.

Fact 3.14 For a PCF2 term t and contexts C,C ′, it holds that (C ◦ C ′)[t] = C[C[t]].

Now, we define a typing judgement C : (Γ, T1) ⇝ (Γ ′, T2) for contexts. Hereby,
C : (Γ, T1)⇝ (Γ ′, T2) can be thought of intuitively as that for any term twith Γ ⊢ t : T1,
it holds that Γ ′ ⊢ C[t] : T2. This leads to the following definition.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#pctxt
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#fill
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#comp
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#ctxt_comp_fill

3.4. Contexts and Contextual Equivalence 19

Definition 3.15 (Typing for contexts) For context C, typing contexts Γ , Γ ′, types T1,
T2, T3, and PCF2 terms s t, the typing judgement for contexts is defined by the following
rules:

• : (Γ, T1)⇝ (Γ, T1)

C : (Γ, T1)⇝ (T2 :: Γ ′, T3)

λ x.C : (Γ, T1)⇝ (Γ ′, T2 → T3)

C : (Γ, T1)⇝ (Γ ′, T2 → T3) Γ ′ ⊢ t : T2

C t : (Γ, T1)⇝ (Γ ′, T3)

C : (Γ, T1)⇝ (Γ ′, T2) Γ ′ ⊢ t : T2 → T3

t C : (Γ, T1)⇝ (Γ ′, T3)

C : (Γ, T1)⇝ (Γ ′,B) Γ ′ ⊢ s : B Γ ′ ⊢ t : B
if C then s else t : (Γ, T1)⇝ (Γ ′,B)

Γ ′ ⊢ s : B C : (Γ, T1)⇝ (Γ ′,B) Γ ′ ⊢ t : B
if s then C else t : (Γ, T1)⇝ (Γ ′,B)

Γ ′ ⊢ s : B Γ ′ ⊢ t : B C : (Γ, T1)⇝ (Γ ′,B)
if s then t else C : (Γ, T1)⇝ (Γ ′,B)

And with this definition, the following fact holds, matching the previously pre-
sented intuition for context typings.
Fact 3.16 If Γ ⊢ t : T and C : (Γ, T)⇝ (Γ ′, T ′), then Γ ′ ⊢ C[t] : T ′.

3.4.2 Contextual Equivalence (CE)
Finally, we introduce contextual equivalence and give an alternative characterisa-
tion using a logical relation, which is used in the proof of its undecidability.
Definition 3.17 (Contextual Equivalence) Contextual equivalence in typing context
Γ at type T is defined as a binary relation ≡c on PCF2 terms in the following way:

Γ ⊢ s ≡c t : T := ∀C v. C : (Γ ′, T)⇝ (∅,B) → (C[s] ⇓ v↔ C[t] ⇓ v)

The decision problem whether two given closed terms are contextually equivalent
is called CE.
Definition 3.18 (CE) For type T , and terms s, twith ∅ ⊢ s : T and ∅ ⊢ t : T , the predicate
CE is defined by

CE(s, t, T) := ∅ ⊢ s ≡c t : T.

Intuitively, two terms are contextually equivalent if and only if they cannot be dis-
tinguished in their observational behaviour, i.e. they always evaluate to the same
term in all contexts resulting in a closed term of type boolean. Here, only booleans
are considered observational results as for functions, it is not "easy to observe" if
they are equal.
Fact 3.19 For each typing context Γ and type A, the contextual equivalence is an equiva-
lence relation when restricted to PCF2 terms of type A in context Γ .

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#ctxt_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html#fill_type
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#cont_equiv
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#CE
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#cont_equiv_Equiv

20 Programming Computable Functions

3.4.3 Characterisation of Contextual Equivalence
When proving contextual equivalence undecidable, the following logical relation
called observational preorder turns out to be useful, as it can be used to establish a
characterisation of contextual equivalence. In this subsection, we outline the proof
of this characterisation. This is of particular interest since in Loader’s paper [27],
this is (together with few useful results to obtain it) only stated and not proven.
For the work on the logical relations in this subsection, we took inspiration from
the work of Dreyer et al. [14] as well as Ahmed [2].
First, observational preorder is defined on boolean terms typed in the empty con-
text.

Definition 3.20 (Observational Preorder) Observational preorder on booleans is de-
fined in multiple layers.

1. First, it is inductively defined for boolean terms typed in the empty context via the
binary relation ⩽b:

s ⩽b t ::= C1(s ⇓ ⊥) | C2(∃v. s ⇓ v ∧ t ⇓ v)

2. It is then lifted to arbitrarily typed terms in the empty context by induction on the
type.

s ⩽c t : B := s ⩽b t

s ⩽c t : A → B := for all s ′, t ′ with ∅ ⊢ s : A, ∅ ⊢ t : A and s ′ ⩽c t ′ : A,

it holds that s s ′ ⩽c t t ′ : B.

3. Finally, it is defined for terms of any type in any context.

Γ ⊢ s ⩽o t : A := for all σ with σ : ∅ → Γ it holds that σ(s) ⩽c σ(t) : A.

Next, we would like to show that observational preorder is indeed a preorder, i.e.
it is reflexive and transitive. Note that most of the results about observational pre-
order presented here, may first be proven for closed terms and ⩽c (for example by
induction on the type) before it is easily lifted to open terms and ⩽o. However,
for the proof of reflexivity, this is not possible as then the induction hypothesis is
too weak in the case of Function types. If one tries to prove it for open terms by
induction on the typing judgement, the induction still does not go through: In the
λ-case, one needs to proove Γ ⊢ (λx.e) s ⩽o (λx.e) t : A → B for arbitrary s, t such
that ∅ ⊢ s ⩽o t : Awith only the assumption x : A, Γ ⊢ e ⩽o e : B. As by the definition
of ⩽o on can only substitute x by the same term on both sides of x : A ⊢ e ⩽o e : B,
this proof does not go through. We therefore generalise ⩽o in the following way:

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#obs_preorder
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#obs_preorder_base
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#obs_preorder_closed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#obs_preorder

3.4. Contexts and Contextual Equivalence 21

Definition 3.21 (Strong Observational Preorder) The strong observational preorder
in typing context Γ at type T is defined as binary relation⩽ ′

o on PCF2 terms on closed terms
in the same way as ⩽o and on open terms as:

Γ ⊢ s ⩽ ′
o t : A := for all σ1, σ2 with σ1 : ∅ → Γ, σ2 : ∅ → Γ and

∀x A. (x : A) ∈ Γ → σ1(x) ⩽c σ2(x) : A, we have σ1(s) ⩽c σ2(t) : A

One can then prove the following facts to obtain reflexivity of ⩽ ′
o:

Lemma 3.22 For each typing context Γ , type A, and terms s, t it holds that

1. If s ≻ s ′, t ≻ t ′ and Γ ⊢ s ′ ⩽ ′
o t ′ : A then Γ ⊢ s ⩽ ′

o t : A.

2. Γ ⊢ t : A → Γ ⊢ t ⩽ ′
o t : A.

3. Γ ⊢ s ⩽ ′
o t : A → Γ ⊢ s ⩽o t : A.

4. Γ ⊢ t : A → Γ ⊢ t ⩽o t : A.

Proof First (1) is proven for the special case Γ = ∅ by induction on A and then
lifted to the general case, afterwards. Next, one proves (2) by induction on the
typing judgement, where (1) is used in the case of lambda-abstractions. One can
then conclude (4) for the special case Γ = ∅, which we need to prove (3). Finally,
(4) can be obtained in its general form by using (2) and (3). □

Now transitivity can easily derived by induction on the type for closed terms and
then lifting the result to open terms. Note that in the induction case of function
types, reflexivity is used.

Lemma 3.23 For typing context Γ , type A and terms s, t, u with Γ ⊢ s : A, Γ ⊢ t : A and
Γ ⊢ u : A, it holds that Γ ⊢ s ⩽o t : A → Γ ⊢ t ⩽o u : A → Γ ⊢ s ⩽o u : A.

The desired result now follows easily from Lemma 3.22 (4) and Lemma 3.23.

Fact 3.24 For each typing context Γ and type A the observational preorder is a preorder
when restricted to PCF2 terms of type A in context Γ .

Now, observational equivalence is introduced, whichmeans that observational pre-
order holds in both directions.

Definition 3.25 (Observational Equivalence) For terms s, t, typing context Γ and
type T we define

Γ ⊢ s ≡o t : A := Γ ⊢ s ⩽o t : A ∧ Γ ⊢ t ⩽o s : A

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#strong_obs_preorder
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_preorder_closed_steps
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#strong_obs_preorder_refl
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#strong_obs_preorder_imp_obs_preorder
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_preorder_refl
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_preorder_trans
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_preorder_PreOrder
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#obs_equiv

22 Programming Computable Functions

From Fact 3.24, it easily follows that observational equivalence is an equivalence
relation.
Lemma 3.26 For each typing context Γ and type A the observational equivalence is an
equivalence relation when restricted to PCF2 terms of type A in context Γ .

We now establish the fact that observational preorder and contextual equivalence
agree, which will be used later in Loader’s undecidability proof.
Theorem 3.27 (Characterisation of observational equivalence) For a type A, typ-
ing context Γ , terms s, t with Γ ⊢ s : A, and Γ ⊢ t : A, the following holds:

Γ ⊢ s ≡c t : A ↔ Γ ⊢ s ≡o t : A

In order to prove this theorem, the following properties about observational pre-
order are useful:
Fact 3.28 Observational preorder has the following properties:

1. For s, t with ∅ ⊢ s ≡o t : B, it holds that ∀v. s ⇓ v ↔ t ⇓ v.

2. For f, g of type A → B in context Γ , it holds that

Γ ⊢ f ⩽o g : A → B ↔ ∀x. ∅ ⊢ x : A → Γ ⊢ f x ⩽o g x : B.

3. For s, s ′ with Γ ⊢ s : A, it holds that s ≻ s ′ → Γ ⊢ s ⩽o s ′ : A.

4. For s, t with Γ ⊢ s : A, Γ ⊢ t : A and C : (Γ,A)⇝ (Γ ′, B), it holds that

Γ ⊢ s ⩽o t : A → Γ ′ ⊢ C[s] ⩽o C[t] : B.

Proof (1) can be proven directly using the definition of observational preorder on
B. One proves (2) and (3) by first considering Γ = ∅, in which (2) is proven by
induction on A and (3) can be proven directly – before lifting them to the general
case. Finally, (4) is proven directly by induction on the typing judgement of the
context, as restricting Γ or Γ ′ would not simplify the proof. □

We have now all lemmas in hand to prove that observational preorder in both di-
rections characterises contextual equivalence.
Proof (Theorem 3.27) For the forward direction, it suffices to prove Γ ⊢ s ⩽o t : A,
as ≡c is symmetric. This is first proven for Γ = ∅ by induction on A, which is stan-
dard. Then it is lifted to an arbitrary Γ by simulating the substitution of closed terms
for the free variables of s and twith a context of lambda-abstractions capturing the
free variables of s and t. Hereby, the concept of context composition is needed: One

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_equiv_Equiv
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#cont_equiv_obs_equiv_agree
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_equiv_base_eval_same
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_preorder_fun_char
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_preorder_incl_step
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#obs_equiv_context

3.4. Contexts and Contextual Equivalence 23

context comes from the definition of contextual equivalence (the context in which
the two terms should behave the same) and the other one is the context used to
capture the free variables of the terms.
For the backward direction, one obtains for any C with C : (Γ,A) ⇝ (Γ ′,B) that ∅ ⊢
C[s] ≡o C[t] : B by Fact 3.28 (4). Then, the claim follows by Fact 3.16 and Fact 3.28
(1). □

The following results about observational equivalence and contextual preorder that
turn out to be useful in later chapters:

Lemma 3.29 For typing contexts Γ , Γ ′, type A, term t with Γ ⊢ t : A and substitution
σ1, σ2 with σ1 : Γ

′ → Γ , σ2 : Γ
′ → Γ , it holds that

(∀x. (x : A) ∈ Γ → Γ ′ ⊢ σ1(x) ≡c σ2(x) : A) → Γ ′ ⊢ t[σ1] ≡c t[σ2] : A.

The proof relies on the fact that the ⩽ ′
o is reflexive and implies ⩽o.

Lemma 3.30 For typing context Γ , type A, terms t, t ′ with Γ ⊢ t : A and t ≻⋆ t ′, it holds
that Γ ⊢ t ≡c t ′ : A.

The proof is by first lifting Fact 3.28 (3) tomultiple steps using a standard induction
on the steps. Then, a dual version of Fact 3.28 (3) is proven, where ⩽o is replaced
by ⩾o, using the same techniques as before. The result can then again be easily to
multiple steps. Finally, the claim follows from these two results.

Lemma 3.31 For typing context Γ and term t with t : ∅ → B, it holds that

1. Γ ⊢ true ⩽o t : B ↔ t ⇓ true ↔ Γ ⊢ true ≡c t : B

2. Γ ⊢ false ⩽o t : B ↔ t ⇓ false ↔ Γ ⊢ false ≡c t : B

This result follows immediately from the definition of ⩽o and ≡o.
Given an inequality between two terms, it still holds after renaming the variables
in the terms in the new context.

Lemma 3.32 For typing context Γ , Γ ′, renaming r with r : Γ ′ → Γ , type A and terms s, t
with Γ ⊢ s ⩽o t : A, it holds that Γ ′ ⊢ s[r] ⩽o t[r] : A

The proof is by using the definition of ⩽o and considering the composition of the
substitution obtained when proving the desired inequality with the renaming r.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#subst_equiv
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#steps_equiv
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#base_preord_tt_le
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#base_preord_ff_le
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html#ineq_ren

Chapter 4

Decision problems appearing in Loader’s Proof

Next, we explain the reduction chain in detail used to prove contextual equivalence
on PCF2 even for closed terms (CE) undecidable, following Loader’s proof [27]:

SR ⩽m SATIS ⩽m PS ⩽m RPS ⩽m CE
According to transitivity of reductions, this chain induces a reduction from SR to
CE. The undecidability of CE then follows from that of SR, as undecidability is
transported forwards along reductuctions and SR is undecidable. This leads to the
following theorem.
Theorem 4.1 Contextual equivalence for closed terms on PCF2 (CE) is undecidable.

It remains to establish the reductions of the above chain. The first three of these are
first established without the complements, which then induces the version with
complements. So the reductions we actually present are the following:

SR ⩽m SATIS ⩽m PS ⩽m RPS RPS ⩽m CE
In this chapter, all decision problems involved are formally defined and the proofs
of all but one reduction are given, namely the reduction from string rewriting to
satisfiability of words. In fact, SR is not only many-one reducible to SATIS but
the two problem are even equivalent in the sense that for string a, b, it holds that
SR(a, b) ↔ SATIS(a, b). As this part of the proof, connecting string rewriting sys-
tems with terms in PCF2, is by far the most intricate, we dedicate it both Chapter 5
and Chapter 6.
Note that from Theorem 4.1, the undecidability of contextual equivalence on PCF2
for terms typed in arbitrary contexts follows.
Definition 4.2 (CE’) For typing context Γ , type T , and terms s, t with Γ ⊢ s : T and
Γ ⊢ t : T , the predicate CE’ is defined by

CE’(Γ, s, t, T) := Γ ⊢ s ≡c t : T.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.undecidability.html#CE_undecidable
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html#CE_open

4.1. Reducing Satisfiability of Words to Preorder Systems 25

Corollary 4.3 Contextual equivalence on PCF2 is undecidable for arbitrary typed terms.

Proof It is easy to see that CE is many-one reducible to CE’ with the following
reduction function:

f(s, t, T) := (∅, s, t, T).

The correctness follows immediatly from the definitions of CE and CE’. Thus, the
undecidability of CE’ follows from that of CE again as undecidability is transported
forwards along reductions. □

In Section 4.3, it is also explained why Theorem 4.1 entails that contextual equiva-
lence on PCF2 is undecidable for arbitrary typed terms.
4.1 Reducing Satisfiability of Words to Preorder Systems
In this section, the second reduction of the chain is discussed.

SR ⩽m SATIS ⩽m PS ⩽m RPS ⩽m CE

Before giving the reduction, the two involved decision problems are defined, fol-
lowing Loader’s original work [27]: In Section 4.1.1, the notion of satisfiability of
words (SATIS) is defined, i.e. what it means for a PCF2 term to satisfy an instance
of SR, namely an initial string and a target string. Then, preorder sytems (PS) are
introduced in Section 4.1.2, the problemwhether there exists a PCF2 term satisfying
finitely many inequalities at once.
4.1.1 Satisfiability of Words (SATIS)
Since SATIS establishes a connection between string rewriting systems and PCF2
terms, which have quite a different structure, we first explain how to encode words
and rewriting rules into PCF2.
Word Encodings
As the following PCF2 type will regularly appear for the remainder of this thesis,
the following notation is introduced:

T(a) := B → · · · → B︸ ︷︷ ︸
2|a|+2

→ B where a is a word.

There are two kind of word encodings, namely true- and false-encodings.

Definition 4.4 (Word encoding) Let v ∈ [true, false]. A function Enc : L(B) → tm is
a v-encoding iff for all words a, ∅ ⊢ Enc(a) : T(a) and

∅ ⊢ Enc(a) ⩽o λx1 . . . x2|a|+2.v : T(a)

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.undecidability.html#CE_open_undecidable
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS.html#word_encoding

26 Decision problems appearing in Loader’s Proof

Intuitively, the above inequality means that the function Enc(a) only returns v and
⊥. Hereby, each symbol of the word is represented by two of the function’s argu-
ments: The first symbol by the first two argments, the second by the next two and
so on. The last two arguments of the function do not represent any symbol In par-
ticular, a word encodingmay ignore the word’s symbols and provide for eachword
any function of the correct type only returning v and ⊥. Note that there is a duality
betweenword encodings: Each true encoding can be transformed into a false encod-
ing by returning for all words and arguments false if the original encoding would
have returned true and ⊥ otherwise. This check can easily be performed in PCF2
with a conditional. In the same way, one can obtain a true encoding from a false
encoding. We call such encodings duals. In his paper, Loader presents 16 word en-
coding together with their respective dual, so overall 32 encodings [27]. The list of
these encodings is denoted by E. All these encodings can be found in Appendix A.
Note that most of Loader encodings – all but one encoding and its dual – ignore the
symbols of the encoded words and only take the length of the word into account.
Now, some examples of word encodings are presented. To increase legibility, we
do not give the explicit PCF2 terms the encodings return for each word, but instead
specify what these functions should evaluate to. It is rather obvious that functions
with this behaviour can be constructed in PCF2 by nesting conditionals.

• Constv(a) s1 . . . s2|a| t1 t2 = v

The constant encoding always returns v and never ⊥, disregarding all argu-
ments.

• PosOddv(a) s1 s ′1 . . . s|a| s
′
|a| t1 t2 =


v ∀k. 1 ⩽ k ⩽ |a|

→ (sk ⇓ true ∨ sk ⇓ false)

⊥ otherwise
This encoding returns v iff all the arguments at odd positions evaluate to true
or false, disregarding the last two arguments t1 and t2.

• Let a = a1 . . . an.
Wordv(a) s1 s ′1 . . . sn s ′n t1 t2 =

{
v ∀k. 1 ⩽ k ⩽ |a| → (sk ⇓ ak ∧ s ′k ⇓ ak)

⊥ otherwise
The Word-v encodings return v iff the arguments correspond exactly to the
symbols of the encoded word, disregarding the last two arguments t1 and t2.
These are the only two encodings taking the words’ symbols into account.

Rule Encodings

Next, it is introduced how to encode rewriting rules with respect to a given word
encoding Enc.

Definition 4.5 (Rule encoding) APCF2 term F encodes a rule (e, f)w.r.t. a v-encoding

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS.html#rule_encoding

4.1. Reducing Satisfiability of Words to Preorder Systems 27

Enc iff ∅ ⊢ F : T(e) → T(f) and it is ⩽-minimal s.t. fulfilling the following property: For
all words a, c, it holds that

Γ ⊢ F(λy1 . . . y2|e|ij.Enc(aec) x1 . . . x2|a|y1 . . . y2|e|z1 . . . z2|c|ij)y
′
1 . . . y

′
2|f|i

′j ′

⩾o Enc(afc) x1 . . . x2|a|y ′
1 . . . y

′
2|f|z1 . . . z2|c|i

′j ′ : B

where Γ := x1 : B, . . . , x2|a| : B, y ′
1 : B, . . . , y ′

2|f| : B, z1 : B, . . . , z2|c| : B, i
′ : B, j ′ : B.

Informally speaking, an encoding F of the rule (e, f) should satisfy the following:
For each word of the form afc, it should simulate the behaviour of Enc(afc) as
well as possible in the following sense: If Enc(afc) returns v, F must also return
v in order to fulfill the inequality and if Enc(afc) returns ⊥, F should return ⊥ as
often as possible in order to fulfill the minimality condition. However, F has less
information than Enc(afc) – it only knows the arguments representing f and how
Enc aec behaves with the argments for a and c alredy fixed. So in order to check
if the arguments representing the whole word afc are chosen in such a way that
v should be returned, only the arguments representing f can directly be checked.
In order to gain information about the arguments representing a and c, it can only
be checked how Enc(aec) behaves for any arguments representing e. Note that it
depends on the concrete word encoding, what deductions can be made from this
about the arguments representing a and c. Therefore, the behaviour of Enc(afc)
can generally speaking only be approximated in the sense that the rule encoding
might evaluate to v even though Enc(afc) evaluates to⊥. While it is thus in general
not possible to achieve an equality instead of the inequality, this will be the case for
all the 32 encodings that will be considered in this paper. Encodings for which the
equality is achieved are called exact encodings. However, the considered encodings
being exact is of no importance for the reasoning in Loader’s arguments or this
thesis.
Next, an example for a rule encoding is presented. Again, wedonot give the explicit
PCF2 term, but specify for all arguments what it should evaluate to, and claim that
a function with this behaviour can be constructed in PCF2 by nesting conditionals.
Let e = e1 . . . e|e| and f = f1 . . . f|f|. Then F is a rule encoding for the rule (e, f) and
the Wordv encoding

F g s1s
′
1 . . . s|f|s

′
|f|t1t2 =


v ∀k. 1 ⩽ k ⩽ |f| → sk ⇓ fk ∧ s ′k ⇓ fk

∧ f e1e1 . . . e|e|e|e|⊥⊥ ⇓ v

⊥ otherwise
Note that in this case, the last two arguments given to the function g do not matter,
as the Word encoding ignores these arguments completely. Furthermore, one can
clearly see that g – which is assumed to represent Enc aec for some words a and

28 Decision problems appearing in Loader’s Proof

c with their arguments already fixed – will return v iff the arguments for a and c

represent these words precisely, i.e. the encoding is exact.
The following uniqueness property follows immediately from theminimality prop-
erty in the definition of rule encodings.
Lemma 4.6 Let F1 and F2 be rule encodings for rule b/b ′ and word encoding Enc. Then
it holds that ∅ ⊢ F1 ≡c F2 : T(b) → T(b ′).

While it is clear that rule encodings are unique, it is more complicated to prove that
for eachword encoding and rule, a respective rule encoding exists. Note that due to
a lack of timewe did neithermechanise the proof of the existence of rule encodings,
nor Lemma 4.7 or Lemma 4.8, which are used to establish this result. Instead, we
assume the existence of rule (4.9) encodings as axiom. The proof makes use of
a typical argument about finiteness and minimality. First the following finiteness
property is established.
Lemma 4.7 The contextual equivalence induces at each type only finitely many equiva-
lence classes of closed terms.

Proof The claim is proven by induction on the type. For B, the only equivalence
classes of closed terms are these of true, false and ⊥. Now for A → B, one can
assume by the induction hypothesis thatA and B have only finitely many, say a and
b many, equivalence classes of closed terms. Each closed function f of type A → B

must assign all closed, contextual equivalent terms s and t of type A also closed,
contextual equivalent terms of type B. Otherwise, s and t would not be contextual
equivalent. Following this logic, A → B has at most ba many equivalence classes of
closed terms, as each class of A can be assigned to one class of B. □

The proof proceeds by arguing that for two terms satisfying all the conditions of a
rule encoding except the minimality, there is a term also satisfying these conditions
that is smaller or equal than both terms with respect to the observational preorder.
Furthermore, there is also at least one term satisfying these conditions.
Lemma 4.8 Let Enc be a v encoding and (e, f) a rewriting rule.

1. Let F1, F2 of type T(e) → T(f) in the empty context such that

Γ ⊢ Enc(afc)x1 . . . x2|a|y ′
1 . . . y

′
2|f|z1 . . . z2|c|i

′j ′ ⩽o

G (λy1 . . . y2|e|ij. Enc(aec)x1 . . . x2|a|y1 . . . y2|e|z1 . . . z2|c|ij)y
′
1 . . . y

′
2|f|i

′j ′ : B

where Γ := x1 : B, . . . , x2|a| : B, y ′
1 : B, . . . , y ′

2|f| : B, z1 : B, . . . , z2|c|, i ′ : B, j ′ : B
holds for all word a, c, and both G = F1 and G = F2. Then there exists F of type
T(e) → T(f) in the empty context such that ∅ ⊢ F ⩽o F1 : T(e) → T(f), ∅ ⊢ F ⩽o

F2 : T(e) → T(f) and the above inequality holds for G = F and all words a, c.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS_facts.html#rule_enc_equiv

4.1. Reducing Satisfiability of Words to Preorder Systems 29

2. There exists a term F of type T(e) → T(f) in the empty context such that the above
inequality holds for G = F. There is a rule encoding for (e, f) and Enc.

Proof 1. Let F be defined in the following way:

F := λg y ′
1 . . . y ′

2|t| i
′ j ′. h(F1 g y ′

1 . . . y ′
2|f| i

′ j ′)(F2 g y ′
1 . . . y ′

2|f| i
′ j ′), where

h x y :=


true x ⇓ true ∧ y ⇓ true

false x ⇓ false ∧ y ⇓ false

⊥ otherwise

Note that h can easily be translated into PCF2 by nesting conditionals. Also
note that F is by the specification of h smaller or equal than F1 and F2. It still
respects the above inequality: If F1 returns true and F2 returns false or the
other way around, the only way both can satisfy the inequality is that the left
hand side of the inequality evaluates to ⊥. So the inequality also holds for F,
as it returns ⊥ on these arguments. In all other cases when F1 and F2 do not
agree, one of them evaluates to ⊥ and so does F, which must then also fulfill
the inequality.

2. The term F := λg y ′
1 . . . y ′

2|f| i
′ j ′.v has the required properties: It is obvi-

ous that it has the appropriate type in the empty context. Furthermore, note
that when plugging it in the relevant inequality, the right hand side always
evaluate to v. According to Lemma 3.30 and Lemma 3.23 it then suffices to
prove

Γ ⊢ Enc(afc)x1 . . . x2|a|y ′
1 . . . y

′
2|f|z1 . . . z2|c|i

′j ′ ⩽o v : B.

This inequality easily follows from Definition 4.4. □

To obtain aminimal encoding for the rule (e, f)with respect to aword encodingEnc,
only finitelymany terms need to be considered: There are only finitelymany equiv-
alence classes of closed terms at all types and all terms in one class are contextually
equivalent. As rule encodings are only unique up to contextual equivalence, it suf-
fices to consider one term of each equivalence class at type T(e) → T(f). For each of
these finitely many terms, excludedmiddle is used to analyse whether it has all the
required properties which a rule encoding of the rule (e, f) should have except for
the miniality. It is clear from Lemma 4.8 (2) that there is at least one term fulfilling
these conditions. If there is exactly on such term, the minimality follows imme-
diately. Otherwise, Lemma 4.8 (1) is used to obtain a minimal term by choosing
an arbitrary of the terms fulfilling these conditions as the preliminary minimal el-
ement. Then Lemma 4.8 (1) is applied to the current preliminary minimal element

30 Decision problems appearing in Loader’s Proof

and each of the relevant terms, updating the prelimary minimal element after each
application. It is clear that the resulting term also satisfies the minimality property
and thus is a rule encoding.
Corollary 4.9 Let Enc be a v encoding and (e, f) a rewriting rule. Then there exists a rule
encoding F of (e, f) with respect to Enc.

Note that this result does not imply that rule encodings are computable – the proof
uses representants of equivalence classes without computing them. According to
Loader, it is possible but tedious to compute rule encodings for all of the fixedword
encodings and not necessary for this proof.1

Now, it is defined what it means for a term to satisfy a word:
Definition 4.10 A term t is said to satisfiy aword bwith respect toword encoding Enc and
initial worda iff t is normal and for all rule encodings F1, . . . , FN of the rules (e1, f1), . . . , (eN, fN)

with respect to Enc, it holds that

x1 : B, . . . , x2|b|+2 : B ⊢ t[F1/r1, . . . , FN/rN,Enc(a)/w] ⩾o Enc(b) x1 . . . x2|b|+2 : B,

where r1, . . . , rN, w are fixed variables.

Note that the above inequality holds for all rule encodings iff this is the case for any
rule encodings of the appropriate rules, as rule encodings for the same rule and
word encoding are contextually equivalent. Note further that for a v-encoding, the
term v trivially satisfies each word. This is obviously not desirable, as it is intended
to characterisewhen aword is derivable from an initial word. To avoid this, one can
say a term needs to satisfy the word with respect to all 32 of Loader’s encodings,
which contain both true and false encodings.
The following is a lemma typing the substitution introduced in the previous defi-
nition. It will be important in Section 5.2.
Lemma 4.11 For word encoding Enc, rule encodings F1, . . . , FN of the rewriting rules
(e1, f1), . . . , (eN, fN) with respect to Enc, and word a, it holds that

id[F1/r1, . . . , FN/rN,Enc(a)/w] : x1 : B, . . . , x2|b|+2 → Γ,

where Γ := x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a).

We finally have all notions at hand to present the definition of SATIS:
Definition 4.12 (SATIS)

SATIS(a, b) := ∃t. Γ ⊢ t : B ∧ ∀Enc ∈ E. t satisfies b w.r.t. Enc and a

where Γ := x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a)

1"Finitary PCF is not decidable" by Loader [27, p. 347]: "It is possible, although tedious, to calcu-
late the required encoding of rules."

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS.html#rule_enc_exist
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS.html#satisfies
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS_facts.html#t_subst_well_typed
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS.html#SATIS

4.1. Reducing Satisfiability of Words to Preorder Systems 31

4.1.2 Preorder Systems (PS)
Next, preorder systems are introduced, the decision problem to which SATIS is
reduced to.
Definition 4.13 A well-formed preorder system for type T consists of a list of pairs of
PCF2 terms of the following form:

[(s1, u1), . . . , (sn, un)]

where for all k with 1 ⩽ k ⩽ n, it holds that x : T ⊢ sk : B and ∅ ⊢ uk : B.

For eachpair (s, u)with x : T ⊢ s : B and ∅ ⊢ u : B, one canpose the questionwhether
there exists a closed term of type T solving the inequality ∅ ⊢ s[t/x] ⩾o u : B. The
decision problem arising from the above definition is whether all the inequalities
induced by the pairs in the system are uniformly solvable, i.e. whether there exists
a closed term of type T solving all of them at once. This leads to the following
definition:
Definition 4.14 (PS) For a well-formed preorder system S of type T , the predicate PS is
defined by

PS(S, T) := ∃t. ∅ ⊢ t : T ∧ ∀(s, u) ∈ S. ∅ ⊢ s[t/x] ⩾o u : B.

Now, the reduction from SATIS to PS is presented.
Lemma 4.15 SATIS is many-one reducible to PS, i.e. SATIS ⩽m PS.
Proof Before giving the reduction function, rule encodings for all finitely many
previously fixed rules and all of Loader’s 32 word encodings are obtained. In order
to achieve this, one can use Lemma 4.8 (2), as the current goal is a proposition
(namely that SATIS is many-one reducible to PS). The rule encoding of rule (ek, fk)
and word encoding Enc obtained in this way is denoted by Fk(Enc).
Now the reduction function can be defined:

f(a, b) := (Sa,b, (T(e1) → T(f1)) . . . (T(eN) → T(fN)) → T(a) → T(b))

where Sa,b is a preorder system containing all pairs of the following form:
(x F1(Enc) . . . FN(Enc) Enc(a) v1 . . . v2|b|+2, Enc(b) v1 . . . v2|b|+2)

where the vk range over [true, false,⊥] for 1 ⩽ k ⩽ 2|b| + 2 and Enc over all 32 of
Loader’s word encodings. From the definition of word and rule encodings, it is
clear that all terms have the appropriate types and thus each Sa,b is well-formed.
It is left to show the correctness of the reduction function: Assume (a, b) ∈ SATIS.
Then there exists a term t such that

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.PS.html#wf_ps_system
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.PS.html#PS
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS_PS.html#reduces_SATIS_PS

32 Decision problems appearing in Loader’s Proof

x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a) ⊢ t : B

and t satisfies b with respect to a and all 32 word encodings.
Then t ′ := λx1 . . . x2|w|+2 r1 . . . rN w. t is a solution to Sa,b: From the type
of t, it is clear that t ′ has the correct type. Now take any pair (l, r) in Sa,b. Then
l = x F1(Enc) . . . FN(Enc) Enc(a) v1 . . . v2|b|+2 and r = Enc(b) v1 . . . v2|b|+2 for
someword encoding Enc and some v1, . . . , vN in {true, false,⊥}. It is clear that l[t ′/x]
steps to and is thus according to Lemma 3.30 equivalent to

t[v1/x1, . . . , v2|b|+2/x2|b|+2, F1/r1, . . . , FN/rN,Enc(a)/w].

The fact that ∅ ⊢ l ⩾o r : B holds, follows then from the inequality obtained by the
fact that t satisfies b with respect to a and Enc.

Conversely, if s is a solution to Sa,b, then ∅ ⊢ s : (T(e1) → T(f1)) . . . (T(eN) →
T(fN)) → T(a) → T(b). Then s ′ := s r1 . . . rN Enc(a) x1 . . . x2|b|+2 is the wit-
ness proving (a, b) ∈ SATIS: From the type of s, it is clear that s ′ has the correct
type. It remains to show that for all word encoding Enc, s ′ satisfies b w.r.t. Enc.
First note that according to Lemma 4.6 and Lemma 3.29, it suffices to prove the rel-
evant inequality only for the fixed rule encoding. Now let t1, . . . , t2|b|+2 be closed
terms of base type. It then suffices to prove:

∅ ⊢ s FEnc(1) . . . FEnc(N) Enc(a) t1 . . . t2|b|+2 ⩾o Enc(b) t1 . . . t2|b|+2 : B

As each of the tk for 1 ⩽ k ⩽ 2|b| + 2 steps to some vk ∈ [true, false,⊥]. Accoring to
the definition of Sa,b, it contains the pair

(x F1(Enc) . . . FN(Enc) Enc(a) v1 . . . v2|b|+2, Enc(b) v1 . . . v2|b|+2).

Now the relevant inequality follows from Lemma 3.30, Lemma 3.23 and the fact
that s solves Sa,b – and thus in particular the inequality induced by the above pair.

□

Note that obtaining rule encodings in the descried way is only possible, as the set
of rules is fixed: Otherwise, one would receive the rules to encode as argument of
the reduction function. But then, the goal would not be a proposition anymore, so
the existence of rule encodings would not suffice, instead it would be necessary to
compute them.

Now the reduction SATIS ⩽m PS in the chain immediately follows fromLemma 2.9.

Corollary 4.16 SATIS is many-one reducible to PS, i.e. SATIS ⩽m PS.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS_PS.html#reduces_co_SATIS_co_PS

4.2. Reducing Preorder Systems to Restricted Preorder Systems 33

4.2 Reducing Preorder Systems to Restricted Preorder Systems
Next in the reduction chain comes the reduction frompreorder systems to restricted
preorder systems, the latter of which will be introduced in this section, before the
reduction is given.

SR ⩽m SATIS ⩽m PS ⩽m RPS ⩽m CE

They have a very similar structure as the preorder systems presented before, but
the right hand side will be restricted.
4.2.1 Restricted Preorder Systems (RPS)
Definition 4.17 A well-formed restricted preorder system for type T consists of a list of
pairs of PCF2 terms of the following form:

[(s1, b1), . . . , (sn, bn)]

where for all k with 1 ⩽ k ⩽ n, we have x : T ⊢ sk : B and bk : B.

RPS is defined in a similar way as PS:

Definition 4.18 (RPS) For a well-formed restricted preorder system S of type T , we define

RPS(S, T) := ∃t. ∅ ⊢ t : T ∧ ∀(s, b) ∈ S. ∅ ⊢ s[t/x] ⩾o b̃ : B.

where b̃ is the embedding of b into PCF2, i.e. t is mapped to true and f to false.

Next, the reduction fromPS toRPS is presented, which relies on Lemma 3.30, which
implies that inequalities holding for the normal formof a termalso hold for the term
itself.

Lemma 4.19 PS is many-one reducible to RPS, i.e. PS ⩽m RPS.

Proof The reduction function is the following: Let S = [(s1, u1), . . . , (sn, un)] be
a well-formed preorder system. Recall that uk for 1 ⩽ k ⩽ n is a closed term of
type boolean. Thus, due to Lemma 3.10, one can check for each k with 1 ⩽ k ⩽ n

whether uk evaluates to true, false or ⊥. If it evaluates to true, (sk, true) is added to
the resulting restricted preorder system, if it evaluates to false, (sk, false) is added,
and if it evaluates to ⊥, nothing is added.
It remains to show the correctness, namely that the initial system is solvable iff
the restricted system is solvable. Note that it suffices to show the slightly stronger
statement that a term t is a solution to the initial system iff it is a solution for the
restricted system.

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.RPS.html#wf_rps_system
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.RPS.html#RPS
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.PS_RPS.html#reduces_PS_RPS

34 Decision problems appearing in Loader’s Proof

Now assume t solves the initial preorder system. Then for each k with 1 ⩽ k ⩽ n,
it holds that ∅ ⊢ sk[t/x] ⩾o uk : B. Then the same inequalities hold for t with uk

in normal form as from Lemma 3.30 it follows that each term is equivalent to its
normal form. In particular, t also solves the resulting restricted system.
Conversely, assume t solves the resulting system. It remains to show that for k

with 1 ⩽ k ⩽ n it holds ∅ ⊢ sk[t/x] ⩾o uk : B. One now makes a case distinction on
the normal form of uk using Lemma 3.10: If uk evaluates to ⊥, then the respective
inequality holds trivially. Otherwise, it evaluates to true or false, and it follows that
(sk, t) or (sk, f) is in the restricted system, respectively. As t solves this system
and a term is acoording to Lemma 3.10 equivalent to its normal form, the desired
inequality follows. Thus, t also solves the original system, which closes the proof.

□

Now the reduction PS ⩽m RPS in the chain immediately follows from Lemma 2.9.
Corollary 4.20 PS is many-one reducible to RPS, i.e. PS ⩽m RPS.

4.3 Reducing RPS to Contextual Equivalence
Now, the reduction from RPS to CE is discussed, which is last in the reduction chain.

SR ⩽m SATIS ⩽m PS ⩽m RPS ⩽m CE

In the proofs, ≡o is used instead of≡c. In Section 3.4.3, it has been shown that both
notions are equivalent.
Finally, RPS is reduced to CE. It will only be left to prove the undecidability of
SATIS by reducing from SR in order to conclude undecidability of CE.
Lemma 4.21 RPS is many-one reducible to CE.
Proof The reduction function is defined in the following way:

f([(s1, b1), . . . , (sn, bn)], T) := (λx. Gn s1 . . . sn, λx. ⊥, T → B)

where Gn is a program taking n arguments of base type with base type as return
type s.t. for closed boolean terms t1, . . . , tn, it holds that Gn t1 . . . tn ⇓ true iff for
all k with 1 ⩽ k ⩽ n, it holds that tk ⇓ bk, and Gn t1 . . . tn ⇓ ⊥, otherwise. Such a
Gn can be constructed by nesting conditionals.
It remains to show the correctness, namely that a well-formed restricted preorder
system [(s1, b1), . . . , (sn, bn)] of type T is not solvable iff ∅ ⊢ λx. Gn s1 . . . sn ≡c

λx. ⊥ : T → B.
Assume the system is not solvable. Then there is no closed term t of type T such
that all for all k with 1 ⩽ k ⩽ n, it holds that ∅ ⊢ si[t/x] ⩾o b̃i : B. Since a closed

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.PS_RPS.html#reduces_co_PS_co_RPS
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.co_RPS_CE.html#reduces_co_RPS_CE_closed

4.3. Reducing RPS to Contextual Equivalence 35

boolean term is greater or equal than true iff it evaluates to true (the same holds for
false), it follows that for all closed terms t of type T substituted for x, at least one
sk does not evaluate to bk. Thus, according to the specification of Gn, Gn s1 . . . sn
will evaluate to ⊥ for x substituted by any closed term t of type T . According to
Lemma 3.30, it follows that ∅ ⊢ (λx. Gn s1 . . . sn) t ≡c (λx. ⊥) t : B for all closed
terms t of type T .
Conversely, assume that ∅ ⊢ λx. G s1 . . . sn ≡c λx. ⊥ : T → B. This means that
according to Lemma 3.30 and the defintion of ⩽o on closed terms of type B, for
all closed terms t of type T substituted for x, G s1 . . . sn evaluates to ⊥. By the
specification of G, it follows that at least one sk[t/x] does not evaluate to bk. Thus,
the restricted preorder system is not solvable. □

Note that our definition of RPS slightly differs from Loader’s development: Instead
of restricted systems of inequalities, Loader considers systems of equalities that are
restricted in the sameway– so inDefinition 4.18,⩾o would be replaced by≡o. How-
ever, according to Lemma 3.31, this is equivalent to our definition. Our defintion is
beneficial for the following reasons: First, in the reduction from PS to RPS, no re-
dundant inequality needs to be proven in the forward direction. And second, in the
reduction from RPS to CE, only the evaluation behaviour of the sk’s in the system
is important, and this is completely captured by the inequalities, no equivalence is
necessary.

Chapter 5

Equivalence of SR and SATIS: Forward direction

Next, we aim at a reduction from SR to SATIS, which then implies a reduction from
SR to SATIS – the last remaing reduction in the chain to

SR ⩽m SATIS ⩽m PS ⩽m RPS ⩽m CE

In order to achieve this reduction, it is proven that the twoprobems are even equiva-
lent, i.e. for strings a and b, we have SR(a, b) ↔ SATIS(a, b). From this, a reduction
from SR to SATIS follows with the identity function as reduction function. In this
chapter, we focus on the easier forward direction.
In Section 5.1, we give examples of how terms satisfying words are constructed
from the derivation of the respective word to foster understanding of which parts
of these terms represent which part of the derivation. For the sake of readibility,
we leave out some technical details in the example that play no role in the forward,
but only in the backward direction. Afterwards, we present Loader’s proof of the
forward direction in full detail in Section 5.2. Recall, that we have not completed a
mechanisation of the proof.
5.1 Examples of terms satisfying words
In this section, focus on explaining how terms satisfying a word are constructed
and which inequalities must be shown, not at proving the respective inequalities
– the latter is done in detail in Section 5.2. We start by explaining the notational
simplifications made for the example, compared to the remainder of this thesis.
As explained for word encodings in Section 4.1.1, each symbol of a word is repre-
sented by two boolean variables in the terms. For this section only, each symbol
is represented by one instead of two variables. Furthermore, there are – again as
for word encodings in Section 4.1.1 – two additional boolean variables that repre-
sent no part of the word, and which we also omit for now. So for the derivation of
word b, the term we construct in this example only contains |b| boolean variables
instead of 2|b| + 2. Why the double representation of symbols and these so-called

5.1. Examples of terms satisfying words 37

"control variables" representing no part of the word are needed for the backward
direction, becomes clear in Chapter 6. Further note that in order to keep the sim-
plifications presented in this section consistent with the formal definitions given in
Section 4.1.1, the latter would need to be adapted for this section only. In particu-
lar, the rewriting rules R we fixed need to be changed to the two rules considered
in this example, and the definition of T must be modified in the following way:

T(a) := B → · · · → B︸ ︷︷ ︸
|a|

→ B

The boolean arguments we removed also need to be removed in the definition of
SATIS(4.12) and the definition of a term satisfying a word (4.10), as well as in the
definition of word and rule encodings. The inequality for a term t to satisfy a word
b with respect to initial word a and word encoding Enc is now the following:

x1 : B, . . . , x|b| : B ⊢ t[F1/r1, F2/r2,Enc(a)/w] ⩾o Enc(b) x1 . . . x|b| : B

for each of Loader’s word encodings Enc and all rule encodings F1, F2 of the rules
from the example with respect to Enc.
It is also introduced what variables have which type, such that we do not need to
give appropriate typing contexts all of the time – this would be a tremendous nota-
tional blow up. Each xl for l : N is a boolean variable. The variable xl represents the
lth symbol of the word the term it appears in should satisfy. The variable rk repre-
sent an encoding of the kth rewriting rule (ek, fk) for i : N and is assumed to have
type T(ek) → T(fk). Note that the two rewriting rules in the example are different
to those fixed before. The encoding of the respective initial word a is represented
by the variable w, which is expected to have type T(a). Consequently, the typing
contexts from the observational preorder are also omittedwhen they are clear from
the terms.
Recall that we work with the booleans B as underlying alphabet. Consider the
initial word a, target word b, and rewriting rules R:

a := tt, b := ff, R := [(t, ff), (tf, f)]

Note that the target word is derivable from the initial word using the above rules
in the following way, where applications of (t, ff) are highlighted in blue and of
(tf, f) in green:

tt ⇒R tff, tff ⇒R ff

Now a term satisfying the target word b with respect to any word encoding Enc
(not only Loader’s 32 ones) is constructed. Let F1 be a rule encoding for (t, ff) and

38 Equivalence of SR and SATIS: Forward direction

Word Term Proof obligation
tt w x1 x2 Enc(a) x1 x2 ⩾o Enc(tt) x1 x2

tff r1 (λy1. w x1 y1) x2 x3 F1 (λy1. Enc(a) x1 y1) x2 x3 ⩾o Enc(tff) x1 x2 x3

ff r2 (λy ′
1 y ′

2. r1 (λy1. w y ′
1 y1) y

′
2 x2) x1 F2 (λy ′

1 y ′
2. F1 (λy1. Enc(a) y ′

1 y1) y
′
2 x2) x1 ⩾o Enc(ff) x1 x2

Figure 5.1: Example of terms satisfying words

Derived words Inequality chain
tt F2 (λy ′

1 y ′
2. F1 (λy1. Enc(tt) y ′

1 y1) y
′
2 x2) x1

tff ⩾o F2 (λy ′
1 y ′

2. Enc(tff) y ′
1 y ′

2 x2) x1

ff ⩾o Enc(ff) x1 x2

Figure 5.2: Proof that t3 satisfies ff by stepwise following the derivation of ff

F2 for (tf, f)with respect to Enc – these are needed for the inequalities to be shown
for terms to satisfy a word. In order to construct appropriate terms, we follow the
derivation of the target word from the initial word, i.e. terms satisfying words are
constructed in the order thewords appear in the derivation of b. Figure 5.1 displays
in one place all these terms, which words they satisfy, and which inequalities need
to be proven (with the substitution at the left hand side already performed).
Note that the terms are completely agnostic about the concrete symbols of theword,
but they only consider the length of the words and at which position and in which
order the rewriting rules are applied. Handling the concrete symbols is completely
outsourced to the word encodings (and the corresponding rule encodings) – even
among the encodings, the Wordv-encodings are the only two taking the symbols
and not only the length of the word into account.
Now define

t1 := w x1 x2

and observe that with the variables of the above described types, it has type B. The
relevant inequality it must fulfill to satisfy a is the following:

t1[F1/r1, F2/r2,Enc(a)/w] ⩾o Enc(a) x1 x2

As performing the substitution at the left hand side yields that both sides are actu-
ally equal, the inequality follows by reflexivity, namely Lemma 3.22 (4), and thus,
t1 satisfies the initial word a.
Now t1 is used to construct a term satisfying tff, the next word in the derivation.
Hereby, the part that comes from t1 is underlined in blue. The first argument of w
remains x1 since the first symbol of the old word has not been replaced, and the
second argument of w is renamed to y1, since the second symbol of the old word

5.1. Examples of terms satisfying words 39

is replaced by the applied rule and the variables yi represent the positions where
a rewriting has been performed. So if the first symbol would have been replaced
instead of the second, the blue part would instead be w y1 x2.

t2 := r1 (λy1. w x1 y1) x2 x3

As the derivation step uses the first rule, the corresponding variable r1 is used in the
term. To this variable, which is assumed to have type T(t) → T(ff) in the relevant
context, arguments are assigned such that a term of type B is obtained: As first
argument, a function of type T(t) = B → B is assigned, taking one argument of
type B and returning the renamed version of t1. Finally, the remaining arguments
of r1 are the free variables representing the two newly inserted symbols of the new
word – in this case x2 and x3 a the second and third are newly inserted. If instead
the first symbol would have been replaced by the same rule, following the same
logic, these arguments would be x1 and x2 instead.
After the substitution in the term t2[F1/r1, F2/r2,Enc(a)/w] has been performed,
the inequality to be shown for t2 to satisfy tff is the following:

F1(λy1. Enc(a) x1 y1) x2 x3 ⩾o Enc(tff) x1 x2 x3

In the samemanner, starting from t2, which satisfies tff, a term satisfying the target
word b can be constructed. The part of the term that comes from the term satisfying
the previous word in the derivation is again highlighted in blue.

t3 := r2 (λy ′
1 y ′

2. r1 (λy1. w y ′
1 y1) y

′
2 x2) x1

Here, the second rule is used and thus, the number of variables representing the
newly inserted part of the word is one instead of two, as this part consists of one
symbol instead of two. Similarly, the function applied as first argument r2 takes
two arguments instead of one, since the part of the word being replaced consists of
two symbols instead of one. The variable renaming in the part derived from t2 is
done in the same way as before: First, note that only the xi are (possibly) renamed,
and never the variables representing the symbols that have been replaced (in this
case y1), which also indicate at which positions the previous rewriting has taken
place. As the first two symbols of the old word are replaced, x1 and x2 in t2 are
replaced by y ′

1 and y ′
2. Since the first symbol has not been changed by the first

rewriting, the x1 in t2 is contained in the part derived from t1, and thus, under the
lambda-abstraction introducing y1. Therefore, it is important to give the variables
representing the symbols that have been replaced always fresh variable names to
avoid variable capturing. Moreover, the third symbol in tff is unchanged by this
rewriting, but as the length of the word has changed – namely decreased by one –,
it is still renamed into x2.

40 Equivalence of SR and SATIS: Forward direction

Again after performing the substitution in t3[F1/r1, F2/r2,Enc(a)/w], the inequality
to be shown for t2 to satisfy tff is the following:

F2 (λy ′
1 y ′

2. F1 (λy1. Enc(a) y ′
1 y1) y

′
2 x2) x1 ⩾o Enc(b) x1 x2.

Figure 5.2 depicts how this inequality is obtained. Hereby, symbols that are substi-
tuted in the next derivation step are highlighted in the colour of the corresponding
rule, while symbols that have been inserted by the previous derivation step are
underlined in the corresponding colour. Variables representing these symbols are
marked in the same way.
5.2 Proof of the forward direction
In the same manner as in Section 5.1, one can in general construct a term satisfying
a derivable word. To present the proof appropriate to the definitions presented in
Chapter 4 and the backward direction in Chapter 6, the notational simplifications
made in Section 5.1 are now reverted and the rewriting rules fixed in Section 2.3
are considered again, instead of the rules from the example.
From the following lemma, the forward direction can immediately be derived. It
shows an even stronger statement: The term t constructed does not depend on the
word encoding. Thus, Loader’s word encodings play no role in the forward direc-
tion. While the concrete word encodings are irrelevant for the forward direction
as already observed by Loader, they are necessary for the backward direction, as
discussed in Chapter 6.
Lemma 5.1 If SR(a, b) holds, then there exists a term t with Γb ⊢ t : B satisfying b with
respect to a and any word encoding, where
Γb := x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a).

Proof As SR(a, b) holds, b is derivable from awith the fixed rewriting rules R. The
proof is by induction on this derivation a ⇒∗

R b.
First consider the base case a = b. The witness can be chosen in the following way:
t := w x1 . . . x2|b|+2. It is easy to see that in context Γb, the term t has type B. It is
left to show that t satisfies b with respect to Enc and a:
For all word encodings Enc, rule encodings F1, . . . , FN of (e1, f1), . . . , (eN, fN) with
respect to Enc, it holds that

t[F1/r1, . . . , FN/rN,Enc(a)/w]

= Enc(a) x1 . . . x2|b|+2

= Enc(b) x1 . . . x2|b|+2

where the first equality holds as the substitution is performed for the term t, and
the second equality holds as a = b holds. From Lemma 4.11 and Lemma 3.5, one

5.2. Proof of the forward direction 41

can obtain x1 : B, . . . , x2|b|+2 ⊢ t[F1/r1, . . . , FN/rN,Enc(a)/w] : B. It follows from
Lemma 3.22 (4) that

x1 : B, . . . , x2|b|+2 ⊢ t[F1/r1, . . . , FN/rN,Enc(b)/w] ⩾o Enc(b) x1 . . . x2|b|+2 : B

which finishes the base case.
Now consider the inductive step, namely the case where a ⇒∗

R c and c ⇒R b. As
inductive hypothesis, one can assume there exists a term t such that Γc ⊢ t : B and
t satisfies c with respect to Enc and a. From c ⇒R b, one knows that c = d1ekd2,
b = d1fkd2 for some words d1, d2 and some 1 ⩽ k ⩽ N. Now define

t ′ := rk (λy1 . . . y2|ek|ij. σ(t)) x2|d1|+1 . . . x2(|d1|+|fk|)+2 where

σ := id[y1/x2|d1|+1, . . . , y2|b|/x2(|d1|+|ek|),

x2(|d1|+|fk|)+1/x2(|d1|+|ek|)+1, . . . , x2|c|/x2|b|, i/x2|c|+1, j/x2|c|+2]

Here, the substitution σ renames the variables of the term satisfying the last word
in the derivation as described in Section 5.1: The variables of the symbols that have
been replaced are substituted by the variables y1, . . . , y2|b| bound to the lambda-
abstraction in t ′ and the variables of unchanged symbols at the right of the replaced
part in the old word are substituted in such a way that the variable in the newword
represents the same symbol. The latter is only important if |ek| ̸= |fk|. Apart from
that, the control variables in t are replaced by i and j, which are also bound by the
lambda-abstraction in t ′. This was not necessary in the example since we decided
to omit these.
It is again not difficult to check that t ′ has type B in context Γc. Now take any word
encodingsEnc, rule encodings F1, . . . , FN of (e1, f1), . . . , (eN, fN)with respect toEnc.
Now, it is shown that t ′ satisfies b with respect to Enc and a:
Note that it holds that

t ′[F1/r1, . . . , FN/rN,Enc(a)/w]

= Fk (λy1 . . . y2|ek|ij. (t[σ])[σ
′]) x2|d1|+1 . . . x2(|d1|+|fk|)+2

= Fk (λy1 . . . y2|ek|ij. t[σ
′′]) x2|d1|+1 . . . x2(|d1|+|fk|)+2

where
σ ′ := id[F1/r1, . . . , FN/rN, Enc(a)/w]

σ ′′ := id[F1/r1, . . . , FN/rN, Enc(a)/w, y1/x2|d1|+1, . . . , y2|ek|/x2(|d1|+|ek|),

x2(|d1|+|fk|)+1/x2(|d1|+|ek|)+1, . . . , x2|c|/x2|b|, i/x2|c|+1, j/x2|c|+2]

The first equality holds by performing the substitution and the second holds as
for any variable x it holds that either σ and σ ′ behave both as id or one of them
substitutes in a close value and the other behaves as id.

42 Equivalence of SR and SATIS: Forward direction

Also observe that from the fact that t satisfies c with respect to any word encod-
ing and a together with the fact that σ ′′ : Γ → x1 : B, . . . , x2|c|+2 : B, the following
inequality also holds according to Lemma 4.11 and Lemma 3.32:

Γ ⊢ σ ′′(t) ⩾o Enc(c) x1 . . . x2|d1| y1 . . . y2|ek| x2(|d1|+|b|)+1 . . . x2|c| i j : B

where

Γ := x1 : B, . . . , x2|d1| : B, y1 : B, . . . , y2|fi| : B, x2(|d1|+|b|)+1 : B, . . . x2|c| : B, i : B, j : B.

Putting these two observations together, it follows

x1 : B, . . . , x2|b|+2 ⊢ t ′[F1/r1, . . . , FN/rN,Enc(a)/w]

⩾o Fk (λy1 . . . y2|ek|ij. Enc(c) x1 . . . x2|d1| y1 . . . y2|ek| x2(|d1|+|b|)+1 . . . x2|c| i j)

x2|d1|+1 . . . x2(|d1|+|fi|)+2

⩾o Enc(b) x1 . . . x2|b|+2

where the first inequality is obtained from Fact 3.28 (4) with the above observation
by interpreting t ′ as context σ ′′(t) is plugged in, and the second inequality follows
by the defining inequality of rule encodings (4.5) after renaming the variables in it
using Lemma 3.32. Thus, t ′ satisfies b with respect to Enc. □

As the term constructed in Lemma 5.1 does not depend on a word encoding, but
satisfies b for all word encodings, the forward direction can easily deduced.

Corollary 5.2 (Forward direction) If SR(a, b) then SATIS(a, b).

Proof This immediately follows from Lemma 5.1 since E only contains word en-
codings. □

Chapter 6

Equivalence of SR and SATIS: BackwardDirection

In this chapter, the focus lies on the backward direction of the equivalence of SR and
SATIS, namely that for strings a and b, it holds that SATIS(a, b)→ SR(a, b). This is
where the most technicalities come in: Fix an initial word a as well as a target word
b, and assume SATIS(a, b) holds. Thus, there exists a term t with typing

x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a) ⊢ t : B

that satisfies b with resepct to a and all of Loader’s word encodings. It remains
to deduce that b is derivable from a using the fixed rules R. In Section 6.3, it will
turn out this is fairly straightforward if t is in the form of the terms constructed in
Chapter 5. A priori, one however barely knows anything about the structure of t.
One thing that is known is that t must be normal according to the definition of a
term satisfying a word (4.10). However, this does not suffice to deduce the deriv-
ability of b. Therefore, several simplifications are presented in Section 6.2 to obtain
a new term still satisfying the same word, but with restricted structure. To make
these structural reductions possible, the concrete word encodings of Loader E (in-
troduced in Section 4.1.1 and listed in Appendix A) are important: If too few or
not meaningful encodings would be considered, it would not be possible to obtain
a term of the desired structure, e.g. if E only contained true-encodings, then true
would satisfy every word with respect to the considered encodings (as explained
in Section 4.1.1) and the backward direction would even be wrong. In Section 6.1,
a technique to make deductions about the structure of certain subterms of t is de-
scribed, which is both useful to obtain reduced terms and to obtain the derivability
of b.
The definitions and proofs in this chapter all originate from Loader’s work [27].
Note that we also did not mechanise the proofs and defintions presented here. This
chapter has two main purposes: First, it should give an informal overview of the
structural simplificationsmade to a term satisfying aword. This should prepare the
interested reader for Loader’s full reasoning about the simplifications [27], which

44 Equivalence of SR and SATIS: Backward Direction

is long and full of intricate technical arguments about the structure of certain PCF2
terms. 1 Second, it is formally presented how to obtain the derivability of the target
word, assuming that the term satisfying it has all previous simplifications applied.
Hereby, the proof is given in more detail compared to Loader’s proof, in which
some nontrivial steps are left out. This may provide a basis for future mechanisa-
tions of the backward direction.

In this chapter, several notions of subterms will be introduced, namely spinal and
rib subterms. The following depicts these subterms at the example of a term con-
structed in Section 5.1, which is now presented without notational simplifications.
The spinal subterms correspond exactly to derivation steps, which is why each
term is a spinal subterm of itself – it corresponds to the last derivation step. The
innermost spinal subterm, which corresponds to the start of the derivation – the
initial word – is called coccyx. Here, the spinal subterms corresponding to pre-
vious derivation steps are highlighted using braces – the whole term, which is as
explained also a spinal subterm is not highlighted for the sake of legibility. The rib
subterms, which are highlighted in green, are the boolean arguments of the spinal
subterms – in this case all of these are boolean variables. Each rib subterm consists
of exactly one such boolean argument, so in the example, there are 16 rib subterms.

t := r2(λy
′
1y

′
2y

′
3y

′
4i

′j ′. r1(λy1y2y3y4ij.

spinal subterm (coccyx)︷ ︸︸ ︷
w y ′

1y
′
2y1y2ij)y ′

3y
′
4x3x4i

′j ′︸ ︷︷ ︸
spinal subterm

)x1x2x5x6

Note that the above term is canonical in the following sense: The coccyx consists
only of an application of the variablew, which represents the encoding of the initial
word, to several boolean arguments – this property is called reduced spine. Further-
more, none of the rib subterms, which should encode at which position rewriting
has been done, contains the variables w or rk for some 1 ⩽ k ⩽ N, which should
represent the initial word and which rule has been applied, respectively – so t has
reduced ribs. Apart from that, each of the rib subterms consists of a single boolean
variable respecting certain patterns, e.g. variables with odd indices are only pro-
vided at arguments at an odd position when counting from the left – it is said that
t has sane ribs. Moreover, each spinal subterm corresponds to one derivation step
and there are no redundant spinal subterms – it is said that t is chain reduced. Each
of the boolean variables appears exactly once in the term – thus, t is linear.

1"Higher-Order Computability" by Longley and Normann [29, p. 342]: "Whilst the theorem it-
self is of fundamental importance, the proof is long and technical, and consists of intricate syntactic
arguments which in themselves shed little light on the nature of sequential functionals."

6.1. Descent funtions 45

6.1 Descent funtions
Note that if t is of the formw t1 . . . t2|a|+2 or rk(λy1 . . . y2|ek|+2.s)t1 . . . t2|fk|+2 for
some 1 ⩽ k ⩽ N, then deductions about the tl for 1 ⩽ l ⩽ 2|fk|+2 can bemade using
Loader’s word encodings: In the first case, by considering the FixTruev encodings,
one can deduce that none of the tl is the constant false or ⊥. This follows by the
inequality obtained by the fact that t satisfies bwith respect to the initial word and
Fixtv. Similarly, it can be deduced by considering the FixFalsev encodings that none
of the tl is the constant true or ⊥ – so none of the tl can be a constant at all. In the
second case, the same deductions can be made by inspecting the rule encodings of
(ek, fk)with respect to the relevant word encodings in the same manner as done in
the example in Section 4.1.1.
However, when reasoning in detail about the structure of t, one also needs to apply
a similar reasoning not only on the outside of the term, but also at positions deeper
inside it, i.e. if t = rk(λy1 . . . y2|ek|+2.s)t1 . . . t2|fk|+2, this reasoning should also be
applicable to s. To achieve this, one can introduce so-called descent functions.
Definition 6.1 (Descent functions) Let Enc be a word encoding, (e, f) a rule and F a
rule encoding of (e, f)with respect to Enc. Then g1, . . . , g2|e|+2 are called descent functions
for F iff ∅ ⊢ gl : T(e) for all 1 ⩽ l ⩽ 2|e|+ 2 and

∅ ⊢ F ⩽o λf x1 . . . x2|f|+2.f (g1 x1 . . . x2|f|+2) . . . (g2|e|+2 x1 . . . x2|f|+2) : B

The existence of descent functions can be shown by arguing about rule encodings
as in the example in Section 4.1.1. In most cases, appropriate constant functions do
the job.
Lemma 6.2 (Descent existence) For each of Loader’s word encodings, rule (b, b ′) and
rule encoding F, there exist descent functions.

The next two results are not relevant in the proof of the backward direction assum-
ing the relevant term has all structural reductions applied, but only in Loader’s
proof that these reductions are in fact possible [27]. However, we still present them
in this thesis, as they point out themain purpose of descent functions, namelymak-
ing deductions about subterms buried inside t. The following lemma shows how
this can be done if these subterms are in some sense independent of the remaining
term.
Lemma 6.3 (Constant descent) Let Enc be a word encoding, (ek, fk) with 1 ⩽ k ⩽ N

a rule and s a term with Γ ⊢ rk(λy1 . . . y2|ek|+2. s)t1 . . . t2|fk|+2 : B. If y1 . . . y2|ek|+2

do not occur in s, then

Γ ⊢ rk (λy1 . . . y2|ek|+2. s)t1 . . . t2|fk|+2 ⩽o s : B

where Γ := x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a).

46 Equivalence of SR and SATIS: Backward Direction

Descent functions are used to examine the behaviour of subterms in a certain class
of subterms, namely these buried inside. These subterms will now be formally
introduced. They are intended to represent a derivation step each, which is indi-
cated by the respective variable rk orw, which represents an application of the rule
(ek, fk) or the encoding of the initial word, respectively.
Definition 6.4 (Spinal sub-terms) Spinal subterms are defined in the following way:

• A term s is a spinal sub-term of itself.

• Spinal sub-terms of s are also spinal sub-terms of rk(λy1 . . . y2|ek|+2.s)t1 . . . t2|fk|+2

where 1 ⩽ k ⩽ N and rk is the variable representing (ek, fk)

The following lemma now shows how descent functions allow making deductions
about spinal subterms in general.
Lemma 6.5 (Repeated descent) Let Enc be a word encoding, t a term with

x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a) ⊢ t : B

and σ a substitution of closed terms for xl where 1 ⩽ l ⩽ |b| + 2. Assume for a value v it
holds that

∅ ⊢ t[F1/r1, . . . , FN/rN,Enc(a)/w] ≡c v : B

and for every spinal subterm of t of the form rk(λy1 . . . y2|ei|+2.s) t1 . . . t2|fi|+2 for some
1 ⩽ k ⩽ N, there are descent functions for Fk with

σ(ym) = gm (t1[σ]) . . . (t2|fk|+2[σ]) for each 1 ⩽ m ⩽ 2|ek|+ 2

Then it holds for each spinal subterm u of t that

∅ ⊢ u[F1/r1, . . . , FN/rN,Enc(a)/w] ≡c v : B

6.2 Structural reductions
The aim of this section is to prepare the correctness proof of the backward direc-
tion by constructing a new term t ′ also satisfying b with respect to a and all of
Loader’s word encodings, but having the structure of the terms presented in Chap-
ter 5, which allows deducing the derivation of b from a as discussed in Section 6.3.
In order to obtain such a term, several structural redutions are introduced such
that for each term satisfying a word with all previous reductions applied, there is
a term with the same properties that is also reduced with respect to the next re-
duction. We do not present Loader’s proofs [27] of how these terms are obtained
in detail, but rather focus on giving an overview of all the relevamt simplifications
and exmplaining the high-level ideas.
First, spinal reduction is introduced, stating a term’s coccyx has a certain canonical
form.

6.2. Structural reductions 47

Definition 6.6 (Spine reduction) For a term t, the following is defined:

• The coccyx of t is the unique spinal sub-term of t that does not have the form

rk(λy1 . . . y2|ek|+2.s)t1 . . . t2|fk|+2

• A term is said to have reduced spine if its coccyx has the form w t1 . . . t2|a|+2

The spinal reductionmakes sure that the coccyx corresponds to the beginning of the
derivation and thus represents the initial word. Note that the the terms constructed
in Chapter 5 have reduced spine: They are constructed following the structure of
the derivation, which always starts by constructing a term s satisfying the initial
word of the form s := w x1 . . . x2|a|+2. Since terms corresponding to previous
derivation steps are spinal subterms of terms satisfying words coming later in the
derivation, it is obvious from the structure of s that it is the coccyx. Furthermore,
it is also easy to see that all terms having s as coccyx have reduced spine.
In Loader’s proof, it is pointed out that the coccyx of a term satisfying a word can
neither be a boolean constant, a boolean variable, nor of the form if x then s else t

where x is a boolean variable. However, the coccyx could for example have the
form if w t1 . . . t2|a|+2 then s else t or if ri f t1 . . . t2|fi|+2then s else t. Loader
showed that in this case the coccyx can be replaced by w t1 . . . t2|a|+2 respectively
ri f t1 . . . t2|fi|+2 – the conditional can be removed – and the resulting term still
satisfies the same word. Note that the coccyx must be a normal as all terms satisfy-
ing words are normal by definition. This severly restricts the form the coccyx can
have.
While the boolean arguments of the terms constructed in Chapter 5 were only vari-
ables, they underly so far no restriction at all. So in particular, the variablesw or any
rk for 1 ⩽ k ⩽ N, which encode the derivation of the word, i.e. which rule is applied
at which derivation step, could appear in the boolean arguments representing the
symbols of the word, which is unintended behaviour.

Definition 6.7 (Rib sub-terms) For a spine reduced term t, the following is introduced:

• If t = w t1 . . . t2|a|+2, its rib sub-terms are t1, . . . , t2|a|+2

• If t = rk(λy1 . . . y2|ek|+2.s)t1 . . . t2|fk|+2 for some 1 ⩽ k ⩽ N, then its rib sub-
terms are t1, . . . , t2|fi|+2 as well as the rib sub-terms of s

Note that for the above definition, it is important that thas reduced spine, otherwise
the two previous cases may not be exhaustive, and thus the spinal subterms not
well-defined.

48 Equivalence of SR and SATIS: Backward Direction

A term is said to have reduced ribs if the variables representing the initial word
and the rewriting rules do not occur in the boolean arguments of w or any rk for
1 ⩽ k ⩽ N, which consist of arguments representing the symbols of the word and
two technical additional arguments.

Definition 6.8 (Reduced ribs) A term t with reduced spine is said to have reduced ribs
if neither w nor any ri for 1 ⩽ i ⩽ N occurs in the rib sub-terms of t.

The idea to make term t satisfying a word bwith respect to initial word a and all of
Loader’s word encodings rib reduced is the following: If only v-encodings´would
be considered, all occurences of w and any rk with appropriate arguments in the
rib subterms applied could be replaced by v: First note that v-encodings and rule
encodings with respect to v-encodings only return ⊥ or v. For the first, this is by
definition and for the latter, this holds as otherwise, the minimality condition in
the definition of rule encodings would not be fulfilled. Thus, one obtains

x1 . . . x2|b|+2 ⊢ Enc(a) s1 . . . s2|a|+2 ⩽o v : B and
x1 . . . x2|b|+2 ⊢ Fk f t1 . . . t2|fk|+2 ⩽o v : B

for rule encoding Fk of (ek, fk) and appropriate closed terms as arguments. Accord-
ing to Fact 3.28 (4), this would only make the resulting term bigger with respect
to the observational preorder and thus, it would still satisfy b. However, both true
and false encodings are considered, so it is not clear with which value ro replace
the occurences of w and rk – both at the same time is obviously not possible. The
following lemma, using that Loader’s word encodings consist of 16 pairs of dual
encodings resolves this problem:

Lemma 6.9 If t is spine and rib reduced and satisfies b with respect to initial word a and
v-encoding Enc. Then t also satisfies b with respect to initial word a and the dual of Enc.

This lemma states that the above described procedure still works, in spite of the
fact that both true- and false-encodings are considered. Applying the procedure
for v = true yields a rib and spine reduced term t ′ satisfying all of Loader’s 16
true-encodings. As the remaining encodings are the duals of the 16 considered
encodings, the desired result can be obtained by Lemma 6.9.
Note that for Lemma 6.9, it is crucial that the term t is spine and rib reduced. If
this would not be necessary, it would be possible to prove that true satisfies b with
respect to a and all of Loader’s 32 encodings, which is clearly not spine reduced and
satisfies bwith respect to a all true-encodings. This is obviously absurd and would
even make the backward direction of the reduction from SR to SATIS wrong.
Next, a classification of the rib subterms into different classes is introduced.

6.2. Structural reductions 49

Definition 6.10 (Classification) Consider terms of the form w t1 . . . t2|a|+2 and
rk(λy1 . . . y2|ek|+2.s)t1 . . . t2|fk|+2 for 1 ⩽ k ⩽ N. The arguments are classified in the
following way:

• t2l−1 for 1 ⩽ l ⩽ |a|+ 1 are odd arguments

• t2l for 1 ⩽ l ⩽ |a|+ 1 are even arguments

• t1 . . . t2|a| are positional arguments

• t2|a|+1, t2|a|+2 are control arguments

Variables (both bound and the free variables) are classified in the same manner.

It turns out that using the PosOddv, PosEvenv, ConOddv and ConEvenv encodings,
for a rib and spine reduced term satisfying a word with respect to all of Loader’s
encodings, a new term can be constructed that is also rib and spine reduced, satis-
fies the same word with respect to all of Loader’s encodings and respects the above
classification in the following sense: Boolean variables of any class only appear in
arguments of the same class.
Moreover, Loader shows that for a spine and rib reduced term respecting the above
classification and satisfying a word with respect to all 32 considered encodings,
each rib subterm contains exactly one variable of the appropriate class and is even
equivalent to this variable. This leads to the following definition.

Definition 6.11 (Rib sanity) A term t is said to have sane ribs if each of its rib subterms
is a variable of the same class.

While the previous simplifications aimed at obtaining a term with coccyx and ribs
of a certain canonical structure, the following reduction establishes that each spinal
subterm truly corresponds to one step in the derivation of the word. In the follow-
ing way, redundant applications of rk not corresponding to a derivation step could
have been added to satisfying terms, as explained by Loader [27]:
Assume for words c1 and c2, v-encoding Enc, rule encoding Fk of (ek, fk) with
1 ⩽ k ⩽ N and closed boolean terms s1, . . . , s2|c1|, t

′
1, . . . , t

′
2|fk|

, u1, . . . , u2|c2|, i
′, j ′,

it holds that

∅ ⊢ Fk(λt1 . . . t2|ek|ij.Enc(a) s1 . . . s2|c1|t1 . . . t2|ek|u1 . . . u2|c2|ij)t
′
1 . . . t

′
2|fk|

i ′j ′ ≡c v : B.

It then follows by the fact that ∅ ⊢ Enc(a) s1 . . . s2|c1|t1 . . . t2|ek|u1 . . . u2|c2|ij ⩽o v : B
(immediately from Definition 4.4) and Fact 3.28 (4) that

∅ ⊢ Fi(λy
′′
1 . . . y ′′

2|ek|
i ′′j ′′.s)t ′1 . . . t

′
2|b ′|i

′j ′ ≡c v : B

50 Equivalence of SR and SATIS: Backward Direction

where p denotes the left hand side of the above equiality and y ′′
1 , . . . , y

′′
2|ek|

, i ′′, j ′′

are free in s.

It clearly follows by Lemma 3.26 that ∅ ⊢ p ≡c p ′ : Bwhere p ′ denotes the left hand
side of the latter equality.

Now, the control variables come in to track and then remove possible redundant
rib subterms in the following way.

Definition 6.12 (Chain reduction) A term t is chain reduced iff for each spinal sub-
term in the form rk(λy1 . . . y2|ek|+2.s)t1 . . . t2|fk|+2 for 1 ⩽ k ⩽ N, it holds that
t2|fk|+2 = y2|ek|+2.

In a chain reduced term with all previous reduction applied, one can observe that
even control variables have unique occurences: Each even control variable bound
by a lambda-abstraction in any of the rib subterms appears at least once as the term
is chain reduced – namely as boolean argument in the rib subterm it is bound to.
Because the term has sane spine, there is only one position left an even control
variable can appear in, namely as argument of the coccyx as argument in even con-
trol position. But as Loader showed that a term satisfying a word b must contain
all 2|b| + 2 free boolean variables, the free even control variable must take up this
place.

In this setting, it can be deduced using the Linv-encodings that all variables have
unique occurences. Interestingly, no new term need to be constructed, but this is
simply a statement holding for each term with all the previous reductions applied.

Lemma 6.13 (Linearity) If t satisfies b and has all the previous reductions applied, then
each xl for 1 ⩽ l ⩽ 2|b|+ 2 occurs exactly once in t. In this case, t is said to be linear.

The following lemma summarises all previously discussed structural restrictions
of a term satisfying a word:

Lemma 6.14 Assume there exists a term t satisfying bwith resepct to a and all of Loader’s
word encodings with

x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a) ⊢ t : B

Then there exists a term t ′ also satisfying b with resepct to a and all of Loader’s word
encodings with the same type as t and with all previous simplifications applied, i.e. t ′ is
spine reduced, rib reduced, has sane ribs, is chain reduced, and is linear.

6.3. Correctness Proof 51

6.3 Correctness Proof
We now have all notions in hand to present Loader’s proof of the backward di-
rection and thus obtain a many-one reduction from SR to SATIS. Recall that we
have not mechanised the proofs presented here. As this chapter aims, inter alia,
at preparing the reader for Loader’s paper, the proofs of the results in this section,
namely Lemma 6.17 and Theorem 6.18, are very close to Loader’s proofs – almost
literal citations from Loader [27]. This is not the case for the sections coloured in
blue. These are remarks and further explanation of details left out by Loader, which
should support future work on the mechanisation of this result.
The following lemma will be useful in the inductive step in the proof of the back-
ward direction.
Lemma 6.15 For each word encoding Enc of Loader’s encodings except for the Linv en-
codings, it follows that

∅ ⊢ F g ⩽o Enc f : T(f)
where F is a rule encoding of the rule (e, f) and g is a closed term of type T(e).

In the proof of the above lemma, it is verified λg. Enc f fulfills the inequation in the
definition of rule encodings. As a rule encoding is a minimal term satisfying it, the
claim follows.
Furthermore, the following result showing the existence of descent functions with
certain additional properties will be crucial in the inductive step of the backward
direction:
Lemma 6.16 (Descent completeness) Take a v-encoding of Loader’s word encodings,
a rewriting rule (e, f), a rule encoding F of (e, f) with respect to Enc, words c = d1ed2,
c ′ = d1fd2 and terms sl for 1 ⩽ k ⩽ 2|c|+ 2 with

∅ ⊢ Enc(c) s1 . . . s2|c|+2 ≡c v : B.

Then there exist closed terms of boolean type tl with 1 ⩽ l ⩽ 2|f|+ 2 and descent functions
g1, . . . , g2|e|+2 for F such that

∅ ⊢ sm ≡c gn t1 . . . t2|f|+2 : B

holds for 2|d1| + 1 ⩽ m ⩽ 2(|d1| + |e|), n = m − 2|d1| and 2|c| + 1 ⩽ m ⩽ 2|c| + 2, n =

m− 2|c|, as well as

∅ ⊢ Enc(c ′) s1 . . . s2|d1| t1 . . . t2|f| s2(|d1|+|e|+1) . . . s2|c| t2|f|+1 t2|f|+2 ≡c v : B.

The following lemma essentially covers the main reasoning in the base case of the
backward direction. Itwill be used to prove that a term consisting of only one spinal
subterm with all the previous reductions applied and satisfying a word, is actually
in the canonical form of the term satisfying the initial word from Chapter 5.

52 Equivalence of SR and SATIS: Backward Direction

Lemma 6.17 For a term t = wxρ(1) . . . xρ(2|a|) x2|b|+1 x2|b|+2 satisfying a word bwith
respect to initial word a and all of Loader’s word encodings, where ρ is a permutation of
the numbers 1, . . . , 2|a|, the following holds: The permutation ρ is the identity permutation
and it holds that t = w x1 . . . x2|a| x2|b|+1 x2|b|+2.

Proof The reasoning relies on inspecting the inequalities of the form
x1 : B, . . . , x2|b|+2 : B ⊢ t[F1/r1, . . . , FN/rN,Enc(a)/w] ⩾o Enc(b) x1 . . . x2|b|+2 : B.

obtained from the definition of satisfiability of words and considering appropriate
substitutions of closed variables for the free variables of t. If a substitution σ is
chosen in such away that the right hand side evaluates to vwith respect to a specific
word encoding, this must also be the case for the left hand side for the inequality
to hold. But as the left hand side is equal to

Enc(b) σ(xρ(1)) . . . σ(xρ(2|a|)) σ(x2|b|+1) σ(x2|b|+2),

this allows making deductions about the positions of the xl in t for 1 ⩽ l ⩽ 2|b|.
Let 1 ⩽ p, q ⩽ |a| be given. Consider the substitution with σ(x2q−1) = σ(x2q) :=

true and σ(x) := false for all other boolean variables x. By considering the PosEqv
encodings, it follows that

σ(xρ(2p−1)) ⇓ true ↔ σ(xρ(2p)) ⇓ true.

It follows by class separation that
xρ(2p−1) = x2p−1 ↔ xρ(2p) = x2p. (6.1)

Let 1 ⩽ p, q < |a| be given. Consider the substitution with σ(x2q) = σ(x2q+1) :=

true and σ(x) := false for all other boolean variables x. By considering the PosChv
encodings, it follows that

σ(xρ(2p)) ⇓ true ↔ σ(xρ(2p+1)) ⇓ true.

It follows by class separation that
xρ(2p) = x2p−1 ↔ xρ(2p+1) = x2p. (6.2)

Consider the substitution with σ(x1) := ⊥ and σ(x) := true for all other boolean
variables x. Let 1 < p, q ⩽ |a| be given. By considering the PosChv encodings, it
follows that

xρ(p) ̸= x1. (6.3)
So it follows xρ(1) = x1. These three equations imply that ρ is the identity function
and thus, the claim follows. □

6.3. Correctness Proof 53

Note that in the reasoning of the previous lemma, it was essential that each symbol
is represented by two and not only by one variable. This allowed making deduc-
tions (6.2) about the order of the variables representing adjascent symbols in the
word relative to each other due to the word encoding PosChv.

Theorem 6.18 (Backward direction) If SATIS(a, b) holds, then SR(a, b).

Proof As SATIS(a, b) holds, there exists a term t satisfying bwith resepct to a and
all of Loader’s word encodings with
x1 : B, . . . , x2|b|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a) ⊢ t : B

Now assume that t ′ is a term with the same properties and all the previous reduc-
tions applied, which can be assumed due to Lemma 6.14.The proof is by induction
on the number of spinal subterms of t ′ satrting at 1, as no term has 0 spinal sub-
terms. For the base case, consider the case that t ′ has only one rib subterm, namely
itself. As t ′ is rib reduced, has sane spine, and is linear, it is in the following form:
t ′ = w xρ(1) . . . xρ(2|a|) x2|b|+1 x2|b|+2 where ρ is a permutation of the numbers
1, . . . , 2|a|. Next, applying Lemma 6.17 shows that ρ is actually the identity func-
tion.
Now note that as t ′ satisfies awith respect to theWordtrue encoding, one obtains the
following by considering the a substitution σ with σ(x2l) = σ(x2l+1) := al, where
al is the kth letter of a for 1 ⩽ k ⩽ |a|, and σ(x) := ⊥ for all other boolean variables
x.

∅ ⊢ Wordtrue(b) a1 a1 . . . a|a| a|a| ⊥ ⊥ ⩾o Wordtrue(a) a1 a1 . . . a|a| a|a| ⊥ ⊥ : B

Together with

Wordtrue(a) a1 a1 . . . a|a| a|a| ⊥ ⊥ ⇓ true,

which follows by the definition of Wordtrue, Fact 3.28 (3), and Lemma 3.23, one
obtains:

∅ ⊢ Wordtrue(b) a1 a1 . . . a|a| a|a| ⊥ ⊥ ⩾o true : B.

Using Lemma 3.31 (1) and the definition of Wordtrue, it can be deduced that b = a,
so a is obviously derivable.
For the inductive step, suppose t ′ has n + 1 spinal subterms. As t ′ is rib reduced,
has sane spine, and is linear, it is in the following form:

t ′ = rk (λy1 . . . y2|ek|+2. s) xρ(1) . . . xρ(2|fk|) x2|fk|+1 x2|fk|+2

54 Equivalence of SR and SATIS: Backward Direction

for some 1 ⩽ k ⩽ N, where ρ is an injection from the numbers 1, . . . , 2|fk| into the
numbers 1, . . . , 2|ek|.
The inductive hypothesis states that for all terms t ′′ with n spinal subterms and
words c such that

x1 : B, . . . , x2|c|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a) ⊢ t ′′ : B

and t ′′ satisfies cwith respect to all of Loader’s word encodings and initial word a,
it holds that SR(a, c).
From Lemma 6.15 and the definition of SATIS, one can obtain that for each word
encoding Enc of Loader’s encodings except for the Linv encodings, it holds that

∅ ⊢ Enc(b) xρ(1) . . . xρ(2|fk|) x2|fk|+1 x2|fk|+2 ⩾o Enc(b) x1 . . . x2|b|+2 : B (6.4)
From this inequality, one can obtain by the same reasoning used in Lemma 6.17 that
Equation (6.1) holds for 1 ⩽ p ⩽ |fk|, 1 ⩽ q ⩽ |b|, Equation (6.2) for 1 ⩽ p < |fk|,
1 ⩽ q < |b|, as well as Equation (6.3) for 1 < p ⩽ |fk|. These three equations imply
that xρ(1), . . . , xρ(2|fk|) are consecutive variables within x1, . . . , x2|b| starting with
an odd index. So there exists a m with 1 ⩽ m ⩽ |b|− |fk| such that

x1, . . . , x2|b| = x1, . . . x2m, xρ(1), . . . , xρ(2|fk|), x2(m+|fk|)+1, . . . , x2|b|.

Consider a substitution σ with σ(x2p−1) = σ(x2p) := bp for 1 ⩽ p ⩽ |b| where bp is
the pth letter of b, and σ(x) := ⊥ for all other boolean variables x. It follows from
Equation (6.4) that b has the form b = d1fkd2 with |d1| = m, |d2| = |b|− |fk|−m.
Now it suffices to show that there exists a term with n spinal subtermssatisfying
c := d1ekd2 with respect to all of Loader’s word encodings and the initial word a.
Then the derivability of d1ekd2 will follow by the induction hypothesis, and thus
the derivability of b = d1fkd2 will follow, as it can be derived from c = d1ekd2

by an application of the rewriting rule (ek, fk). As every spinal subterm represents
one derivation step, s would be a canonical candidate for such a term satisfying c.
Furthermore, s hasn spinal subterms, as t ′ has by assumptionn+1 spinal subterms.
Note that because t ′ is linear, the variables xρ(1), . . . , xρ(2|fk|), x2|fk|+1, x2|fk|+2 do
not appear in s, but only the variables

x1, . . . , x2m, y1, . . . , y2|ek|+2, x2(m+|fk|)+1, . . . , x2|b|.

As the variable rk appearing in t ′ is expected to have type T(ek) → T(fk) in the
appropriate typing context, the function applied to rk has return type B. Conse-
quently, it holds that Γ ⊢ s : B where

Γ := x1 : B, . . . , x2k : B, y1 : B, . . . , y2|ei| : B, x2(k+ei)+1 : B, x2|b| : B,
y2|ei|+1 : B, y2|ei|+2 : B, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a)

6.3. Correctness Proof 55

But as in the definition of a term to satisfy aword, the typing context is different, the
variables in s need to be renamed: It is now shown that s[ren] satisfies d1ekd2 with
respect to all of Loader’s word encodings and the initial word a, where ren(yl) :=

x2m+l for 1 ⩽ l ⩽ 2|ek|, ren(y2|ek|+l) := x2|c|+l for 1 ⩽ l ⩽ 2, and ren(x) := x

otherwise. This means ren renames the variables in s such that they agree with the
variables in the typing context in the definition of SATIS. As it obviously holds that
σ : Γ ′ → Γ for

Γ ′ := x1 : B, . . . , x2|c|+2, r1 : T(e1) → T(f1), . . . , rN : T(eN) → T(fN), w : T(a),

it follows that Γ ′ ⊢ s[ren] : B.
Now let Enc be a v-encoding from Loader’s word encodings and let Fk be a rule
encoding of rule (ek, fk) with respect to Enc for 1 ⩽ k ⩽ N. It remains to show that
x1 : B, . . . , x2|c|+2 ⊢ (s[ren])[F1/r1, . . . , FN/rN, Enc(a)/w] ⩾o Enc(c) x1 . . . x2|c|+2 : B.
According to Lemma 3.32 and the fact that for all terms t, it holds that

(s[ren])[F1/r1, . . . , FN/rN, Enc(a)/w] = (t[F1/r1, . . . , FN/rN, Enc(a)/w])[ren],
it suffices to show that

Γ ′′ ⊢ s[F1/r1, . . . , FN/rN, Enc(a)/w]

⩾o Enc(c) x1 . . . x2k y1 . . . y2|ei| x2(k+ei)+1 x2|b| y2|ei|+1 y2|ei|+2 : B,

where Γ ′′ := x1 : B, . . . , x2k : B, y1 : B, . . . , y2|ek| : B,
x2(m+ek)+1 : B, x2|b| : B, y2|ek|+1 : B, y2|ek|+2 : B

Now take any τ substituting in closed terms of boolean type for the variables in Γ ′′.
It remains to show the above inequality in the empty context with τ applied on both
sides, which simplifies to:

∅ ⊢ (s[F1/r1, . . . , FN/rN, Enc(a)/w])[τ]

⩾o Enc(c) s1 . . . s2k t1 . . . t2|ei| s2(m+ek)+1 s2|b| t2|ek|+1 t2|ek|+2 : B.

where sl := τ(xl) for 1 ⩽ l ⩽ 2m ∨ 2(m + ek) + 1 ⩽ l ⩽ 2|b| and tl := τ(yl) for
1 ⩽ l ⩽ 2|ek|+ 2.
Now, a case distinction ismade ofwhat τ applied to the right hand side evaluates to,
which is possible due to Lemma 3.10: Note that from the definition of word encod-
ings, this can only be ⊥ or v. In the first case, the desired inequality holds trivially,
so one only needs to consider the latter, in which one can obtain by Fact 3.28 (3)
the following:

∅ ⊢ Enc(c) s1 . . . s2k t1 . . . t2|ek| s2(m+ek)+1 . . . s2|b| t2|ek|+1 t2|ek|+2 ≡c v : B
(6.5)

56 Equivalence of SR and SATIS: Backward Direction

Now consider the descent functions g1, . . . , g2|ek|+2 for Fk with respect to Enc and
the terms ul for 1 ⩽ l ⩽ 2|fk| + 2 obtained from Lemma 6.16. It then follows by
Lemma 3.23 and Lemma 3.31 (1) that

∅ ⊢ Enc(b) s1 . . . s2m u1 . . . u2|fk| s2(m+ek)+1 . . . s2|b| u2|fk|+1 u2|ek|+2 ≡c v : B

and as t ′ satisfies b with respect to a and Enc, one also obtains by Lemma 3.31 (1)

∅ ⊢ (t[F1/r1, . . . , FN/rN, Enc(a)/w])[σ] ≡c v : B

where σ(xl) := sl for 1 ⩽ l ⩽ 2m ∨ 2(m + ek) + 1 ⩽ l ⩽ 2|b|, σ(xl) := ul−2m for
2m+ 1 ⩽ l ⩽ 2(m+ |fk|) − l, σ(x2|b|+1) := u2|fk|+1 and σ(x2|b|+2) := u2|fk|+2. For all
other variables x, it holds that σ(x) := x. From Definition 6.1 and the properties of
the ul for 1 ⩽ l ⩽ 2|fk| given by descent completeness (6.16), it holds that

∅ ⊢ (s[F1/r1, . . . , FN/rN, Enc(a)/w])[τ] ⩾o v : B

Thus, it follows from Equation (6.5) and Lemma 3.23that

∅ ⊢ (s[F1/r1, . . . , FN/rN, Enc(a)/w])[τ]

⩾o Enc(c) s1 . . . s2m t1 . . . t2|ek| s2(m+ek)+1 . . . s2|b| t2|ek|+1 t2|ek|+2 : B,

which shows that in each case, the desired inequality holds and thus, σ(s) satisfies
c with respect to all of Loader’s word encodings. □

Now, equivalence between SR and SATIS follows directly from Corollary 5.2 and
Theorem 6.18.

Corollary 6.19 For words a, b, it holds that SR(x)↔ SATIS(x).

From Corollary 6.19, the following reduction can easily be obtained with the iden-
tity function as reduction function.

Corollary 6.20 SR is many-one reducible to SATIS.

Now, the desired reduction easily follows from Lemma 2.9.

Corollary 6.21 SR is many-one reducible to SATIS.

This completes the reduction chains from SR to CE presented in Chapter 4 and thus
deduces the undecidability of CE from the undecidability of SR.

Chapter 7

Related Work

Loader’s result may be considered particularly surprising, as contextual equiva-
lence is decidable in related calculi. In 1998, Loader has shown contextual equiva-
lence for PCF1 decidable [26] – an even more restricted version of PCF than PCF2.
Schmidt-Schauß provided a shorter proof of this result in 1999 [47].
Apart from that, contextual equivalence for STLC with product and sum types,
which is in some sense more general than PCF2, is also decidable. This relies on
the fact that for this calulus, βη-equivalence – the usual reduction relation up to
η-conversions – is decidable, which first has been shown in 1995 by Ghani for non-
empty sum types [21]. It has been followed by results of Altenkirch, Dybjer, Hof-
mann, and Scott in 2001 [3] and Balat, Di Cosmo, and Fiore in 2004 [4], showing
contextual equivalence decidable for non-empty sum types, using Grothendieck
logical relations introduced by Fiore and Simpson [17] and invovling techniques
from category theory. In 2017, Scherer showed both βη- and contextual equiva-
lence in presence of the empty type decidable by showing that both equivalence
relations agree on this calculus [46].
In sections Section 7.1 and Section 7.2, we briefly introduce these two calculi, sketch
which techniques have been used to obtain these results, and why they are not ap-
plicable to PCF2. Finally, we discuss related undecidability results from the theory
of programming languages in Section 7.3.
7.1 Decidability of PCF1

PCF1 is both an extension of STLC with the unit type as base type and a match
operation on it, as well as a restriction of PCF2 with a base type containing only
one proper, i.e. non-error, constant instead of two.
Definition 7.1 (PCF1) The types ty and terms tm of PCF1 are defined by

T1, T2 : ty ::= Unit | T1 → T2

s, t : tm ::= λx.s | s t | x | match s with t | () | ⊥

58 Related Work

Here, Unit comes with the two constants () and ⊥. The standard unit constant is
denoted by (), whereas ⊥ denotes as in PCF2 an error constant. Hereby, the match
on PCF1 can be interpreted as a degenerated version of PCF2’s conditional: As Unit
contains only one proper constant, there is only one case possible.
The reduction rules for match are the following:

match () with t ≻ t

s ≻ s ′

match s with t ≻ match s ′ with t

match ⊥ with t ≻ ⊥
t ≻ t ′

match s with t ≻ match s with t ′

The reduction rules for the remaining constructs correspond to those for PCF2
given in Section 3.3. As for PCF2, the reduction relation on PCF1 is strongly nor-
malising, Church-Rosser and type preserving.
Next, we sketch Schmidt-Schauß’s proof that contextual equivalence on PCF1 is
decidable:
Using the same reasoning as in Lemma 4.7, one obtains that at each type, there are
only finitely many equivalence classes of closed terms induced by the contextual
equivalence. A key lemma in Schmidt-Schauß’s proof is the following:
Lemma 7.2 Representatives of all finitely many equivalence classes induced by contex-
tual equivalence at each type and the empty context are computable.

From this lemma, the decidability of contextual equivalence on closed terms can
straightforwardly be deduced. Note that Schmidt-Schauß uses the following ex-
tensionality property of contextual equivalence, which for PCF2 can be deduced
by Fact 3.28 (2): Closed terms s and t of type A → B are contextually equivalent iff
for all closed terms u of type T1, s u and t u are contextually equivalent.
Theorem 7.3 OnPCF1, contextual equivalence on closed terms is decidable at every type.

Proof Let T be a type, s, t be PCF1 terms with ∅ ⊢ s : T and ∅ ⊢ t : T . The proof is
by induction on T . For T = Unit, it holds that – as for B in PCF2 – that s and t are
contextually equivalent iff they have the same normal form. The latter is decidable
using Lemma 3.10, which can also be proven for PCF1 as its reduction is strongly
normalising and thus in particular weakly normalising and type preserving. If T
= A → B, it remains – according to the above mentioned extensionality property –
to show that for all closed terms u of type T1, s u and t u are contextually equiva-
lent. It suffices to show the latter for one representative of each equivalence class
of closed terms at type T1, instead of showing it for all closed terms u of type T1.
Then the claim follows by Lemma 7.2 and the inductive hypothesis, as the number
of equivalence classes of closed terms at each type is finite. □

7.1. Decidability of PCF1 59

Schmidt-Schauß only introduces contextual equivalence on closed terms, but we
think his result can be lifted to a setting involving arbitrary contexts Γ in the follow-
ing way: In Loader’s decidability proof of contextual equivalence for PCF1 [26], he
defines the observational preorder on PCF1 analogously as done for PCF2 – but
only on closed terms. However, using the same techniques as in Section 3.4.3, it
should be possible to extend it to open terms and prove it equivalent to contextual
equivalence in arbitrary contexts. Thus, one would obtain the following extension-
ality property, which for PCF2 immediately comes from Definition 3.20 and allows
lifting the result to arbitrary contexts Γ . Terms s and t with Γ ⊢ s : T and Γ ⊢ t : T

are contextually equivalent iff this is the case for all σ(s) and σ(t), where σ is a
substitution of closed terms of the appropriate types for the free variables in s and
t. Assuming the above mentioned extensionality property, we suspect contextual
equivalence on PCF1 in any context and at every type can be deduced to be decid-
able in the following way:

Let Γ be a typing context, T be a type, and s, t be PCF1 terms with Γ ⊢ s : T and
Γ ⊢ t : T . It should be decided whether Γ ⊢ s ≡c t : T holds. Using the extensional-
ity property, it becomes clear that this is the case iff σ(s) and σ(t) are contextually
equivalent for all substitutions σ of closed terms of the appropriate types for the
free variables in s and t. It suffices to check the latter for all substitutions σ such
that σ substitutes each variable contained in Γ by a representative of any equiva-
lence class of closed terms at this type. As there are only finitely many such σ,
the representatives are computable according to Lemma 7.2, and all σ(s), σ(t) are
closed terms of type T , this decidability result follows from Theorem 7.3.

Note, given that Lemma7.2 also held for PCF2, the proof of Theorem7.3 and our fol-
lowing observation could easily be adapted to PCF2. However, Lemma 7.2 breaks
down when trying to extend to PCF2. Even though it does hold for PCF2 that
there are only finitely many equivalence classes of closed terms at each type (see
Lemma 4.7), no representatives of these can be computed. Schmidt-Schauß states
that this is the case, since the observational preorder on PCF2 does not have great-
est elements at all types [47]. Instead, there are even at no type greatest elements:
Note that accoding to Lemma 3.30, it suffices to reason about the normal forms at
each type. In PCF2, true and false are incomparable at the base type, i.e. neither
∅ ⊢ true ⩽o false : B nor ∅ ⊢ false ⩽o true : B holds. As ⊥ is certainly not a greatest
element at base type, it follows that there is no such element. Analogously, one
can obtain that there are no greatest elements at any function type: Functions re-
turning true and false on the same arguments are also incomparable and functions
returning ⊥ at some arguments are certainly no greatest elements. The observa-
tional preorder on PCF1, the definition of which is similar to Definition 3.20 and
can be found in Loader’s paper [26], has greatest elements at each type: () is a
greatest element at type Unit and for function types, constant functions returning

60 Related Work

() are greatest elements.
7.2 Decidability of STLC with sum and product types
Next, consider an extension of the simply typed lambda calculus with the empty
and the unit type as base types: The types are extended by sums and products and
the terms by injections, pairs as well as matches on sums and products.
Definition 7.4 (Simply typed λ-calculus with sums and products) The types ty and
terms tm of STLC with sums and products are defined by

T1, T2 : ty ::= T1 → T2 | Unit | Empty | T1 + T2 | T1 × T2

s, t : tm ::= λx. s | s t | Var n | () | inj1s | inj2s | (s, t)

Here, Unit comes only with the standard constant () – there is no native error
constant. Nevertheless, PCF2 can be seen as a restriction of this calculus, since
there is a natural way to embed it in the latter: Now identify B with the sum type
Unit + Unit + Unit, which we call B ′ and has exactly three closed normal forms.
The boolean constants true, false as well as⊥ are identifiedwith one of these normal
forms each –we call them true ′, false ′ and⊥ ′. The conditional is mapped to amatch
on that sum type, where in the case of ⊥ ′, the match returns ⊥ ′.
However, contextual equivalence is not preserved by this embedding: A match in
the extended STLC can map ⊥ ′ to any term of the appropriate type, while a condi-
tional in PCF2 must evaluate to ⊥ on input ⊥. So there are functions in STLC with
sums and products behaving in a way no function in PCF2 can. This means there
are contexts in STLC with sums and products with no correspondence in PCF2,
which suggests that there could be terms being contextually equivalent in PCF2,
but not in the extended STLC. And in fact, this intuition will turn out to be correct.
The technique used in Scherer’s paper is the following: In the first part, the same
reasoning can be carried out for PCF2: It is shown that βη-equivalence, the usual
reduction relation up to η-conversions, is decidable. This decidability result uses
that each typed termhas a unique, computable normal form, and that it is decidable
whether two terms are equal up to η-conversions. As each term is βη-equivalent
to its normal form, this establishes a decision procedure for the βη-equivalence of
typed terms.
The second part of Scherer’s proof – and this is where an adjustment to PCF2 breaks
down – is to show that βη-equivalence and contextual equivalence coincide on
STLC with sums and products. We show that this is not the case for PCF2 by pro-
viding a counterexample. Before, observe the following, which is a special case of
a result proven by Schmidt-Schauß for PCF1 [47]:
Lemma 7.5 In PCF2, each program f with ∅ ⊢ f : B → B is either constant or strict in
its argument, i.e. f ⊥ ⇓ ⊥.

7.3. Related Undecidability Results 61

The proof relies on the intuition that the onlyway for f tomake a case distinction on
the argument, i.e. for f not to be constant, is to use a conditional on the argument.
But as conditionals reduce to⊥ if the argument does, one then obtains f⊥ ⇓ ⊥. The
above lemma does not hold for each closed term of type B ′ → B ′ in the extended
STLC, because – as exlpained before – the match on B ′ has no such restriction of
always returning ⊥ ′ on the input ⊥ ′.
Now consider the terms

tb := λf. if (f⊥) then (f b) else (f b)

for b ∈ {true, false}. It obviously holds have ∅ ⊢ tb : (B → B) → B and tb is in
normal form for b ∈ {true, false}. ttrue and tfalse are not βη-equivalent, as their
normal forms (the terms themselves) are not equal up to η-conversions.
However, ttrue and tfalse are contextually equivalent: According to Fact 3.28 (2) and
Lemma 3.30, it suffices to prove that the following equivalence holds for all closed
f of type B → B:

∅ ⊢ ttrue f ≡c tfalse f : B

But this again follows from Lemma 3.30: By a case distinction on Lemma 7.5 and
Lemma 3.10, it becomes clear that ttrue f and tfalse f always evaluate to the same
boolean.
This shows that for PCF2, the two discussed equivalences do not agree and in par-
ticular, not all contextually equivalent terms are βη-equivalent. However, the con-
verse holds: For PCF2, all βη-equivalent terms are contextually equivalent. This
follows from Lemma 3.30 and the fact that terms that are equal up to η-conversions
are contextually equivalent.
7.3 Related Undecidability Results
We now briefly discuss other undecidability results from the theory of program-
ming languages, which have been mechanised in Coq and contributed to the Coq
Library of Undecidability Proofs [20].
Firstly, there has been work done on several decision problems related to System F,
an extension of the simply typed lambda calulus with universal quantification over
types, allowing for polymorphism. To be precise, in 2018, Dudenhefner and Rehof
mechanised an undecidability proof of type inhabitation on System F by reducing
from Hilbert’s tenth problem, the solvability of Diophantine equations [16]. Type
inhabitation is the problem of whether, given a type T and a typing context Γ , there
exists a term of type T in context Γ . The proof is known to be simpler than pre-
vious approaches by Löb and Urzyczyn [28, 54] and thus particularly well-suited
for mechanisation. Furthermore, Dudenhefner alsomechanised the undecidability
of typability and type checking for System F in 2021 [15]. Typability denotes the

62 Related Work

problem of whether, given a term, there exists a type T and a typing context Γ such
that the term has type T in context Γ . While typability asks for the existence of any
valid typing of a given term, type checking is the problemwhether, given a term t, a
type T and a typing context Γ , t has type T in context Γ . Dudenhefner came upwith
a direct reduction from semi-unification to typability, concluding the undecidabil-
ity of typability from that of semi-unification. He then deduced the undecidability
of type checking by a folklore reduction from typability. The first undecidability
result of type checking and typability in System F goes back to Wells in 1994 [55].
However, his apporach involved a reduction from type checking to typability rely-
ing on heavy machinery. Compared to Wells’ apporach, Dudenhefner’s approach
is relatively simple and direct, which made the mechanisation more feasible.
Apart from that, Spies and Forster mechanised the undecidability of higher-order
unification in the simply typed lambda-calulus [49]. Higher-order unification de-
notes the problem whether, given two typed terms, there exists a substitution such
that both terms become convertible when applying it. They established the unde-
cidability of higher-order unification by reducing from the solvability of Diophan-
tine equations, following a proof by Dowek [13]. Moreover, they sharpened the
result by proving second-order and third-order unification already undecidable,
following proofs of Goldfarb [22] and Huet [23].

Chapter 8

Conclusion

In this chapter, we briefly summarise our work, comment on our Coq mechanisa-
tion and finally mention remaining open problems.
We have discussed the undecidability of the contextual equivalence on PCF2, im-
plying that no solution for the full abstraction problem exists, following Loader’s
proof [27]. To be precise, we have mechanised the observational as well as contex-
tual equivalence on PCF2 and have proven that both agree. Furthermore, we have
mechanised all but one reductions appearing in Loader’s proof, namely the reduc-
tions from SATIS to PS (4.16), from PS to RPS (4.20), and from RPS to CE (4.21).
We have discussed the remaining reduction – from SR to SATIS – in detail. In par-
ticular, we have given formal account of the forward direction on paper, and have
seen examples of how derivation of words are encoded into PCF2 terms. Due to
a lack of time, we have not completed the mechanisation of the forward direction,
but we have conserved our attempt. Regarding the backward direction, which we
did notmechanise, we have provided an informal overview of how satisfying terms
may be brought into a structurally simplified from, and have presented in detail,
how then the respective derivability result is obtained.
8.1 Coq Mechanisation
The complete Coq mechanisation is available at

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/toc.html

The digital version of this thesis contains clickable references to the online docu-
mentation for all mechanised results. The files have been compiled using version
8.18.0 of Coq and the structure of the mechanisation is the following:
All our files are located in the folde PCF2. The folder external contains the part
of the Coq Library of Undecidability Proofs [20] we need for our work. Hereby,
the definition of string rewriting has been changed accordingly, as explained in
Section 2.3. The remaining files are diretly located in the folder PCF2:

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/toc.html

64 Conclusion

File Spec Proof Σ

preliminaries.v 39 115 154
pcf2_system.v 100 323 423
pcf2_contexts.v 10 57 67
pcf2_utils.v 63 173 236
CE.v 2 22 24
PS.v 11 0 11
RPS.v 11 0 11
SATIS.v 5 33 38
CE_facts.v 123 537 660
PS_facts.v 7 11 18
RPS_facts.v 7 11 18
SATIS_facts.v 29 142 171
co_RPS_CE.v 14 184 198
PS_RPS.v 11 71 82
SATIS_PS.v 64 468 532
SR_SATIS_forward.v 27 262 289
undecidability.v 15 36 51

538 2445 2983

Table 8.1: Lines of code in the respective files

• preliminaries.v: Results about lists and standard functions used in this thesis
• core.v, core_axioms.v, pcf_2.v, unscoped.v, unscoped_axioms.v: Generated by Au-

tosubst 2 regarding PCF2
• pcf_2_system.v, pcf_2_contexts.v, pcf_2_utils.v: Introducing central notions and

results about PCF2
• CE.v, PS.v,RPS.v, SATIS.v: Definition of respective decision problemanduse-

ful related lemmas
• CE_facts.v, PS_facts, RPS_facts, SATIS_facts: Useful properties related to re-

spective decision problem
• co_RPS_CE.v, PS_RPS.v, SATIS_PS.v: Respective reduction
• SR_SATIS_forward.v: Conservation of attempt tomechanise forwarddirection

of reduction from SR to SATIS
• undecidability.v: undecidability proof of SR and conclusion of undecidability

of CE
Table 8.1 depicts how many lines of code the respective files of our mechanisation

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.preliminaries.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.core.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.core_axioms.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.pcf_2.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.unscoped.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.Autosubst.unscoped_axioms.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_contexts.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_utils.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.PS.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.RPS.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.CE_facts.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.PS_facts.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.RPS_facts.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS_facts.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.co_RPS_CE.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.PS_RPS.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS_PS.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SR_SATIS_forward.html
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.undecidability.html

8.2. Open problems 65

contains, separated in specifications (Spec) and proofs (Proof).
Note that we assumed the following axioms in the Coq development:

1. Stronger version of weak normalisation and Church-Rosser property of re-
duction in PCF2 (3.9)

2. Existence of rule encodings (4.9)
3. Equivalence between SR and SATIS(6.19)
4. Existence of a set of rules such that SRR is undecidable (2.11)

The axioms (1) are standard results about PCF2 and are assumed such that we
could focus on the more interesting results.
Axiom (2), which can be derived from a result in the metatheory of PCF2 and a
standard argument about finiteness as described in Section 4.1.1, is assumed due
to the lack of time. Recall that the argument about finiteness makes use of the law
of excluded middle LEM – so in order to get rid of axiom (2) in the proposed way,
LEM must be assumed.
The third axiom (3) is assumed to obtain the desired undecidability result in Coq. It
assumes the equivalence between SR and SATIS presented in Chapter 5 and Chap-
ter 6, which we did not mechanise.
Axiom (4) is assumed, as in the Coq Library of Undecidability Proofs [20], which
this work is based on, there is no undecidability result about the version of string
rewriting presented in Section 2.3.
8.2 Open problems
There are two sorts of remaining problems.
On the one hand, there are still gaps in our mechanisation, which remain to be
filled: The existence of rule encodings remains to be shown. Furthermore, the com-
putable version of weak normalisation aswell as the Church-Rosser property of the
reduction relation are still open. The forward direction of the reduction from SR to
SATIS also remains uncompleted – our attempt could serve as basis for futurework.
Finally, the backward direction of the same remains open. In particular, the simpli-
fications of the structure of terms satisfying words with respect to all of Loader’s
word encodings remains to be mechanised, which we have given an overview of in
Section 6.2.
On the other hand, it is left to connect this work to the Coq Library of Undecidabil-
ity Proofs [20], i.e. to prove the base problem of the reduction chain presented here
undecidable in the synthetic setting. In order to achieve this, it remains to mech-

https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.pcf_2_system.html#weak_normalisation_comp
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.SATIS.html#rule_enc_exist
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.undecidability.html#SR_SATIS_equiv
https://www.ps.uni-saarland.de/~brenner/bachelor/coq/PCF2.undecidability.html#SR_undec

66 Conclusion

anise the undecidability of the particular version of string rewriting used in this
thesis, e.g. by following Davis’ approach mentioned in Section 2.3.

Appendix A

Appendix

We now present Loader’s 32 word encodings by condensing dual encodings to one
general v-encoding each (for v ∈ [true, false]) to avoid repetitions. Apart from that,
we do not give explicite PCF2 terms for the encodings, but define their behaviour
mathematically by specifying for which arguments v is returned – for all other ar-
guments, ⊥ is returned. Again, appropriate PCF2 terms can easily be constructed
by nesting conditionals. Let a = a1 . . . an be a word of length n.

1. If ∀i, 1 ⩽ i ⩽ |a|. si ⇓ ai ∧ s ′i ⇓ ai, then

Wordv(a) s1 s ′1 . . . s|a| s
′
|a| t1 t2 = v.

2. For any s1, . . . , s2|a|+2

Constv(a) s1 . . . s2|a|+2 = v

3. If ∀i, 1 ⩽ i ⩽ |a| → (si ⇓ true ∨ si ⇓ false), then

PosOddv(a) s1 s ′1 . . . s|a| s
′
|a| t1 t2 = v.

4. If ∀i, 1 ⩽ i ⩽ |a| → (s ′i ⇓ true ∨ s ′i ⇓ false), then

PosEvenv(a) s1 s ′1 . . . s|a| s
′
|a| t1 t2 = v.

5. If (t1 ⇓ true ∨ t1 ⇓ false), then

ConOddv(a) s1 s ′1 . . . s|a| s
′
|a| t1 t2 = v.

6. If (t2 ⇓ true ∨ t2 ⇓ false), then

ConEvenv(a) s1 s ′1 . . . s|a| s
′
|a| t1 t2 = v.

68 Appendix

7. If ∀i, 1 ⩽ i ⩽ |a|+ 1 → (si ⇓ true ∧ (s ′i ⇓ true ∨ s ′i ⇓ false))∨ si ⇓ false, then

EvenSimpTruev(a) s1 s ′1 . . . s|a|+1 s ′|a|+1 = v.

8. If ∀i, 1 ⩽ i ⩽ |a|+ 1 → (si ⇓ false ∧ (s ′i ⇓ true ∨ s ′i ⇓ false))∨ si ⇓ true, then

EvenSimpFalsev(a) s1 s ′1 . . . s|a|+1 s ′|a|+1 = v.

9. If ∀i, 1 ⩽ i ⩽ |a|+ 1 → (s ′i ⇓ true ∧ (si ⇓ true ∨ si ⇓ false))∨ s ′i ⇓ false, then

OddSimpTruev(a) s1 s ′1 . . . s|a|+1 s ′|a|+1 = v.

10. If ∀i, 1 ⩽ i ⩽ |a|+ 1 → (s ′i ⇓ false ∧ (si ⇓ true ∨ si ⇓ false))∨ s ′i ⇓ true, then

OddSimpFalsev(a) s1 s ′1 . . . s|a|+1 s ′|a|+1 = v.

11. If ∀i, 1 ⩽ i ⩽ 2|a|+ 2 → si ⇓ true, then

FixTruev(a) s1 . . . s2|a|+2 = v.

12. If ∀i, 1 ⩽ i ⩽ 2|a|+ 2 → si ⇓ false, then

FixFalsev(a) s1 . . . s2|a|+2 = v.

13. If (t2 ⇓ true ∧ (∀i, 1 ⩽ i ⩽ 2|a| → (si ⇓ true ∨ si ⇓ false)) ∧ (t1 ⇓ true ∨ t1 ⇓
false)) ∨ t2 ⇓ false, then

Chainv(a) s1 . . . s2|a| t1 t2 = v.

14. If ∀i v1 v2, 1 ⩽ i ⩽ n → si ⇓ v1 → s ′i ⇓ v2 → v1 = v2 ∈ [true, false], then

PosEqv(a) s1 s ′1 . . . s|a| s
′
|a| t1 t2 = v.

15. If ∀i v1 v2, 1 ⩽ i ⩽ n− 1 → s2i ⇓ v1 → s2i+1 ⇓ v2 → v1 = v2 ∈ [true, false],
then

PosChainv(a) s1 . . . s2|a| t1 t2 = v.

16. If ∃i 1 ⩽ i ⩽ 2|a|+ 2 ∧ si ⇓ true ∧ (∀j, 1 ⩽ j ⩽ 2|a|+ 2 → i ̸= j → sj ⇓ false),
then

Linv(a) s1 . . . s2|a|+2 = v.

Bibliography

[1] Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan. Full Abstrac-
tion for PCF. In Masami Hagiya and John C. Mitchell, editors, Theoretical As-
pects of Computer Software, International Conference TACS ’94, Sendai, Japan, April
19-22, 1994, Proceedings, volume 789 of Lecture Notes in Computer Science, pages
1–15. Springer, 1994. URL https://doi.org/10.1007/3-540-57887-0_87.

[2] Amal Ahmed. Oplss 2023: Logical relations, 2023.

[3] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. Nor-
malization by evaluation for typed lambda calculus with coproducts. In 16th
Annual IEEE Symposium on Logic in Computer Science, Boston, Massachusetts,
USA, June 16-19, 2001, Proceedings, pages 303–310. IEEE Computer Society,
2001. URL https://doi.org/10.1109/LICS.2001.932506.

[4] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. Extensional nor-
malisation and type-directed partial evaluation for typed lambda calculus
with sums. In Neil D. Jones and Xavier Leroy, editors, Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2004, Venice, Italy, January 14-16, 2004, pages 64–76. ACM, 2004. URL
https://doi.org/10.1145/964001.964007.

[5] Hendrik Pieter Barendregt. The Lambda Calculus - Its Syntax and Semantics,
volume 103 of Studies in logic and the foundations of mathematics. North-Holland,
1985. ISBN 978-0-444-86748-3.

[6] Andrej Bauer. First Steps in Synthetic Computability Theory. Electronic Notes
in Theoretical Computer Science, 155:5–31, 2006. ISSN 1571-0661. URL https:
//doi.org/10.1016/j.entcs.2005.11.049. Proceedings of the 21st Annual
Conference onMathematical Foundations of Programming Semantics (MFPS
XXI).

[7] Andrej Bauer. On fixed-point theorems in synthetic computability. Tbilisi
Mathematical Journal, 10(3):167 – 181, 2017. URL https://doi.org/10.1515/
tmj-2017-0107.

https://doi.org/10.1007/3-540-57887-0_87
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1145/964001.964007
https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1515/tmj-2017-0107
https://doi.org/10.1515/tmj-2017-0107

70 Bibliography

[8] Douglas Bridges and Fred Richman. Varieties of ConstructiveMathematics. Lon-
don Mathematical Society Lecture Note Series. Cambridge University Press,
1987.

[9] Thierry Coquand and Gérard P. Huet. The Calculus of Construc-
tions. Inf. Comput., 76(2/3):95–120, 1988. URL https://doi.org/10.1016/
0890-5401(88)90005-3.

[10] Martin D. Davis. Computability and Unsolvability. McGraw-Hill Series in Infor-
mation Processing and Computers. McGraw-Hill, 1958.

[11] N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formulamanipulation, with application to the Church-Rosser theo-
rem. Indagationes Mathematicae (Proceedings), 75(5):381–392, 1972. ISSN 1385-
7258. URL https://doi.org/10.1016/1385-7258(72)90034-0.

[12] Leonardo de Moura and Sebastian Ullrich. The Lean 4 Theorem Prover
and Programming Language. In André Platzer and Geoff Sutcliffe, editors,
Automated Deduction - CADE 28 - 28th International Conference on Automated
Deduction, Virtual Event, July 12-15, 2021, Proceedings, volume 12699 of Lec-
ture Notes in Computer Science, pages 625–635. Springer, 2021. URL https:
//doi.org/10.1007/978-3-030-79876-5_37.

[13] Gilles Dowek. Higher-Order Unification and Matching. In John Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning (in 2 vol-
umes), pages 1009–1062. Elsevier and MIT Press, 2001. URL https://doi.
org/10.1016/b978-044450813-3/50018-7.

[14] Derek Dreyer, Simon Spies, Lennard Gäher, Ralf Jung, Jan-Oliver Kaiser,
Hoang-Hai Dang, David Swasey, and Jan Menz. Semantics of type systems
lecture notes, 2022.

[15] Andrej Dudenhefner. The Undecidability of System F Typability and Type
Checking for Reductionists. In 36th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–10.
IEEE, 2021. URL https://doi.org/10.1109/LICS52264.2021.9470520.

[16] Andrej Dudenhefner and Jakob Rehof. A Simpler Undecidability Proof for
System F Inhabitation. In Peter Dybjer, José Espírito Santo, and Luís Pinto,
editors, 24th International Conference on Types for Proofs and Programs, TYPES
2018, June 18-21, 2018, Braga, Portugal, volume 130 of LIPIcs, pages 2:1–2:11.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL https://doi.
org/10.4230/LIPIcs.TYPES.2018.2.

[17] Marcelo P. Fiore and Alex K. Simpson. Lambda Definability with Sums via

https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1016/b978-044450813-3/50018-7
https://doi.org/10.1016/b978-044450813-3/50018-7
https://doi.org/10.1109/LICS52264.2021.9470520
https://doi.org/10.4230/LIPIcs.TYPES.2018.2
https://doi.org/10.4230/LIPIcs.TYPES.2018.2

Bibliography 71

Grothendieck Logical Relations. In Jean-YvesGirard, editor, Typed Lambda Cal-
culi and Applications, 4th International Conference, TLCA’99, L’Aquila, Italy, April
7-9, 1999, Proceedings, volume 1581 of Lecture Notes in Computer Science, pages
147–161. Springer, 1999. URL https://doi.org/10.1007/3-540-48959-2_
12.

[18] Yannick Forster, Edith Heiter, and Gert Smolka. Verification of PCP-Related
Computational Reductions in Coq. In Jeremy Avigad and Assia Mahboubi,
editors, Interactive Theorem Proving - 9th International Conference, ITP 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,
Proceedings, volume 10895 of Lecture Notes in Computer Science, pages 253–269.
Springer, 2018. URL https://doi.org/10.1007/978-3-319-94821-8_15.

[19] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecid-
ability in Coq, with an application to the Entscheidungsproblem. In As-
sia Mahboubi and Magnus O. Myreen, editors, Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019,
Cascais, Portugal, January 14-15, 2019, pages 38–51. ACM, 2019. URL https:
//doi.org/10.1145/3293880.3294091.

[20] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith
Heiter, Dominik Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik
Wehr, and Maximilian Wuttke. A Coq Library of Undecidable Problems. In
CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages,
New Orleans, United States, January 2020. URL https://hal.science/
hal-02944217.

[21] Neil Ghani. βη-equality for coproducts. In Mariangiola Dezani-Ciancaglini
andGordon Plotkin, editors, Typed Lambda Calculi and Applications, pages 171–
185, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg. ISBN 978-3-540-
49178-1. URL https://doi.org/10.1007/BFb0014052.

[22] Warren D. Goldfarb. The undecidability of the second-order unification prob-
lem. Theor. Comput. Sci., 13:225–230, 1981. URL https://doi.org/10.1016/
0304-3975(81)90040-2.

[23] Gérard P. Huet. The Undecidability of Unification in Third Order
Logic. Inf. Control., 22(3):257–267, 1973. URL https://doi.org/10.1016/
S0019-9958(73)90301-X.

[24] J. M. E. Hyland and C.-H. Luke Ong. On Full Abstraction for PCF: I, II, and
III. Inf. Comput., 163(2):285–408, 2000. URL https://doi.org/10.1006/inco.
2000.2917.

[25] Achim Jung and Allen Stoughton. Studying the Fully Abstract Model of PCF

https://doi.org/10.1007/3-540-48959-2_12
https://doi.org/10.1007/3-540-48959-2_12
https://doi.org/10.1007/978-3-319-94821-8_15
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294091
https://hal.science/hal-02944217
https://hal.science/hal-02944217
https://doi.org/10.1007/BFb0014052
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1016/S0019-9958(73)90301-X
https://doi.org/10.1016/S0019-9958(73)90301-X
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1006/inco.2000.2917

72 Bibliography

within its Continuous Function Model. In Marc Bezem and Jan Friso Groote,
editors, Typed Lambda Calculi and Applications, International Conference on Typed
Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-
18, 1993, Proceedings, volume 664 of Lecture Notes in Computer Science, pages
230–244. Springer, 1993. URL https://doi.org/10.1007/BFb0037109.

[26] Ralph Loader. Unary PCF is decidable. Theor. Comput. Sci., 206(1-2):317–329,
1998. URL https://doi.org/10.1016/S0304-3975(98)00048-6.

[27] Ralph Loader. Finitary PCF is not decidable. Theor. Comput. Sci., 266(1-2):
341–364, 2001. URL https://doi.org/10.1016/S0304-3975(00)00194-8.

[28] M.H. Lob. Embedding first order predicate logic in fragments of intuitionistic
logic. J. Symb. Log., 41(4):705–718, 1976. URL https://doi.org/10.2307/
2272390.

[29] John Longley and Dag Normann. Higher-Order Computability. Theory and
Applications of Computability. Springer, 2015. ISBN 978-3-662-47991-9. URL
https://doi.org/10.1007/978-3-662-47992-6.

[30] A. Markov. On the impossibility of certain algorithms in the theory of asso-
ciative systems. Journal of Symbolic Logic, 13(3):170–171, 1948. URL https:
//doi.org/10.2307/2267871.

[31] A. Markov. Impossibility of certain algorithms in the theory of associative
systems. Journal of Symbolic Logic, 16(3):215–215, 1951. URL https://doi.
org/10.2307/2266407.

[32] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in proof theory.
Bibliopolis, 1984. ISBN 978-88-7088-228-5.

[33] Robin Milner. Fully abstract models of typed lambda-calculi. Theor. Com-
put. Sci., 4(1):1–22, 1977. URL https://doi.org/10.1016/0304-3975(77)
90053-6.

[34] Robin Milner. LCF: A way of doing proofs with a machine. In Jirí Becvár, edi-
tor, Mathematical Foundations of Computer Science 1979, Proceedings, 8th Sympo-
sium, Olomouc, Czechoslovakia, September 3-7, 1979, volume 74 of Lecture Notes
in Computer Science, pages 146–159. Springer, 1979. URL https://doi.org/
10.1007/3-540-09526-8_11.

[35] Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML. MIT
Press, 1990. ISBN 978-0-262-63132-7.

[36] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer

https://doi.org/10.1007/BFb0037109
https://doi.org/10.1016/S0304-3975(98)00048-6
https://doi.org/10.1016/S0304-3975(00)00194-8
https://doi.org/10.2307/2272390
https://doi.org/10.2307/2272390
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.2307/2267871
https://doi.org/10.2307/2267871
https://doi.org/10.2307/2266407
https://doi.org/10.2307/2266407
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1007/3-540-09526-8_11
https://doi.org/10.1007/3-540-09526-8_11

Bibliography 73

Science. Springer, 2002. ISBN 3-540-43376-7. URL https://doi.org/10.1007/
3-540-45949-9.

[37] Peter W. O’Hearn and Jon G. Riecke. Kripke Logical Relations and PCF. Inf.
Comput., 120(1):107–116, 1995. URL https://doi.org/10.1006/inco.1995.
1103.

[38] Christine Paulin-Mohring. Inductive definitions in the system Coq rules and
properties. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi
and Applications, International Conference on Typed Lambda Calculi and Applica-
tions, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings, vol-
ume 664 of Lecture Notes in Computer Science, pages 328–345. Springer, 1993.
URL https://doi.org/10.1007/BFb0037116.

[39] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Con-
structions. In Bruno Woltzenlogel Paleo and David Delahaye, editors, All
about Proofs, Proofs for All, volume 55 of Studies in Logic (Mathematical logic and
foundations). College Publications, January 2015. URL https://inria.hal.
science/hal-01094195.

[40] Richard Alan Platek. Foundations of recursion theory. Stanford University, 1966.
[41] Gordon D. Plotkin. LCF considered as a programming language. Theor. Com-

put. Sci., 5(3):223–255, 1977. URL https://doi.org/10.1016/0304-3975(77)
90044-5.

[42] Emil L. Post. Formal reductions of the general combinatorial decision prob-
lem. American Journal of Mathematics, 65(2):197–215, 1943. ISSN 00029327,
10806377. URL https://doi.org/10.2307/2371809.

[43] Emil L. Post. Recursive Unsolvability of a problem of Thue. J. Symb. Log., 12
(1):1–11, 1947. URL https://doi.org/10.2307/2267170.

[44] Fred Richman. Church’s thesis without tears. J. Symb. Log., 48(3):797–803,
1983. URL https://doi.org/10.2307/2273473.

[45] Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning with
de Bruijn Terms and Parallel Substitutions. In Christian Urban and Xingyuan
Zhang, editors, Interactive Theorem Proving - 6th International Conference, ITP
2015, Nanjing, China, August 24-27, 2015, Proceedings, volume 9236 of Lecture
Notes in Computer Science, pages 359–374. Springer, 2015. URL https://doi.
org/10.1007/978-3-319-22102-1_24.

[46] Gabriel Scherer. Deciding equivalence with sums and the empty type. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL ’17, page 374–386, New York, NY, USA, 2017. Association

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1006/inco.1995.1103
https://doi.org/10.1006/inco.1995.1103
https://doi.org/10.1007/BFb0037116
https://inria.hal.science/hal-01094195
https://inria.hal.science/hal-01094195
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.2307/2371809
https://doi.org/10.2307/2267170
https://doi.org/10.2307/2273473
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-319-22102-1_24

74 Bibliography

for Computing Machinery. ISBN 9781450346603. URL https://doi.org/10.
1145/3009837.3009901.

[47] Manfred Schmidt-Schauß. Decidability of behavioural equivalence in unary
PCF. Theor. Comput. Sci., 216(1-2):363–373, 1999. URL https://doi.org/10.
1016/S0304-3975(98)00024-3.

[48] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY.
Theor. Comput. Sci., 121(1&2):411–440, 1993. URL https://doi.org/10.1016/
0304-3975(93)90095-B.

[49] Simon Spies and Yannick Forster. Undecidability of higher-order unification
formalised in coq. In Proceedings of the 9th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, CPP 2020, page 143–157, New York, NY,
USA, 2020. Association for ComputingMachinery. ISBN 9781450370974. URL
https://doi.org/10.1145/3372885.3373832.

[50] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: Reasoning with
Multi-sorted de Bruijn Terms and Vector Substitutions. In Assia Mahboubi
andMagnus O. Myreen, editors, Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal,
January 14-15, 2019, pages 166–180. ACM, 2019. URL https://doi.org/10.
1145/3293880.3294101.

[51] TheCoqDevelopment Team. TheCoq ProofAssistant, June 2024. URL https:
//doi.org/10.5281/zenodo.11551307.

[52] The Haskell Development Team. Haskell 2010 Language Report, 2010. URL
https://www.haskell.org/definition/haskell2010.pdf.

[53] A. Thue. Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln.
Skrifter (Norske videnskaps-akademi. I–Mat.-naturv. klasse). J. Dybwad,
1914.

[54] Pawel Urzyczyn. Inhabitation in Typed Lambda-Calculi (A Syntactic Ap-
proach). In Philippe de Groote, editor, Typed Lambda Calculi and Applica-
tions, Third International Conference on Typed Lambda Calculi and Applications,
TLCA ’97, Nancy, France, April 2-4, 1997, Proceedings, volume 1210 of Lec-
ture Notes in Computer Science, pages 373–389. Springer, 1997. URL https:
//doi.org/10.1007/3-540-62688-3_47.

[55] J. B. Wells. Typability and type-checking in the second-order lambda-calculus
are equivalent and undecidable. In Proceedings of the Ninth Annual Symposium
on Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 176–

https://doi.org/10.1145/3009837.3009901
https://doi.org/10.1145/3009837.3009901
https://doi.org/10.1016/S0304-3975(98)00024-3
https://doi.org/10.1016/S0304-3975(98)00024-3
https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://www.haskell.org/definition/haskell2010.pdf
https://doi.org/10.1007/3-540-62688-3_47
https://doi.org/10.1007/3-540-62688-3_47

Bibliography 75

185. IEEE Computer Society, 1994. URL https://doi.org/10.1109/LICS.
1994.316068.

[56] BenjaminWerner. Sets in Types, Types in Sets. In Martín Abadi and Takayasu
Ito, editors, Theoretical Aspects of Computer Software, Third International Sym-
posium, TACS ’97, Sendai, Japan, September 23-26, 1997, Proceedings, volume
1281 of Lecture Notes in Computer Science, pages 530–346. Springer, 1997. URL
https://doi.org/10.1007/BFb0014566.

https://doi.org/10.1109/LICS.1994.316068
https://doi.org/10.1109/LICS.1994.316068
https://doi.org/10.1007/BFb0014566

	Abstract
	Introduction
	Contribution
	Overview

	Preliminaries
	Constructive Type Theory
	Synthetic Undecidability Theory
	String Rewriting (SR)

	Programming Computable Functions
	Syntax
	Typing
	Operational Semantics
	Contexts and Contextual Equivalence
	Contexts
	Contextual Equivalence (CE)
	Characterisation of Contextual Equivalence

	Decision problems appearing in Loader's Proof
	Reducing Satisfiability of Words to Preorder Systems
	Satisfiability of Words (SATIS)
	Preorder Systems (PS)

	Reducing Preorder Systems to Restricted Preorder Systems
	Restricted Preorder Systems (RPS)

	Reducing RPS to Contextual Equivalence

	Equivalence of SR and SATIS: Forward direction
	Examples of terms satisfying words
	Proof of the forward direction

	Equivalence of SR and SATIS: Backward Direction
	Descent funtions
	Structural reductions
	Correctness Proof

	Related Work
	Decidability of PCF1
	Decidability of STLC with sum and product types
	Related Undecidability Results

	Conclusion
	Coq Mechanisation
	Open problems

	Appendix
	Bibliography

