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1 Introduction
This thesis aims to give models for hereditarily finite sets and finitary sets based on constructivetype theory. Constructive type theory is a logic which differs from classical mathematics intwo main points:
• Whereas in the former, types are ubiquitous, the latter has set theory at its foundation.Many constructs in classical mathematics thus rely - more or less explicitly - on sets,and their counterparts in constructive type theory are more often than not just (inductive)types.The natural numbers provide a simple example for this: they are defined as sets inclassical mathematics, but are represented by an inductive type in constructive typetheory (n : N ::= O | S n).Furthermore, there is the so-called Curry-Howard isomorphism [1], which states thatstatements can also be represented by types. The elements of such a type then representthe proofs of the respective statement. As a consequence, checking the correctness of aproof becomes equivalent to type-checking the proof term, which facilitates automatedproof checking.
• As the name implies, constructive type theory only allows constructive proofs. This isnot the case for classical mathematics, where one usually relies on an assumption calledexcluded middle (XM for short, sometimes referred to as ”tertium non datur”), whichstates that for every proposition P, either P or its negation holds. This principle justifies atechnique called proof by contradiction, which is often used to prove existence of certainthings. This technique, however, is intrinsically non-constructive. As a consequence,sometimes the problem arises that we know some element of a type has a property,but we do not have an explicit element satisfying that property. In constructive typetheory, on the other hand, every existential proof comes with a so-called witness, i.e. anexplicit element that satisfies the property, hence avoiding the aforementioned problem.Therefore, constructive type theory does not have the assumption XM.

The entire development related to this thesis is formalized in the proof assistant Coq, whichis one of many proof assistants based on constructive type theory (more specifically thecalculus of inductive definitions) that make use of the Curry-Howard isomorphism to checkthe correctness of proofs. The aforementioned assumption XM is independent in Coq, whichmeans that we can either assume XM or its negation, and the resulting logic remains consistent.
As mentioned before, classical mathematics is based on set theory. Various axiomatizations ofsets have been proposed, the standard choice of today being the so-called ZF-theory due toZermelo and Fraenkel [2] [3] [4] , which is comprised of an element relation ∈ and the followingaxioms:
• The axiom of extensionality characterizes the equality of sets:
∀MN.M = N ⇐⇒ (∀x. x ∈ M ⇐⇒ x ∈ N)

• The axiom of existence guarantees the existence of a unique empty set denoted by ∅such that ∀M.M 6∈ ∅.
• The axiom of pairing guarantees for any M, N the existence of a unique set that wedenote by {M, N} such that ∀MNN ′. N ′ ∈ {M,N} ⇐⇒ N ′ = M ∨N ′ = N .
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As a consequence, this also gives us the existence of a singleton set containing only asingle set M, for any set M:
{M} := {M, M} such that x ∈ {M} ⇐⇒ x = M .Sets obtained by the axiom of pairing are called unordered pairs, since the order of Mand N is irrelevant (due to the axiom of extensionality).

• The axiom of union guarantees the existence of a unique set denoted by ⋃N for any setN such that ∀MN.M ∈
⋃
N ⇐⇒ ∃N ′ ∈ N.M ∈ N ′.There is also the notion of a binary union operator ∪, which can be defined in terms of ⋃as follows:M ∪ N := ⋃

{M,N}.It is easy to see that x ∈ M ∪N ⇐⇒ x ∈ M ∨ x ∈ N .Furthermore, there is an operation called adjunction which will be important later on.Its definition is M; N := M ∪ {N}. Note that x ∈ M;N ⇐⇒ x ∈ M ∨ x = N .
• The axiom of power guarantees, for any set M, the existence of a unique set, the so-calledpower set, that we denote by P(M)such that ∀N.N ∈ P(M) ⇐⇒ N ⊆ M .
• The axiom of separation guarantees the existence of a unique set that we denote by
{x ∈ M | P x} for any set M and predicate Psuch that y ∈ {x ∈ M | P x} ⇐⇒ y ∈ M ∧ P y. While predicates are usually modelledby sets in classical mathematics, we model predicates by the intrinsic functions ofconstructive type theory. In particular, such a predicate P has type Set → Prop. Prop isthe universe of predicates, which means that any statement has type Prop. Note that,in order to avoid inconsistencies, P has to be an extensional predicate. This will bediscussed in the second part of the thesis.

• The axiom of replacement guarantees the existence of a unique set denoted by
{f x|x ∈ M} for any set M and function f. As with the axiom of separation, functions arealso sets in classical mathematics. However, since in this thesis, we study sets from theperspective of constructive type theory, we use its native functions. In particular, thetype of f for this axiom has to be f : Set → Set. There is another, more general, versionof this axiom that uses relations instead of functions. If the given relation is total, webasically have the same case as here. However, if we are only given a partial relation,the result will be a subset of the set which results from our version of replacement. Dueto the axiom of separation, however, this system does not lose any expressiveness, as wecan combine the axioms of replacement and separation to model replacement based onrelations. On the other hand, if we were to use the stronger version of replacement, theaxiom of separation would become redundant.

• The axiom of infinity guarantees the existence of an infinite set X such that
∅ ∈ X ∧ ∀y. y ∈ X =⇒ y;y ∈ X .Note that y;y = y ∪ {y}. Without this axiom, we are not able to construct sets withinfinitely many elements. Often, X is restricted to be minimal, in which case it coincideswith the von Neumann ordinal [5] ω, which is basically the set of all natural numbers N.
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• The axiom of regularity (also called axiom of foundation) is different from the previousaxioms in that it does not give us the possibility to construct new sets, but limits the setswe can potentially build. It states that every set is well-founded, i.e. every descendingchain of elements is finite. In other words, every set only has finitely many successorswith respect to the membership relation.

The need for a consistent axiomatization of set theory arose due to Cantor’s naive set theory,where sets are defined as any imaginable collection of elements, being inconsistent: Considerthe set R := {x|x 6∈ x}. It is easy to see that R ∈ R ⇐⇒ R 6∈ R . This inconsistency ofCantor’s naive set theory is known as Russel’s paradox [6].Furthermore, there is the axiom of choice, whose usual formulation is as follows: For any set Xwhose elements are non-empty, there is a choice function f : X→ ⋃
X such that ∀y ∈ X. fy ∈ y.While the axiom of choice seems intuitive and entirely reasonable, it has some unexpectedand counter-intuitive consequences, such as the Banach–Tarski paradox [7] and Zermelo’swell-ordering theorem [8][9], which states that any set with a choice function has a well-ordering.Therefore, the axiom of choice has caused a lot of controversy. It should be noted that theaxiom of choice is independent of the remaining ZF-axioms. Hence, it can either be consistentlyassumed or omitted. Furthermore, if one omits the axiom of infinity, it is easy to constructa choice function, since only finite sets remain. The aforementioned controversy regardingthis axiom persists only in the presence of the axiom of infinity. When assuming the axiom ofchoice in addition to the remaining ZF-axioms, one reaches a set theory commonly abbreviatedZFC (Zermelo-Fraenkel + choice).

There is an operation on sets whose usual construction relies on the axiom of infinity, namelythe transitive closure of a set M, which basically gives us a set that contains all sets that canbe reached via a descending chain of elements of M. The aforementioned construction goes asfollows:
tcM := ⋃

n∈N
(⋃nM), where ⋃n denotes iterating ⋃ n times.

A special class of well-founded sets are the so-called hereditarily finite sets. These are setswith only finitely many elements, all of which are in turn hereditarily finite.One application of hereditarily finite sets is Robin Millner’s calculus of communicating systems(CSS)[10], which is one of many process calculi that can be used to model concurrent behaviour.Hereditarily finite sets can be used to model the fragment of CCS consisting of only oneaction, the empty process, a binary + operator on processes and action prefixes, as shown byAbramsky [11].
Another kind of sets is non-well-founded sets. These may contradict the axiom of regularity,i.e. they are not necessarily well-founded. The simplest example of such a set is theset Ω = {Ω}. It is obvious that Ω is not well-founded. However, non-well-foundedsets also include all well-founded sets. Non-well-founded sets have been thoroughlyinvastigated by many people, and the most fundamental work on them is due to PeterAczel. In his book [12], he axiomatizes non-well-founded sets and gives examples ofapplications of non-well-founded sets. In lieu of the axiom of regularity, there is theso-called Anti-Foundation Axiom (AFA) for non-well-founded sets, which states that everyaccessible pointed graph (apg) corresponds to a unique set. An accessible pointed graph is adirected graph with a root vertex that can reach every other vertex. We will use a similarrepresentation for graphs, but do not require accessibility, i.e. we allow vertices that areunreachable from the root, but these are basically irrelevant for our purposes and interpretation.
8
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We use the term finitary to denote a special class of non-well-founded sets. This class is verysimilar to hereditarily finite sets in that every finitary set has only finitely many elements,each of which are in turn finitary. However, as opposed to hereditarily finite sets, finitary setsneed not be well-founded. Ω is the prime example of a finitary set.
Continuing on the connection of sets to CCS, if we also allow recursive processes in thefragment of CCS considered above, we end up with a fragment of CCS that can be modelled byfinitary sets.The relation between (general) non-well-founded set and full CCS has been studied before, e.g.by Aczel [12] and Baldamus [13].
In the first part of the thesis, we give a model for hereditarily finite sets based on binarytrees. We will consider a couple of possible equivalence relation on these trees, prove theirequivalence and show how to decide tree equivalence.
In the second part of the thesis, we construct a premodel for finitary sets based on graphs andgive constructions for the axioms of existence, pairing, union, separation, replacement, powerand extensionality modulo bisimulation. Since finitary sets are non-well-founded and onlyhave finitely many elements, the axioms of regularity and infinity do not make sense.Furthermore, we also give a construction for the transitive closure modulo bisimulation, whosestandard definition is not possible in our model, since we do not have the axiom of infinity.We show that the bisimulation we define is decidable and - based on a mapping betweengraphs and natural numbers - give a construction for the quotient type G /≈ , which we defineas our type for finitary sets. Furthermore, we additionaly have Aczel’s AFA, which states thatfor every apg, there exists a unique non well-founded set. The respective construction is trivialin our case, since every graph belongs to a unique equivalence class. The constructions for theaxioms discussed above and the transitive closure then hold in their original form for our typeof finitary sets. In addition, we also give a choice function on finitary sets. Since we do nothave the axiom of infinity, it is intuitively clear that this works. Our characterization of thechoice function γ we give looks slightly different than the axiom of choice above: We havethat ∀M 6= ∅. γM ∈ M . However, this formulation is equivalent to the usual one given above,although in our opinion much simpler.
Concerning conventions for this thesis, we should note the following two points:
• Whenever a free variable occurs somewhere, it is implicitly universally quantified.
• Since we study sets based on constructive type theory, we will in general prefer inductivecharacterizations and definitions over the first-order characterizations and definitionsencountered in classical set theory.

Related Work
The initial interest for this thesis arose owing to the Bachelor Thesis of Kathrin Stark [14],which - among others - featured a formalization of a restricted subset of CCS without recursionin the proof assistant Coq. Incidentally, if one adds the restriction that there is only a singleaction, the fragment of CCS considered by Kathrin is exactly the same as one that can bemodelled by hereditarily finite sets.
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Dominik Kirst’s Bachelor thesis [15] provides a substantial formalization of the classical ZFtheory implemented in the proof assistant Coq.Alexandre Miquel’s slides on inconsistent type systems [16] contain a representation of setsas pointed graphs. He models extensional equality of sets by bisimilarity and membership asshifted bisimilarity, which is the same idea that we use in the second part of the thesis.
Contribution
We seem to be the first to give a formalization of a constructive model for finitary sets in Coq.In contrast to a lot of other work, the model we give does not assume any ZF axioms, but hasexplicit constructions for all ZF axioms that make sense for finitary sets, as well as for Aczel’sAFA.We also present a model for hereditarily finite sets based on binary trees and give differentcharacterization of equivalence on these trees, and although we do not give explicit constructionsfor most ZF axioms in this case, the constructions used in the second part can be generalizedand applied to our binary tree model, which would give us a model for hereditarily finite setsthat admit all ZF axioms except infinity.
Part I
Hereditarily finite sets
2 Basics
In this first part of the thesis, we will give a model of hereditary finite (HF) sets based onconstructive type theory. One possible characterization of HF sets is the following inductivepredicate:

HF ∅ HF M HF NHF (M ; N)We will model these sets using binary trees.
Definition 2.1. s, t : T ::= ∅̇ | s . tThe constructor s.t is right associative, i.e. s.t.u = s.(t.u). We use the following semantics forbinary trees:
• J∅̇ K = ∅
• Js.tK = {JsK} ∪ JtK

Recall that the adjunction has the following property : M;N = M ∪ {N}. It is easy to see thatthe semantics we use for binary trees give us a model of hereditarily finite sets (although theorder of the arguments is reversed).We can get all child trees of a given tree using the L function, which collects all left childrenof elements along the right spine of the tree (which are, according to our semantics for binarytrees, exactly the trees which model the children of the set modelled by the original tree). Thisis shown in figure 1, which depicts the tree s.t.u.∅̇ . The children of this tree are s, t and u.
10
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Figure 1: interpretation of tree structure
Definition 2.2. L :T → [T ]
L ∅̇ := []
L (s.t) := s :: (L t)We can, of course, invert this operation.
Definition 2.3. T : [T ]→ T
T [] := ∅̇
T (t :: ts) := t.(T ts)We can also append two trees:
Definition 2.4. append : T → T → Tappend ∅̇ t := tappend (s.s’) t := s.(append s’ t)We write s @ t instead of append s t.Note that L(s@t) = L(s) ++ L(t) and T (l++ l′) = T (l) @ T (l′) .These functions will be very useful later on when we discuss characterizations of tree equiva-lence.
3 Equivalence
There are multiple ways to define equivalence on our model of hereditarily finite sets. In fact,we will see a few possibilities and prove their equivalence. Note that one usually definesequivalence based on an element relation. However, defining an element relation based on setequivalence is just as easy, since M ∈ N ⇐⇒ N ≡ {M} ∪N .
There are two crucial properties that a relation which is intended to model set equivalencehas to satisfy:
• Duplicate elements can be ignored

11
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• The ordering of the elements is irrelevant

In fact, these two properties are already sufficient. Consider the least congruence satisfyingthese rules:
Definition 3.1. ≡: T → T → Prop

s.s.t ≡ s.t s.t.u ≡ t.s.u ∅̇ ≡ ∅̇

s ≡ s′ t ≡ t′
s.t ≡ s′.t′

s ≡ t t ≡ u
s ≡ u

∅̇ 6= s ≡ t 6= ∅̇
s ≡ tThe first two rules (Deletion and Swap, respectively) realise the properties discussed above.Technically speaking, the least congruence satisfying the two aforementioned properties isexactly the one given here, except for the symmetry rule, where we restricted both elements tobe different from the empty tree. The rule we use, however, gives us slightly shorter proofsfor certain lemmas in the Coq development. Moreover, it is easy to see that an unrestrictedsymmetry rule is admissible for this equivalence relation:

Lemma 3.2. ∀s t. s ≡ t =⇒ t ≡ s

Proof. Induction on s ≡ t. All cases are trivial.
Reflexivity can also easily be established by induction. Note that ≡ is obviously a congruencerelation.Furthermore, note that a tree is equivalent to ∅̇ iff it is equal to ∅̇ :
Lemma 3.3. ∀s. s ≡ ∅̇ =⇒ s = ∅̇
Proof. By induction on s ≡ ∅̇ . Due to the restriction in the symmetry rule, all cases aretrivial.
Of course, the same holds for ∅̇ ≡ s, due to symmetry.
Note that equivalent trees have equivalent children:
Definition 3.4. s - t := ∀s′ ∈ L(s).∃t′ ∈ L(t). s′ ≡ t′.
Lemma 3.5. ∀s t. s ≡ t =⇒ s - t ∧ t - s

Proof. Induction on s ≡ t.
• If s = ∅̇ = t, the claim follows, since ∅̇ - ∅̇ holds vacuously.
• If s = s’.s’.t’ and t = s’.t’ (or vice-versa), we can see that ∀u. u ∈ L(s) ⇐⇒ u ∈ L(t) .
• If s = s’.t’.u’ and t = t’.s’.u’ (or vice-versa), ∀u. u ∈ L(s) ⇐⇒ u ∈ L(t) again holds.
• For the symmetry rule, the claim follows by IH. This is the reason why we have to prove
s ≡ t =⇒ s - t ∧ t - s instead of simply s ≡ t =⇒ s - t - in the latter case, the IHwould not be strong enough.

• In the transitivity case, the claim again follows by IH and due to transitivity of ≡.
12
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• In the remaining case, we have s ≡ s′, t ≡ t′ and want to prove (s.t) - (s′.t′) (the otherdirection is analogous). Let u ∈ L(s.t) = s :: L(t) . If u = s, the claim follows, since
s ≡ s′ ∈ L(s′.t′) . If u ∈ L(t) , the claim follows by IH and due to transitivity of ≡.

The other direction will be discussed later and is considerably harder to prove without furthercharacterizations of ≡.Let us now consider a second equivalence relation.
Definition 3.6. . : T → T → Prop

s.s.t . s.t s.t.u . t.s.u
s . s′
s.t . s′.t

t . t′
s.t . s.t′We call . the step relation. This relation basically captures the behaviour of the Deletion andSwap rules.

Definition 3.7. ≡. : T → T → Prop

s ≡. s
s . t t ≡. u

s ≡. u
t . s t ≡. u

s ≡. uWhile the step relation handles the domain specific behaviour, ≡. adds reflexivity and admitstransitivity and symmetry. The reason for having a second characterization is that in somecases, induction on ≡. is much easier than induction on ≡.We will soon see that ≡ and ≡. are in fact equivalent.
Lemma 3.8. ∀s t. s . t =⇒ s ≡. t.
Proof. Consider the proof tree for this lemma:

s . t t ≡. ts ≡. t
Lemma 3.9. ≡. admits transitivity, i.e.
∀s t u. s ≡. t =⇒ t ≡. u =⇒ s ≡. u.
Proof. By induction on s ≡. t. The reflexivity case is trivial.The case for the 2nd and 3rd rule are analogous.Consider the second case. Let s . t, t ≡. t′ ≡. u. Due to the IH, t ≡. u.
Lemma 3.10. ≡. admits symmetry, i.e.
∀s t. s ≡. t =⇒ t ≡. s.
Proof. By induction on s ≡. t. The reflexivity case is again trivial.In the second case, s . t and t ≡. u. Since s . t, we know that s ≡. t, hence t ≡. s. The claimfollows by transitivity of ≡. .By the same reasoning, the claim follows in the third case.
We will now show the equivalence of the two relations. Note that if s . t, then s ≡ t, as can beproven easily by induction.

13
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Lemma 3.11. ∀s t. s ≡ t ⇐⇒ s ≡. t.
Proof.”⇒”: Induction on s ≡ t. The Deletion and Swap rules are handled by the step relation,whereas the cases for symmetry, transitivity have already been shown, since these rules areadmissible for ≡. and ∅̇ ≡. ∅̇ follows due to reflexivity.In the remaining case, s.t ≡ s′.t′ where s ≡ s′, t ≡ t′, the claim follows due to IH and transitivityof ≡. .”⇐”: Induction on s ≡. t. Reflexivity is admissible for ≡.Let s . t and t ≡. u. By IH, t ≡ u. Note that s ≡ t, since s . t. The claim follows due totransitivity of ≡.The remaining case, t . s and t ≡. u, is analogous to the second case.
This lemma, together with 3.5 immediately gives us the following lemma:
Lemma 3.12. ∀s t. s ≡. t =⇒(∀s′ ∈ L(s)∃t′ ∈ L(t) . s′ ≡. t′) ∧ (∀t′ ∈ L(t)∃s′ ∈ L(s) . t′ ≡. s′).
4 Decidability
Now that we have seen some characterizations of tree equivalence, the question of how todecide whether two given trees are equivalent arises. We will do so by sorting the trees suchthat
• two sorted trees are equivalent iff they are equal
• Every tree is equivalent to its sorted formNote that equality on trees is decidable, since trees are a simple inductive type.

4.1 Comparing trees
Definition 4.1. Order Order ::= LT | EQ | GT
Definition 4.2. cmp : T → T → Ordercmp ∅̇ ∅̇ = EQcmp ∅̇ = LTcmp ∅̇ = GT
cmp (s.t) (s’.t’) = {

cmp t t′ cmp s s′ = EQ
x cmp s s′ = x 6= EQ

Lemma 4.3. ∀s t. cmp s t = EQ =⇒ s = t.
Proof. By induction on s. The base case is trivial.If t is empty, cmp (s.s’) t 6= EQ.Otherwise, t = t.t’ and cmp (s.s’) (t.t’) = EQ.If cmp s t = EQ, then s = t by IH for s. In this case, s.s’ = t.t’ follows by the IH for s’, sincecmp s’ t’ = cmp (s.s’) (t.t’) = EQ.If cmp s t 6= EQ, then cmp (s.s’) (t.t’) 6= EQ, yielding a contradiction.  
14
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Similarly, cmp s s = EQ can be easily proven by induction.We need three additional properties of cmp that any reasonable compare function shouldsatisfy:
• cmp s t = LT =⇒ cmp t s = GT
• cmp s t = GT =⇒ cmp t s = LT
• cmp s t = LT =⇒ cmp t u = LT =⇒ cmp s u = LT

Lemma 4.4. ∀s t. cmp s t = LT =⇒ cmp t s = GT.
Proof. We prove the equivalent ∀t s. cmp s t = LT =⇒ cmp t s = GT by induction on t.In the base case, cmp s ∅̇ = LT yields a contradiction.In the inductive case, we have cmp s (t1.t2) = LT. If s = ∅̇ , cmp (t1.t2) ∅̇ = GT follows from thedefinition of cmp. Otherwise, s = s1.s2 and cmp (s1.s2) (t1.t2) = LT.Case analysis on cmp t1 s1.
• If cmp t1 s1 = GT, cmp (t1.t2) (s1.s2) = GT follows immediately.
• If cmp t1 s1 = EQ, we know that t1 = s1. Since cmp (s1.s2) (s1.t2) = LT, we know thatcmp s2 t2 = LT, and the claim follows by IH for t2.
• In the last case, cmp t1 s1 = LT. Case analysis on cmp s1 t1.

– cmp s1 t1 = GT contradicts cmp (s1.s2) (t1.t2) = LT.
– If cmp s1 t1 = EQ, we again have s1 = t1, contradicting cmp t1 s1 = LT.
– In the last remaining case, cmp s1 t1 = LT, it follows by IH for t1 that cmp t1 s1 =GT, contradicting cmp t1 s1 = LT.

The proof for the second lemma is analogous to the one we have just seen.
Lemma 4.5. ∀s t u. cmp s t = LT =⇒ cmp t u = LT =⇒ cmp t u = LT.
Proof. By induction on s.The base case is trivial.In the inductive case, s = s1.s2.Likewise, t = t1.t2 and u = u1.u2, since neither t nor u can be ∅̇ , since ∀v. cmp v ∅̇ 6= LT, ascan be easily proven by induction.Case analysis on cmp s1 t1.
• cmp s1 t1 = GT contradicts cmp s t = LT.
• If cmp s1 t1 = EQ, s1 = t1 and cmp s2 t2 = LT. In a further case analysis on cmp t1 u1,all cases are easy.
• In the remaining case, cmp s1 t1 = LT. Case analysis on cmp t1 u1.

– cmp t1 u1 = GT contradicts cmp t u = LT.
– If cmp t1 u1, cmp s1 u1 = LT follows by IH for s1, implying cmp s u = LT.
– If cmp t1 u1 = EQ, we know that t1 = u1, hence cmp s u = LT follows, since cmp s1
u1 = LT.
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4.2 Sorting treesNow that we have a sensible way to compare trees, we can sort them. For simplicity, we useinsertion sort.
Definition 4.6. insert : T → T → Tinsert s ∅̇ = s .: ∅̇
insert s (t1.t2) =


s.t1.t2 cmp s t1 = LT
t1.t2 cmp s t1 = EQ
t1.(insert s t2) cmp s t1 = GT

Definition 4.7. sort : T → Tsort ∅̇ = ∅̇sort (s1.s2) = insert (sort s1) (sort s2)Note that we sort the trees strictly, i.e. there will be no duplicates in a sorted tree.We first prove that ≡. is invariant under sorting.
Lemma 4.8. ∀s t. (s . t) ≡. (insert s t)
Proof. By induction on t.In the base case, insert s ∅̇ = s.∅̇ , hence the claim follows due to reflexivity of ≡. .In the inductive case, t = t1.t2 and we want to show s.t1.t2 ≡. insert s (t1.t2). Case analysis oncmp s t1.
• If cmp s t1 = LT, then insert s (t1.t2) = s.t1.t2.
• If cmp s t1 = EQ, then s = t1 and insert s (t1.t2) = t1.t2. Since t1.t1.t2 . t1.t2, the claimfollows.
• If cmp s t1 = GT, then insert s (t1.t2) = t1. (insert s t2). Note that s.t1.t2 ≡. t1.s.t2. ByIH for t2, insert s t2 ≡. s.t2 and the claim follows due to transitivity of ≡. .

Lemma 4.9. ∀s. s ≡. (sort s)
Proof. By induction on s. The base case is trivial.In the inductive case, we have s = s1.s2 and s1 ≡. (sort s1), s2 ≡. (sort s2) due to IH. The claimfollows due to transitivity and
s1.s2 ≡. (sort s1).s2 ≡. (sort s1). (sort s2) ≡. insert (sort s1) (sort s2), where the last step wasproven in the previous lemma.As mentioned at the beginning of this section, we want to prove that two sorted trees areequivalent iff they are equal. The direction from right to left follows from the reflexivity of
≡. . For the other direction, we first prove that the Swap and Deletion rules play nicely withsorting.
Lemma 4.10. ∀s t. sort (s.s.t) = sort (s.t)
Proof. We prove the equivalent ∀y x. insert x (insert x y) = insert x y by induction on y.In the base case, insert x (x.∅̇ ) = x.∅̇ , since cmp x x = EQ.In the inductive case, we want to show that insert x (insert x (y1 . y2)) = insert x (y1 . y2).Case analysis on cmp x y1.
16
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• If cmp x y1 = LT, then insert x (y1.y2) = x.y1.y2. The claim follows, since cmp x x = EQ.
• If cmp x y1 = EQ, then x = y1 and insert x (y1.y2) = y1.y2 and the claim follows sincecmp y1 y1 = EQ.
• If cmp x y1 = GT, then insert x (y1.y2) = y1.(insert x y2). By IH for y2, we know thatinsert x (insert x y2) = insert x y2), which proves the claim.

Lemma 4.11. ∀s t u. sort (s.t.u) = sort (t.s.u)
Proof. By induction on u. The base case is easy. In the inductive case, we want to show thatsort (s.t.u1.u2) = sort (t.s.u1.u2). If cmp s t = EQ or cmp t u1 = EQ or cmp s u1 = EQ, weknow that the respective trees are equal and that the duplicates will be removed, hence thesecases are easy. Otherwise, w.l.o.g., cmp s t = LT.If cmp t u1 = LT, then cmp s u1 = LT and sort (t.s.u1.u2) = s.t.u1.u2 = sort (s.t.u1.u2). Otherwise,cmp t u1 = GT and there are two cases for cmp s u1 (barring the EQ case):
• cmp s u1 = LT. In this case, sort (t.s.u1.u2) = s.u1.t.u2 = sort (s.t.u1.u2).
• cmp s u1 = GT. In this case, sort (s.t.u1.u2) = u1. (insert s (insert t u2)) and sort (t.s.u1.u2)= u1.insert t (insert s (u2)) and the claim follows by the IH for u2.

These two lemmas give us the following property:
Lemma 4.12. ∀s t. s . t =⇒ s = t.
Proof. By induction on s . t. The base cases are handled by the two lemmas above, and theinductive cases follow by transitivity.
Finally, we can prove our goal:
Lemma 4.13. ∀s t.s ≡. t =⇒ sort s = sort t

Proof. By induction on s ≡. t. The reflexivity case is trivial. Otherwise, w.l.o.g., s . t and t ≡. u.Then sort t = sort u by IH and sort s = sort t follows due to the previous lemma.
Since we can decide if s = t for any s,t : T , we can decide whether s ≡. t by checking if sort s= sort t.Note that this also gives us a simple proof for the idempotency of sort:
Lemma 4.14. ∀s. sort (sort s) = sort s.
Proof. It suffices to show that sort s ≡. s, which follows from the symmetry of ≡. and the factthat s ≡. sort s.

17
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5 Elements and subsets
As mentioned before, set equivalence is usually defined via an element relation. In our case,however, it is more convenient to take the opposite route and start from an equivalence relation,in our case ≡. .
Definition 5.1. ∈̇ : T → T → Props ∈̇ t := t ≡. s.tThe definition of s ∈̇ t states that s is an element of t if adding s to t does not change itsequivalence. In set terms, if M = {N} ∪ M, we can see that N has to be an element of M.We can use the same idea to define a subset relation. While s.t adds s to t’s children, we canuse s@t to add all elements of L(s) to t’s children.
Definition 5.2. ⊆̇ : Tree→ T → Props ⊆̇ t := t ≡. s@t.In this section, we will see alternative characterizations of ∈̇ and ⊆̇ and prove that s ⊆̇ t =⇒
t ⊆̇ s =⇒ s ≡. t. This so-called double inclusion principle is commonly used in mathematicsto prove that two sets are equal.
5.1 Element CharacterisationOne property that immediately follows from its definition is that ∈̇ is invariant under treeequivalence:
• ∀s s′ t. s ∈̇ t =⇒ s′ ≡. s =⇒ s′ ∈̇ t

• ∀s t t′. s ∈̇ t =⇒ t ≡. t′ =⇒ s ∈̇ t′Recall that the L function gives us a list of all child trees, which can be considered its elements(modulo tree equivalence).
Lemma 5.3. ∀s t. s ∈ L(t) =⇒ s ∈̇ t.
Proof. By induction on t. The base case is trivial.In the inductive case, t = t1.t2 and s = t1 ∨ s ∈ L(t) 2.If s = t1, then s ∈̇ s.t2 due to the Deletion rule.If s ∈ L(t) 2, by IH for t2, we know that s ∈̇ t2, i.e. t2 ≡. s.t2.Hence, t1.t2 ≡. t1.s.t2 ≡. s.t1.t2.
Lemma 5.4. ∀s t. s ∈̇ t ⇐⇒ ∃t′ ∈ L(t) . s ≡. t′.
Proof.”⇒”: Let s ∈̇ t. We know that t ≡. s.t. Hence, lemma 3.12 gives us that there has to be t′ ∈ L(t)such that s ≡. t′.”⇐”: This time, the proof goes by induction on s ≡. t′.
• If s = t’, we know that s ∈̇ t by the previous lemma.
• Let s . s’, s’ ≡. t’ and t’ ∈ L(t) . By IH, we know that s’ ∈̇ t, i.e. t ≡. s’.t.Therefore, t ≡. s.t follows, since s ≡. s’ and ∈̇ is invariant under ≡. .
• The last case is analogous to the second case.
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5.2 Subset CharacterisationThe definition of subset for sets is N ⊆ M := ∀x ∈ N. x ∈ M .We can also characterize ⊆̇ this way:
Lemma 5.5. ∀s t. s ⊆̇ t ⇐⇒ ∀s′ ∈̇ s. s′ ∈̇ t.
Proof.”⇒:” Let s’ ∈̇ s. We know that t ≡. s@t. Hence, by lemma 3.5, t - s@t and s@t - t.Since s’ ∈̇ s, ∃x ∈ L(s) .s′ ≡. x follows by lemma 5.4. We want to show s’ ∈̇ t, so it suffices toshow ∃y ∈ L(t) .s′ ≡. y. Since s@t - t, and x ∈ L(s) , hence x ∈ L(s@t) , the claim follows.”⇐:” Induction on s. The base case is trivial.In the inductive case, we want to show that t ≡. s1.(s2@t), assuming that ∀x.x ∈̇ s1.s2 =⇒ x ∈̇ t.First of all, note that s2 ⊆̇ t, due to IH for s2: If we have s’ ∈̇ s2, then by lemma 5.4, we knowthat ∃x ∈ L(s2) .s′ ≡. x , hence also s’ ∈̇ s1.s2, when our assumption implies that s’ ∈̇ t.Furthermore, it is easy to see that s1 ∈̇ t, since s1 ∈ L(s1.s2) .Due to transitivity of ≡. , in order to show t ≡. s1.(s2@t), it suffices to prove t ≡. s1.t, which isequivalent to s1 ∈̇ t.Similarly to ∈̇ , ⊆̇ is also invariant under tree equivalence:
Lemma 5.6. ∀s s′ t. s ⊆̇ t =⇒ s ≡. s′ =⇒ s′ ⊆̇ t

Proof. By lemma 3.12, we know that s - s’ and s’ - s. Let x ∈̇ s’. It suffices to show x ∈̇ t.Since s’ - s and due to lemma 5.4, we know that x ∈̇ s, which gives us x ∈̇ t.
Lemma 5.7. ∀s t t′. s ⊆̇ t =⇒ t ≡. t′ =⇒ s ⊆̇ t′

Proof. Analogously to the proof above.As mentioned, before, the double-inclusion principle is a very common way to prove set equalityin classic mathematics and is obviously based on the axiom of extensionality:
∀NM.N = M ⇐⇒ N ⊆ M ∧M ⊆ N .We will prove that ≡. and ⊆̇ also behave this way. The direction from left to right is obvious,while the proof of the other direction is easy using the following lemma:
Lemma 5.8. ∀s t. s@t ≡. t@s.
Proof. By nested induction on s and t. The cases where s = ∅̇ or t = ∅̇ are trivial.We want to show s1.(s2@(t1.t2)) ≡. t1.(t2@(s1.s2)).Note that, by IH for t2, t1.(t2@(s1.s2))) ≡. t1.s1.(s2@t2) and t1.s1.(s2@t2) ≡. t1.s1.(t2@s2) byIH for s2.Similarly, s1.(s2@(t1.t2)) ≡. s1.t1.(t2@s2).Due to transitivity, it suffices to show s1.t1.(t2@s2) ≡. t1.s1.(t2@s2), which follows due to theSwap rule.Using this lemma, it is easy to prove double-inclusion:
Lemma 5.9. ∀s t.s ⊆̇ t =⇒ t ⊆̇ s =⇒ s ≡. t.
Proof. Let s ⊆̇ t and t ⊆̇ s. We know that s ≡. t@s and t ≡. s@t. Due to transitivity, it sufficesto show that t@s ≡. s@t, which follows by the previous lemma.With double-inclusion established, we can finally prove the other direction of lemma 3.5.
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Lemma 5.10. ∀s t. s - t =⇒ s ⊆̇ t

Proof. Let s - t and u ∈̇ s. We show that u ∈̇ t. Note that lemma 5.4 gives us x ∈ L(s) suchthat x ≡. u. since s - t, this means that there is y ∈ L(t) such that y ≡. u, and the claimfollows due to transitivity and by lemam 5.4.
Lemma 5.11. ∀s t. s - t =⇒ t - s =⇒ s ≡ t.
Proof. Since s - t and t - s, we have s ⊆̇ t and t ⊆̇ s by the previous lemma, and s ≡. t followsby the double inclusion principle.
6 Bisimulation
So far, the equivalence relations we have looked at were based on the Deletion and Swap rules.Another possibility to define tree equivalence is bisimulation. The standard mathematical wayto do this is by defining when a relation is a bisimulation. Two trees are then bisimilar if thereis a bisimulation between them. We will take this approach in the second part of the thesiswhen considering non-well-founded sets. Another way of defining bisimulation, that is morenatural for constructive type theory, is giving a coinductive definition:
Definition 6.1. ≈: T → T → Prop

∀s′ ∈ L(s)∃t′ ∈ L(t) . s′ ≈ t′ ∀t′ ∈ L(t)∃s′ ∈ L(s) . t′ ≈ s′
s ≈ t

We use a double line in the inference rule to denote a coinductive definition. One way to thinkof coinductive proofs as opposed to inductive proofs is that coinductive proof trees may beinfinite, whereas inductive proof trees have to be finite. However, our binary trees and alldescending chains of L-steps are also finite, which means that in the end, it does not make adifference whether the definition of ≈ on binary trees uses an inductive or coinductive rule. Inthis section, we will prove the equivalence of ≈ and ≡.In Coq, the definition uses ”CoInductive” instead of ”Inductive”. The tactic ”cofix” is thecoinductive equivalent of ”fix”. One major difference between using induction and coinductionin Coq is that, while Coq generates induction lemmas automatically, it does not do so forcoinductive definitions, which means any necessary coinduction principles have to be provenby hand, unless one decides to use third-party libraries.We can easily prove that ≈ is reflexive and transitive, and that it admits both Deletion andSwap using induction on trees.For transitivity, we need a coinduction lemma which basically relates our coinductive definitionto the usual mathematical definition of bisimulation, namely that two trees are bisimilar ifthere exists a bisimulation between them:
Lemma 6.2. Given any relation R : Tree → Tree → Prop),(∀ s t, R s t =⇒(∀ s’ ∈ L(s) ∃ t’ ∈ L(t). R s’ t’ ∧(∀ t’ ∈ L(t) ∃ s’ ∈ L(s). R t’ s’. )) =⇒
∀ s t, R s t → s ≈ t.
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Proof. The proof basically just constructs a recursive function. In Coq, instead of the usual ”fix”,”cofix” is required here.The basic idea is that given R s t, we can easily show ∀s′ ∈ L(s)∃t′ ∈ L(t) . s′ ≈ t′ (and
∀t′ ∈ L(t)∃s′ ∈ L(s) . t′ ≈ s′ is analogous): due to the premise, R s t implies that ∀ s’ ∈ L(s) ∃t’ ∈ L(t). R s’ t’, and by recursion, s’ ≈ t’.
Transitivity follows by using lemma 6.2 with R := (≈ ◦ ≈).We have shown that all rules of ≡ are admissible for ≈, hence ∀s t. s ≡ t =⇒ s ≈ t.In order to show the other direction, we need a stronger induction lemma:
Lemma 6.3. (∀s. (∀t ∈ L(s) . P t) =⇒ P s) =⇒ ∀s. P s.

Proof. Note that if (∀s. (∀t ∈ L(s) . P t) =⇒ P s), then ∀v u. u ∈ L(v ) =⇒ Pu. We can provethis by induction on v.The base case is trivial, since u ∈ L(∅̇ ) is a contradiction.In the inductive case, v = v1.v2. Let u ∈ L(v1.v2) , i.e. u = v1 ∨ u ∈ L(v2) .If u = v1, then the IH for v1 gives us that (∀x ∈ L(u) . P x), hence P u by our assumption.Otherwise, u ∈ L(v2) , and P u follows due to IH for v2.
The original claim now follows, since s ∈ L(s.s) .
In order to show s ≡ t, it suffices to show s ⊆̇ t ∧ t ⊆̇ s. Hence the following lemma completesthe equivalence proof:
Lemma 6.4. ∀s t. s ≈ t =⇒ s ⊆̇ t ∧ t ⊆̇ s.
Proof. By induction on s (using the stronger induction principle 6.3). Let s ≈ t. We show thats ⊆̇ t (t ⊆̇ s is analogous). Let x ∈̇ s. It suffices to show that x ∈̇ t. Since x ∈̇ s, we know that
∃s′ ∈ L(s) . x ≡. s′. Note that, because s ≈ t, we know that ∃t′ ∈ L(t) . s′ ≈ t′. By IH, s’ ⊆̇ t’and t’ ⊆̇ s’, hence s ≡ t and the claim follows due to transitivity.
Part II

Finitary sets
7 Basics
Non well-founded sets are sets that, in contrast to ZF sets, can have an infinite descendingchain of elements. The smallest example of such a set is called Omega : Ω = {Ω}.Peter Aczel defines non well-founded sets as sets that can be depicted by an accessible pointedgraph (apg). Apgs are basically rooted, connected graphs.For example, Omega can be represented apg in figure 2:

Ω
Figure 2: Ω
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We use a very similar notion of graphs, but will not require connectivity. This makes ourdefinitions and proofs simpler, which is especially noticeable in the Coq development. However,unreachable vertices are irrelevant for our representation. We represent finitary sets as rootedgraphs up to bisimulation.
Definition 7.1. A graph is a 4-tuple (X, edgeRel, dom, root), where
• X is a type with decidable equality
• edgeRel : X → X → B is the transition relation
• dom : [X] is the domain of the graph
• root denotes the root of the graph

We use G to denote the type of graphs.
For any graph g, we use the notation root g to denote the root of g, etc. In Coq, this isaccomplished using a record for the definition of graphs. We need the decidable equality on Xin Coq, but for the sake of clarity, we neglect it in this text.
We also use the notation x : g as a shortcut for x : t g. While this is an intuitive notation, itonly gives us information about the type of x and does not imply that x is also in the domain ing. The domain of the graph is the set of all its vertices. We always consider only the subgraphinduced by the domain, which means we will usually use the following function instead ofedgeRel.
Definition 7.2. E : g→ g→ B

E x y := {
edgeRel x y x ∈ dom(g) ∧ y ∈ dom(g)
false otherwise

We construct graphs as G edgeRel dom root, and leave the type of the graph, as well as thedecider for equality on its type, implicit.In the next section, will first introduce the notion of bisimulation for our representation ofgraphs and prove its decidability.Then, we will define a membership relation on graphs and prove that our model supports all ZFaxioms except for infinity and regularity modulo bisimulation. As mentioned in the introduction,we want to use graphs to model finitary sets, the axioms of regularity and infinity do not makesense for our purposes.We will also show how the transitive closure of a graph can be computed, since the usual ZFconstruction for the transitive closure of a set requires the axiom of infinity.Thereafter, we will actually construct a type for non well-founded sets, namely the quotient type
G /≈ . Every non-well founded set is represented by a graph such that two non well-foundedsets are equal iff the underlying graph is the same. We achieve this by giving a mappingbetween graphs and natural numbers and show that for any type X with a decidable equivalencerelation R and a suitable mapping X ↔ N, we can construct X /R . Note that the existence ofsuch a quotient type is not clear in general, from the perspective of constructive type theory.Finally, we show how to lift the definition of equality, the element relation and the constructionsfor the ZF axioms we are interested in to this type.
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8 Bisimulation
Definition 8.1. We call a relation p : g1 → g2 → B a bisimulation for two graphs g1, g2 iff
∀x y. p x y = true =⇒(∀x ′. E x x ′ = true =⇒

∃y′. E yy′ = true ∧ p x ′ y′ = true)∧(∀y′. E yy′ = true =⇒
∃x ′. E x x ′ = true ∧ p x ′ y = true).Two graphs g1 and g2 are bisimilar (g1 ≈ g2) :=

∃p : g1 → g2 → B. bisimp ∧ p (root g1) (root g2) = trueWe use the notation dom’ g := (root g) :: dom g. Though it is not often needed, x ∈ dom′ g ismuch more readable than x = root g ∨ x ∈ domg.It is easy to see that our bisimulation is an equivalence relation:
• Reflexivity : ∀g. g ≈ g

– Consider p := λx y. x = y.
• Symmetry : ∀g1 g2. g1 ≈ g2 =⇒ g2 ≈ g1

– Given a bisimulation r : g1 → g2 → B
– Consider p : g2 → g1 → B := λy x. rxy

• Transitivity : ∀g1 g2 g3. g1 ≈ g2 =⇒ g2 ≈ g3 =⇒ g1 ≈ g3
– Given two bisimulations r : g1 → g2 → B, q : g2 → g3 → B
– Consider p : g1 → g3 → B :=
λ x z. ∃y. (y ∈ dom′ g2) ∧ r x y = true ∧ qy z = true

• In each case, it is easy to verify that the given p actually is a bisimulation.
We will first show how to prove whether a given p : g1 → g2 → B is a bisimulation.Afterwards, we will show that for any two graphs g1, g2 we can decide whether g1 ≈ g2 bytrying all possible relations p : g1 → g2 → B.
It is easy to see that for any p : g1 → g2 → B with

∀x y.P x y = true =⇒ x ∈ dom′g1 ∧ y ∈ dom′g2it suffices to only consider x, x’, y and y’ that are in the respective domain, i.e.p is a bisimulation for g1, g2 ⇐⇒
∀x ∈ dom′ g1.∀y ∈ dom′g2. p x y = true =⇒(∀x ′ ∈ dom′g1. E x x ′ = true =⇒

∃y′ ∈ dom′ g2. E yy′ = true ∧ p x ′ y′ = true)∧(∀y′ ∈ dom′g2. E yy′ = true =⇒
∃x ′ ∈ dom′g1. E x x ′ = true ∧ p x ′ y = true).This characterization makes the decidability proof much easier : If a given p behaves this way,then it is trivially decidable whether p is a bisimulation or not (in fact, this is so easy thatCoq can automatically derive this proof), since at each point, we only have to consider a finiteamount of vertices. Note that the root of a graph g need not be contained in its domain. Hence,we need to explicitly check for the root when we want to limit our relation to the ”relevant”elements, which is we we use dom’ in the characterization above and in the definition below.

23



A Syntactic Theory of Finitary Sets Denis Müller
We will see later on that any graph whose root is not contained in its domain represents theempty set.
Definition 8.2. p

∣∣
dom′ : g1 → g2 → B

p
∣∣
dom′ x y := {

edgeRel x y x ∈ dom′ g1 ∧ y ∈ dom′ g2
false otherwise

We can use p
∣∣
dom′ to restrict p to the ”relevant” elements. Note that for any bisimulation p,

p
∣∣
dom′ is also a bisimulation.

Definition 8.3. Let X, Y be types and xs : [X], ys : [Y].allFuns xs ys := map(λA.λx y.(x, y) ∈ A)(P(xs× ys)Note that the P in the definition denotes the power list, not the power set, which is basicallythe same construction, but the order matters.We can prove that f ∈ allFuns xsys for any f with (∀x y. f x y = true =⇒ x ∈ xs ∧ y ∈ ys),provided that equality on X and Y is decidable.This assumes an axiom called functional extensionality, i.e. ∀f g. f = g ⇐⇒ ∀x. fx = fy,which is not built into Coq. If we do not want to assume this axiom, we can proof a slightlyweaker version, namely ∃f ′ ∈ allFuns xsys. ∀x y. f x y = f ′ x y, but we feel that functionalextensionality is a very intuitive notion, and is in fact the usual definition of function equalityin classical mathematics.To prove this claim, we need the additional lemma ∀xs ys. ys ⊆ xs =⇒ ∃zs ∈ Pxs ∧ zs ≡ ys.This is intuitive, since it also holds for power sets, and can be proven by induction on xs.This implies that for any p, p∣∣dom′ ∈ allFuns (dom′ g1) (dom′ g2).
Theorem 8.4. ∀g1 g2, dec(g1 ≈ g2)
Proof. We know that for any bisimulation p : g1 → g2 → B,
p
∣∣
dom′ ∈ allFuns (dom′ g1) (dom′ g2). Since any function in allFuns (dom′ g1) (dom′ g2) canonly ever return true for arguments in dom’ g1 and dom’ g2, we can easily decide if p∣∣dom′ is abisimulation.It suffices to decide if there is a bisimulation p in allFuns (dom′ g1) (dom′ g2) such that

p (rootg1) (rootg2) = true. We can obviously decide that, since we only have finitely manyfunctions to consider. Assume there is such a bisimulation in allFuns (dom′ g1) (dom′ g2).Then we have a bisimulation for g1, g2 and are done.Suppose there is no such bisimulation in allFuns (dom′ g1) (dom′ g2). Then g1 6≈ g2: Assumeotherwise. Then we have a bisimulation p : g1 → g2 → B. However, then p
∣∣
dom′ ∈

allFuns (dom′ g1) (dom′ g2) is a bisimulation  .
9 ZF Axioms
In this section, define an element relation based on the bisimulation of the previous sectionand give constructions for all ZF axioms except Regularity and Infinity.
Definition 9.1. subgraph (x : g) := G (edgeRel g) (dom g) x.The subgraph for any given node x in a graph g can be obtained by just replacing the rootwith the node x. Note that x is not required to be reachable from the root. This makes thedefinitions in Coq easier, but we will never use subgraph on an unreachable node.
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Definition 9.2. child nodes, childrenchild nodes g := filter (fun x ⇒ E (root g) x = true) (dom g)children g := map subgraph child nodes
The child nodes of a graph g are all nodes reachable from the root in one step and the childrenare the respective subgraphs. Now we can define our element relation for graphs:
Definition 9.3. g1 ∈̇g2 := ∃g3 ∈ childreng2. g1 ≈ g3.
Needless to say, our element relation is of course decidable and Coq can derive this automati-cally. Consider the definition inclusion and equivalence based on ∈̇ :
Definition 9.4. g1 ⊆̇g2 := ∀g. g ∈̇g1.implies, g ∈̇g2.
This relation is also decidable : Note that if we have some g ∈̇g1, then there is a g′ ∈
childreng1 such that g ≈ g′, by the definition of ∈̇ . Since the subgraph for g’ is trivially anelement of g1, and due to the transitivity of ≈, it suffices to show that ∀g ∈ childreng1. g ∈̇g2is decidable, which is easy, since there are only finitely many children.
Definition 9.5. g1 ≡ g2 := g1 ⊆̇g2 ∧ g2 ⊆̇g1
Two graphs g1, g2 are equivalent, i.e. g1 ≡ g2, iff they have the same elements. We will nowgive a proof of the first ZF axiom (modulo bisimulation) for graphs: extensionality.
Theorem 9.6. Extensionality
∀g1 g2. g1 ≈ g2 ⇐⇒ g1 ≡ g2.

Proof.”⇒” Let g1 ≈ g2. Due to symmetry of ≈, it suffices to show g1 ⊆̇g2. Let g ∈̇g1. By thedefinition of ∈̇ , we have a vertex x ∈ domg1 such that E(root g1)x = true∧g ≈ subgraph x .Because g1 ≈ g2 and E(root g1)x = true, we also have a vertex y ∈ domg2 such that
E (root g2)y = true ∧ p x y = true, where p is the witness of g1 ≈ g2.Obviously, subgraphy ∈ childreng2. It remains to be shown that g ≈ subgraphy. Since
g ≈ subgraph x and due to the transitivity of ≈, it suffices to show that subgraph x ≈
subgraphy.It can easily be shown that the relation p is also a bisimulation for subgraph x and subgraph y.”⇐” Let g1 ≡ g2 and p := λx y. subgraph x ≡ subgraphy.Obviously, p (root g1) (root g2) = true.Consider x, x ′ ∈ domg1 such that E x x ′ = true and y ∈ domg2.It is clear that subgraph x ′ ∈̇ subgraph x .Since subgraph x ≡ subgraphy, there is some y′ ∈ domg2 such that E yy′ = true ∧
subgraph x ′ ≈ subgraphy′.Due to the direction already proven, we know that subgraph x ′ ≡ subgraphy′.
Next, we will see how we can actually represent sets as graphs.
9.1 Empty

Definition 9.7. ∅̇ := G(λx y. false)[tt]tt.
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The empty set is represented by a graph with no transitions where Unit := tt is a type withexactly one element. Note that it is bisimilar to any graph whose root is not in its domain.Later on, we will see that there is a reason why we chose this definition instead of using anempty domain.Note that has the same characterization as the empty set : 6 ∃g. g ∈̇ ∅̇ , which means that itrepresents our construction for the axiom of existence.
9.2 AdjunctionNext, we will give a construction for adjunction:
Definition 9.8. Adjunction
g1;g2:= G f ({None} ∪ {Some (inl x) | x ∈ domg1} ∪ {Some (inr y) | y ∈ domg2}) None,where f is defined as follows:f None (Some (inl (root g1)):= truef None (Some (inr y)) := E (root g2) yf (Some (inl x)) (Some (inl y)) := E x yf (Some(inr x)) (Some (inr y)) := E x yf := false

None
x0

x1 x2

x3

y0

y2 y1

y3
Figure 3: Graph for g1;g2

Note that in the definition of adjunction, we use the more readable set notation for replacementand binary union to define the domain of the new graph; these of course denote the respectivemap and append operations on lists.Figure 3 shows an example for adjunction. The idea is to construct a new graph g whosechildren are the root of g1 and all children of g2. Note that the type of this new graph is option(g1 +g2). This gives us an additional vertex (None), which we use as the new root. Furthermore,we make sure that there is no edge from any vertex to the root or between vertices from theleft and right part of the graph (i.e. those corresponding to g1 and g2, respectively).It is easy to see that ∀x y : g1. E (Some (inl x)) (Some (inl y) = true ⇐⇒ E x y = true.Analogously, ∀x y : g2. E (Some (inr x)) (Some (inr y) = true ⇐⇒ E x y = true.Since we have the same structure in the left part of the graph as in g1, it is easy to seethat for any x : g1, subgraph x ≈ subgraph (Some (inl x)). Likewise, for any y : g2, we have
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subgraph y ≈ subgraph (Some (inr y)).
The characteristic property of Adjunction is : ∀g. g ∈̇g1;g2 ⇐⇒ g ≈ g1 ∨ g ∈̇g2. It is easy tosee that our construction fulfils this property:
Proof. If g ∈̇g1;g2, then there is a vertex (Some z) such that E None (Some z) = true. In thecase where z = Some (inl x), we know that subgraph (Some (inl x)) ≈ (subgraph x).Furthermore, we know that in this case, x must be the root of g1. By transitivity of ≈, we knowthat g ≈ g1.In the other case, z = Some (inr y), we know that subgraph (Some (inr y)) ≈ subgraph y.Furthermore, we know that E (root g2) y = true, hence g ∈̇g2.
If g ≈ g1 ∨ g ∈̇g2, by the same reasoning as above, we know that g ∈̇g1;g2.
We already know how to get the list of child graphs for any given graphs. Adjunction allows usto define the reverse operation : To build a graph that contains all graphs in a given list as itschildren.
Definition 9.9.
L [] = ∅̇
L(x :: xs) = x; L xs
It is easy to show that ∀xsg. g ∈̇ L xs ⇐⇒ ∃g′ ∈ xs. g ≈ g′.Due to extensionality and this property of L(, ) it is easy to show that ∀g. g ≈ L(childreng) .Using L and children, we can define the remaining ZF axioms easily by transforming our graphsto lists of graphs, transforming this list according to the requirements of the axiom at hand,and finally transforming the resulting list back to a graph.
9.3 PairingThe axiom of pairing has the characteristic property ∀g. g ∈̇ {g1, g2} ⇐⇒ g ≈ g1 ∨ g ≈ g2.
Definition 9.10.
{g1, g2} := L [g1, g2]The characteristic property follows directly from the properties of L . Using pairing, we candefine singleton in the usual way:
Definition 9.11. Singleton {g} := {g, g}.
Of course, ∀g′. g′ ∈̇ {g} ⇐⇒ g ≈ g′ follows immediately from the characteristic property ofUPair.
9.4 UnionThe next ZF axiom we will consider is union.Its characteristic property is: ∀g1 g2. g1 ∈̇ ⋃g2 ⇐⇒ ∃g ∈̇g2. g1 ∈̇g. We will again do themain work on lists of graph.
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Definition 9.12.⋃
g := L(flatten(mapchildren(childreng)))or, written in set notation:⋃
g := {g′′ | ∃g′ ∈ childreng. g′′ ∈ childreng′}The function flatten used in the definition flattens a list of lists :

Definition 9.13.flatten [] = []flatten (x :: xs) = x ++ flatten xsUsing induction, we can easily prove the following: ∀xs, x ∈ flatten xs ⇐⇒ ∃ys ∈ xs. x ∈ ys.The characteristic property of Union follows from this property and the properties of L that wehave already seen.
9.5 SeparationThe next ZF axiom we will consider is separation. Its characteristic property is
g1 ∈̇ {g ∈̇g2|P g} ⇐⇒ ∃g ∈̇g2.P g ∧ g1 ≈ g.
Definition 9.14. {g′ ∈̇g|P g′} := L(filterP(childrenM))In order for this to work, there are two requirements for P :
• P needs to be decidable. This is required by filter.
• P needs to be extensional, that is ∀g1 ≈ g2. P g1 ⇐⇒ P g2. The reason for this isthe following : If we have to graphs g1 ≈ g2, then {g′ ∈̇g1|P g′} should be bisimilar to
{g′ ∈̇g2|P g′}. Suppose g1 and g2 are singletons with elements g′1 and g′2, respectively. Ifwe have a given P that is not extensional and, say P g′1, but 6= P g′2, then {g′ ∈̇g1|P g′} ≈
{g′1} 6≈ ∅ ≈ {g′ ∈̇g2|P g′}. We can avoid such cases by requiring that P be extensional.

9.6 ReplacementThe next axiom, replacement, is similar to separation:Its characteristic property is g1 ∈̇ {f g|g ∈̇g2} ⇐⇒ ∃g ∈̇g2.g1 ≈ f g where f : Graph →
Graph is an extensional function.We can define Replacement as follows:
Definition 9.15. {f g|g ∈̇g′} := L(map f (childreng′))Note that f is required to be extensional, i.e. ∀g1 g2. g1 ≈ g2 =⇒ f g1 ≈ f g2, due to the samereasons why we require extensionality for Separation.
9.7 PowerThe last ZF axiom we consider is power. In set theory, the power axiom gives us the existenceof a power set for any given set. Its characteristic property is :
g1 ∈̇ P(g2) ⇐⇒ g1 ⊆̇g2We can use the power function on lists to do the hard work :
Definition 9.16. P(g) := L(mapL(P(childreng)) )
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The proof is not hard and requires only the following lemma in addition to what we havealready seen: filter P xs ∈ P(xs), where xs is any list over any type X and p : X ⇒ Prop isany decidable proposition.The proof of this lemma is a simple induction on xs. This works because the elements of thelists in P(xs) appear in the same order as they do in xs.
10 Transitive closure
As stated in the introduction, the usual construction of the transitive closure of a set in ZFdepends on the axiom of infinity. In this section, we will give a construction for the transitiveclosure of a graph.
Definition 10.1. transitive (g) := ∀g′. g′ ∈̇g =⇒ g′ ⊆̇g.The transitive closure of a set is basically the set of all its successors with respect to theelement relation. In our case, this is basically the set of all subgraphs whose root is reachablefrom the root of the original graph. Therefore, we will first show the decidability of reachabilityin a graph and then give a construction of tc.
We call a vertex y in a graph g reachable from another vertex x if there is a path xs of verticessuch that the first vertex is y, the last vertex is x and every vertex in xs is adjacent to itsneighbours in xs.
Definition 10.2. xs : x →∗ y

x ∈ domg[x ] : x →∗ x Exx ′ = true xs : x ′ →∗ y(x :: xs) : x →∗ y
We use the notation x →∗ y to denote that y is reachable from x, i.e. x →∗ y := ∃xs : x →∗ y,and xs : x →∗ y to denote that xs is a path from x to y. Note that ∀xs : x →∗ y. xs ⊆ domg.We want to decide whether x →∗ y. The idea is that any path from x to y without loops hasat most |domg| − 1 edges (the corresponding list of vertices contains all vertices v ∈ domg).Therefore, it is sufficient to decide whether x reaches y in less than |domg| steps.
Definition 10.3. reach in : g→ g→ N→ Breach in x y 0 := x ∈ domg ∧ x = y

reach in x y (S n) :={true reach in x yn = true
∃x ′ ∈ domg.E x x ′ = true ∧ reach in x ′ yn = true otherwise

reach in x y n decides if x reaches y in less than n steps, i.e. using a path with at most nvertices.There are a few properties of reach in and xs : x →∗ y we will need that are easy to prove byinduction :
• reach in x y (S n) = true =⇒ x = y ∨ ∃z. E x z = true ∧ reach in z yn = true

• reach in x yn = true =⇒ m > n =⇒ reach in x ym = true

• xs : x →∗ y =⇒ reach in x y |xs| = true

• reach in x yn = true =⇒ x →∗ y
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Consider the following function ρ which remove all loops from a path:
Definition 10.4. ρ : [g]→ [g]
ρ [] = []
ρ (x :: xs) = {remove until x (ρxs) x ∈ ρxs

x :: (ρxs) otherwise

ρ uses the following function remove until which removes all elements appearing before a givenx from a list:
Definition 10.5. remove until g→ [g]→ [g]remove until x [] = []remove until x (x :: xs) = x :: xsremove until x (y :: xs) = remove until x xsIt is obvious that for any x and xs, |remove until x xs| <= |xs|.Note that remove until preserves paths:
Lemma 10.6. ∀z (xs : x →∗ y). z ∈ xs =⇒ (remove until z xs) : z →∗ y.
Proof. Induction on xs : x →∗ y.
• In the base case, xs = [x]. Since z ∈ xs, we know that xs = [z].Therefore, remove until xs = [z] : z →∗ z
• In the inductive case, xs = (x :: xs’), xs’ : x ′ →∗ y and E x x’ = true.If x = z, then (z :: xs’) is a path from z to y.Otherwise, remove until z (x :: xs’) = remove until z xs’ and we know that z ∈ xs′, since
z ∈ (x :: xs′) and z 6= x . Therefore, remove until z xs’ is a path from z to y by IH.

Using the previous lemma, it is easy to show that ρ preserves paths, i.e.
∀xs : x →∗ y. ρ xs : x →∗ y.Furthermore, for any xs, ρ xs does not contain duplicates. It is easy to see that for anyduplicate-free xs ⊆ ys, |xs| ≤ |ys|. These two properties, along with the simple fact that
ρ xs ⊆ xs, imply that |ρ xs| <= |domg|, since for any xs : x →∗ y, xs ⊆ domg.
Theorem 10.7. ∀x y. x →∗ y ⇐⇒ reach in x y |domg| = true

Proof.”⇐” : We have already seen that this holds for any n, not just for |domg|.”⇒” : Assume we have a path xs : x →∗ y and that reach in x y |domg| = false.We know that ρ xs : x →∗ y and |ρ xs| ≤ |domg|.This means that reach in x y |ρ xs| = true,which in turn implies that reach in x y |domg| = true,since reach in x y remains true for larger step size.  
The theorem gives us an easy way to decide whether x →∗ y. We use x →+ y to denote that xreaches y using at least one edge.
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Definition 10.8. x →+ y := ∃x ′. E x x ′ = true ∧ x ′ →∗ y.We will need this definition later on when defining the transitive closure of a graph. Furthermore,
x →+ y is obviously decidable and x →+ y ⇐⇒ ∃xs : x →∗ y. |xs| > 1.Consider the following inductive definition of ∈̇ n :
Definition 10.9. g1 ≈ g2g1 ∈̇ 0 g2 g1 ∈̇ g2 g2 ∈̇ n g3g1 ∈̇ Sn g3We can see that for any graph g1, g2 and r, x: g2,
r →∗ x =⇒ g1 ≈ subgraph x =⇒ ∃n. g1 ∈̇ n (sugraph r).Likewise, r →+ x =⇒ g1 ≈ subgraph x =⇒ ∃n > 0. g1 ∈̇ n(sugraph r).The first property is easy to prove by induction on the path, while the second one is eveneasier to prove by giving a path of length > 1. Note that, in the special case where r = rootg2, subgraph g2 r = g2.
We can also proof the other direction, that is
g1 ∈̇ ng2 =⇒ root g2 ∈ domg2 =⇒ ∃x. root g2→∗ x ∧ g1 ≈ subgraph x and
n > 0 =⇒ g1 ∈̇ ng2 =⇒ ∃x.(root g2)→+ x ∧ g1 ≈ subgraph x, respectively. This time, theproof is of course by induction on n. The restriction g2 ∈ dom g2 is necessary: Consider thecase where dom g2 = []. As we have seen before, this means that g2 ≈ ∅. However, [root g2] isnot a valid path in this case. In the second case, no such restriction is required, since, as wecan see, g1 ∈̇ ng2 =⇒ n > 0 =⇒ root g2 ∈ domg2.Next, we give the definition of the transitive closure:
Definition 10.10. tc : Graph → Graphtc g := G f (None :: (map Some (dom g))) (None) wheref (Some x) (Some y) := edgeRel x yf None (Some y) := (root g)→+ y.f := false

r
s

tu
Figure 4: Example graph g

Consider the graph g shown in figure 4. Its transitive closure is shown in figure 5.We will prove that g1 ∈̇ tc g2 ⇐⇒ ∃n > 0. g1 ∈̇ ng2.The reason why we need root g→+ y in the definition is because x ∈ domg =⇒ x →∗ x holds,as mentioned before. If we replaced →∗ by →+ in the definition of tc, and root g2 ∈ domg2,then subgraph (root g2) = g2 ∈̇ tc g2. However, if there is no other vertex v : g2 that reachesthe root again, g2 ˙6∈ng2 for any n > 0.
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None

r
s

tu
Figure 5: transitive closure of g

Another question that might arise is why we need to use option g as the type and not simplyg, and use edgeRel (root g) x := root g →+ x in the definition of tc, i.e. leave all edges as theyare and add edges from the root to every reachable vertex. While this might seem sensible atfirst, there is a problem, namely that the structure of the ”old” graph is changed.Consider the example graph g from figure 4. Using the faulty method just described wouldyield the following result on g:
r

s
tu

Figure 6: Wrong way of construction tc(g)
What should be the case in this scenario instead is that g ∈̇ n tc g, but by changing thetransitions from the root, we have ”lost” the old graph. Our construction makes sure that therenever is an edge from (Some x) to None, i.e. from some other vertex to the root of (tc g).Note that tc g ∈̇ n tc g (n > 0) is not a contradiction by itself, e.g. if g = Ω. This is becauseOmega is already its own transitive closure, i.e. Ω ≈ tcΩ and of course, Ω ∈̇Ω.From the definition of tc, it follows that E (root (tc g)) (Some x) = true ⇐⇒ (root g) →+ x .All other vertices have the same edges as before : E x y = E (Some x) (Some y). This gives usthe property that ∀x : g. (subgraph x) ≈ subgraph (Some x), where subgraph x is of course asubgraph of g, whereas subgraph (Some x) is a subgraph of tc g.
Lemma 10.11. ∀gg′. g′ ∈̇ (tc g) ⇐⇒ ∃n > 0. g′ ∈̇ ng
Proof.”⇒”: Let g′ ∈̇ (tc g). It is obvious that there has to be some x : g2 such that
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root g2 →+ x and g’ ≈ subgraph x (≈ subgraph (Some x)).This means that there is some n > 0 such that g′ ∈̇ n subgraph x, by the equivalences regarding
∈̇ n and →+ discussed above.”⇐”: Let n > 0 and g′ ∈̇ ng. We know that there is some x such that
root g→+ x ∧ g′ ≈ subgraph x.Since root g→+ x , we know that E None (Some x) = true. Due to the transitivity of ≈ andsubgraph (Some x) ≈ subgraph x, we know that g′ ∈̇ tc g.
Let us consider the ZF characterization of the transitive closure next. The transitive closure (tcM) of a set M is the least transitive superset of M. Using the characterization g′ ∈̇ tc g ⇐⇒
∃n > 0. g′ ∈̇ ng, proving this property is fairly straightforward:
• tc g is transitive. Let g” ∈̇ g’ ∈̇ tc g. We know that g’ ∈̇ n g for some n > 0. Hence, g”
∈̇ S n g, which in turn implies g” ∈̇ tc g.

• g ⊆̇ tc g. Let g’ ∈̇ g. By the definition of ∈̇ , this gives us an x : g such that E (root g)x = true and g’ ≈ subgraph g. [root g, x] : root g→∗ x and |root g, x| > 1 gives us thatroot g →+ x, which means that E None (Some x) = true. g’ ∈̇ tc g follows from the factthat subgraph x ≈ subgraph (Some x).
• ∀g∗. transitiveg∗ =⇒ g ⊆̇g∗ =⇒ tc g ⊆̇g∗. Let g∗ be transitive and g ⊆̇g∗.We show ∀n > 0∀g′. g′ ∈̇ ng =⇒ g′ ∈̇g∗ (which gives us that tc g ⊆̇g∗) by induction onn.The base case is trivial.In the inductive case, n = S n’ and g′ ∈̇ S n′g. If n’ = 0, i.e. n = 1, g′ ∈̇ 1g ⇐⇒ g′ ∈̇g,which immediately gives us that g′ ∈̇g∗, since g ⊆̇g∗. If n’ = S m, the inductive hypothesisholds for any h with h ∈̇ S mg, since (S m) > 0. Since g′ ∈̇ S n′g, there is some graph hsuch that g′ ∈̇h and h ∈̇ S mg. By IH, we know that h ∈̇g∗. Since g∗ is transitive, thismeans that h ⊆̇g∗, and in particular g′ ∈̇g∗ follows due to g′ ∈̇h.

11 Constructing a set type
We have seen how we can use graphs to implement all ZF axioms (except regularity andinfinity). Our versions of the these axioms, however, differ from the usual ones in that they usebisimulation instead of actual equality.We can give a model for the usual axioms by moving from graphs to the quotient type ofgraphs modulo bisimulation. To achieve this in constructive type theory, we will give conversionfunctions f : G→ N, f−1 : N→ G such that
• g1 ≈ g2 =⇒ f g1 = f g2
• g ≈ f−1(f g)We will proceed as follows :
• Show that every graph g is bisimilar to some graph whose vertices are natural numbers
• Give a function to compute the list of all such graphs (modulo bisimulation) up to a certaindomain size
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• Use the indices of these lists to convert between graphs and natural numbers
• Show that for every type X with a decidable equivalence relation R and a suitablemapping between X and N, we can construct X /R .

11.1 Graphs over NFor any graph g, we can get a bisimilar graph over natural numbers. The idea is to use theindex of each element in the domain instead of the element itself and map the transitionsbetween two elements to transitions between their indices.
Definition 11.1. We call graph g is called well formed if it does not contain duplicates and itsdomain starts with the root, i.e. dupfree g ∧∃xs. domg = root g :: xs.The notion of a well formed graph will be useful later on, since each element in a well formedgraph has exactly one index. Furthermore, we know that the root of any well formed graphwill always have index 0. Note that ∅̇ is well formed, which is why dom ∅̇was defined as [tt].
Lemma 11.2. reordering lemmaFor every graph g, we can give a bisimilar graph that is well-formed.
Proof.

• If root g 6∈ domg, then the g ≈ ∅̇
• If root g ∈ domg, then we can reorder the elements of g and remove duplicates to obtaina bisimilar graph.

The proof of the second claim is not hard. It is even easier if we use the fact that everyisomorphism gives us a bisimulation:
Definition 11.3. Let X, Y be types and f : X → Y . Let xs and ys be lists of type X andY, respectively. We call f an isomorphism on xs and ys if ∃f ′. (∀x ∈ xs. f ′(f x) = x) ∧ (∀y ∈
ys. f (f ′ y) = y).
Definition 11.4. Let g1 and g2 be graphs and f : g1 → g2. We call g1 mutated according to fif :
• map f (dom g1) ≡ dom g2 and
• f (root g1) = root g2 and
• ∀x y : g1. E x y = true ⇐⇒ E (fx) (fy) = true

Lemma 11.5. Let g1, g2 be graphs mutated according to some isomorphism f : g1 → g2 on dom
g1 and dom g2. Then g1 ≈ g2.
Proof. Consider p := λx y. (fx) = y.
• Let x, x ′ ∈ domg1, E x x ′ = true, y ∈ domg2, p x y = true. Consider y’ := f x’. Obviously,p x’ y’ = true. To show that E y y’ = true, note that p x y = true =⇒ y = f x. E y y’follows from the definition of mutated.
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• Let x ∈ domg1, y, y′ ∈ domg2, E yy′ = true, p x y = true. Consider x’ := y y’.Obviously, p x’ y’ = true. since f, f’ are inverse functions, we again have E x x’ = true.
• p (root g1) (root g2) follows from the definition of mutated.

We will use this lemma to prove that every well formed graph g is bisimilar to a graph over Nby constructing an isomorphism between g and N on the domains of the respective graphs.But first, we need to define a few functions to convert between elements and indices and provetheir correctness.
Definition 11.6. nth : [X] → N→ option Xnth [] = Nonenth (x :: xs) 0 = Some xnth (x :: xs) (S n) = nth xs n
Definition 11.7. index : X → [X] → option Nindex [] = Noneindex y (y :: xs) = Some 0
index y (x :: xs) = {

Some(Sn) index y xs = Somen
None otherwise

Note that both nth and index return None in case the index/element was not contained inthe given list. The following properties of nth and index can be proven by induction on theargument list:
• nth xs n = Some x =⇒ x ∈ xs ∧n < |xs|
• n < |xs| =⇒ ∃x. nth xs n = Some x
• x ∈ xs =⇒ ∃n. index x xs = Some n
• index x xs = Some n =⇒ x ∈ xs ∧n < |xs|
• index x xs = Some n =⇒ nth xs n = Some x
• dupfree xs =⇒ nth xs n = Some x =⇒ index x xs = Some n
• dupfree xs =⇒ nth xs n = Some x =⇒ nth xs m = Some x =⇒ n = m

We can construct the list of all elements from 0 until n using the range function:
Definition 11.8. range : N→ [N]range 0 := []range (S n) := range n ++ [n]
Now, we can, for any well-formed graph g, give a graph over N that is bisimilar to g.
Definition 11.9. graph to nat g := G e (range |domg|) 0,where e is defined as follows:
enm = {E x y nth (domg)n = Somex, nth (domg)m = Somey

false otherwise
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graph to nat g relates any element x ∈ dom g to its index in xs. Note that in any well-formedgraph g, root g has index 0. Furthermore, since, index x (dom g) denotes the index of x in (domg), we know that the following properties hold:
• E x y = true =⇒ index x (dom g) = Some n =⇒index y (dom g) = Some m =⇒ E n m = true
• E n m = true =⇒ nth (dom g) n = Some x =⇒nth (dom g) m = Some y =⇒ E x y = true.We can use the following function to convert an x : g to n : N:

Definition 11.10. convert index : g → N

convert index (x : g) := {
n index x (domg) = Somen
|domg| otherwise

Note that for any x ∈ dom g, convert index will always return x’s index. If x 6∈ dom g, we getan index that is clearly not in range |dom g| either. This, together with the previous points,gives us that
Lemma 11.11. ∀x y. E x y ⇐⇒ E (convert index x) (convert index y).
Theorem 11.12. For any well-formed graph g, g ≈ graph to nat g.

Proof. We give an isomorphism on dom g and range |domg|. Consider f := convert index. Itsinverse function is:
f ′nm := {x nth(domg)n = Somex

root g otherwise
.

Furthermore, f and f’ are inverse functions:
• Consider x ∈ dom g. Since x ∈ dom g, we know that convert x gives us an index n suchthat
n < |domg| ∧ nth(domg)n = Somex .Hence, f’ n = x.

• Consider n ∈ range |domg|. Since n ∈ range |domg| =⇒ n < |domg|,there is some x ∈ dom g such that index x (dom g) = Some n. Hence, f x = convert indexx = n.We still need to show that g is mutated with f and with respect to graph to nat g.
• map convert index (dom g) === range |domg| is obvious.
• f (root g) = 0 ∧ f’ 0 = root g follows from the fact that g is well-formed.
• due to lemma 11.11, ∀x y. E x y ⇐⇒ E (convert index x) (convert index y).

Note that for every well-formed graph g, graph to nat g is also well-formed. For any graph g,by transitivity of ≈ and the reordering lemma, we can thus give a well-formed graph g’ over Nsuch that g ≈ g’.
36



A Syntactic Theory of Finitary Sets Denis Müller
11.2 Conversion functionsConsider the function find first index, which finds the first index in a list such that the elementin the list at the specified position satisfies a given property p.
Definition 11.13. find first indexfind first index p [] = None
find first index p (x :: xs) =


Some 0 p x
Some (S n) find first index p xs = Somen
None otherwise

find first index has a few nice properties that one can easily verify using induction on xs:
• find first index p xs = Some n =⇒ ∃ x ∈ xs. nth xs n = Some x ∧ p x
• x ∈ xs. p x =⇒ ∃n. find first index p xs = Some n
• prefix xs ys =⇒ find first index p xs = Some n =⇒ find first index p ys = Some n
• (∀x. p x ⇐⇒ q x) =⇒ find first index p xs = find first index q xs

prefix is defined as expected, i.e. prefix xs ys := ∃zs. xs ++ zs = ys.The next function we will need is mapcat :
Definition 11.14. mapcat : (X → [Y]) → [X] → [Y]mapcat f xs := flatten (map f xs)
Note the following properties of mapcat :
• ∀y. y ∈ mapcat f xs ⇐⇒ ∃x ∈ xs. y ∈ f x

• mapcat preserves prefixes, i.e. ∀xs ys. prefix xs ys =⇒ prefix(mapcat f xs)(mapcat f ys)
• (∀x, |f x| ≥ 1) =⇒ ∀xs. |mapcat f xs| ≥ |xs|

Consider the list of natural numbers from 1 up to and including some given n:[1..n] := map (+ 1) (range n)It is obvious that for any two n, m ∈ N with n <= m, [1..n] is a prefix of [1..m].The next step is to enumerate all well-founded graphs over N with a given domain size and 0as the root.
Definition 11.15. α n := map (λf. G f (rangen) 0) (allFuns (range n) (range n))
We use the allFuns function to enumerate all possible transition functions between (range n)and (range n) and for every such function f, we include the graph with 0 as the root, (range n)as the domain and f as the transition function in the result. This gives us every possible graphover natural numbers that is well-founded, has 0 as its root, (range n) as its domain and notransitions to elements outside of its domain. Hence, the following properties of α should comeas no surprise.
• n > 0 =⇒ g ∈ α n =⇒ well-formed g ∧ t g = N

• n > 0 =⇒ well-formed g =⇒ | dom g | = n =⇒ graph to nat g ∈ α n
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Note that the second point uses the correctness lemma for allFuns, which in turn uses functionalextensionality.For n ∈ N, we can enumerate all graphs g with 1 ≤ |domg| ≤ n (modulo bisimulation) asfollows:
Definition 11.16. β n := mapcat α [1..n]
Lemma 11.17. ∀g. graph to nat g ∈ β(S|dom g |)
Proof. Recall that |dom (graph to nat g)| ≤ S(|domg|). Hence, it remains to show that
graph to nat g ∈ α(|dom (graph to nat g)|), which follows from the properties of α .
Another property of β is ∀nm.n ≤ m =⇒ prefix(β n)(β m), which immediately follows fromthe fact that mapcat preserves prefixes, since [1..n] is a prefix of [1..m].Now we convert between graphs and N

Definition 11.18. f, f−1
f g := {

n find first index (≈ g) (β (S|domg|)) = Some n0 otherwise

f−1 n := {g nth(βn)(Sn) = Some g
∅ otherwise

Note that in both definitions, we know that the second case can never occur:
• We know that graph to nat g ∈ β(S|dom g |), hence find find first index(≈ g) (β (S|domg|)) will never be None.
• Note that for any n > 0, |αn| > 0. Therefore, we know that |β(S n)| >= Sn > n, whichmeans that nth |β(Sn)| n can never be None.

Theorem 11.19. ∀g. g ≈ f−1(f g)
Proof. We know that find first index (≈ g) (β(S|domg|)) = Some (f g), which implies that thereis some g’ such that (nth (β(S|domg|)) (f g)) = Some g’ ∧ g’ ≈ g. Either f g ≤ |domg| or
|domg| <= f g.
• Assume f g ≤ |domg|. We know that the second case in the definition of f−1 can neveroccur, hence there is some g’ such that nth(β(f g))(S(f g)) = Some g′. Furthermore, β(S (f g)) is a prefix of β(S|domg|).Hence, nth (β(S(f g))) (f g) = nth (β(S|domg|)) (f g) = Some g’ and we know that g’ ≈ g.
• Assume |domg| ≤ f g. Similarly to above, β(S|domg|) is a prefix of β(S(f g)). Thus,
nth(β(S|domg|)(f g)) = nth(β(S(f g)))|domg| = Someg′ and we know that g’ ≈ g.

Theorem 11.20. Uniqueness of f g
∀gg′. g ≈ g′ ⇐⇒ f g = f g′.
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Proof.”⇒”: Let g ≈ g’. W.l.o.g., |domg| <= |domg′|.Hence, [1..|domg|] is a prefix of [1..|domg′|]. Therefore, β (S|domg|) is a prefix of β (S|domg′|),since mapcat preserves prefixes.Note that, since g ≈ g’, ∀g′′. (g′′ ≈ g) ⇐⇒ (g′′ ≈ g′).Therefore, find first index (≈ g′) (β (S|domg′|))= find first index (≈ g) (β (S|domg′|))=find first index (≈ g) (β (S|domg|)), because β (S|domg|) is a prefix of β (S|domg′|).”⇐”: Let f g = f g′ We know that ∀g. find first index(≈ g)(β(S|domg|)) = Some(f g) ∧
∃g′.nth(β(S|domg|))(f g) = Someg′ ∧ g ≈ g′W.l.o.g, |domg| <= |domg′|. The claim follows again, since β (S|domg|) is a prefix of
β (S|domg′|).
11.3 Quotient typesThe existence of quotient types in constructive type theory is not obvious. We give a constructionfor the quotient type X /R , where
• X is a type, and R : X → X → X is a decidable equivalence relation
• f : X → N such that ∀x ≈ y. f x = f y

• f−1 : N→ X such that ∀x. R(f−1(f x)) xThe idea is to use {n | f (f−1 n) = n}, which is the sigma type of all n ∈ N paired with aproof that f (f−1 n) = n, as the quotient type. We can think of sigma types as dependent pairs.Using this representation, the class of x : X is simply f x (together with a suitable proof that
f (f−1(f x)) = f x), whereas we can get a representative element of a class {n | A} by means of
f−1n.
Definition 11.21. X /R
ηn := f (f−1n)
X /R := {n | η n = n}

Lemma 11.22. ∀x. f x = η (f x).
Proof. f x = η (f x) follows from the properties of f and f−1.
Definition 11.23.repr : X /R → Xrepr (n, ) := f−1nnorm : X → X /Rnorm x := (x, f repr x)Now that we have defined what the class of an element and the representative element of aclass are, we want to show that two elements are related via R iff they belong to the sameclass, i.e. ∀x y. R x y ⇐⇒ normx = normy, and that two classes are equal whenever theirrepresentative elements are related via R, i.e. ∀ab.a = b ⇐⇒ R(repr a)(repr b).We will split the proofs in two parts, namely ∀x y. R x y ⇐⇒ repr (normx) = repr (normy)and ∀x y.repr (normx) = repr (normy) ⇐⇒ normx = normy. The second part might seemtrivial, but the problem is that not only do the first components have to be equal, but also thesecond ones, i.e. the proofs. While we could assume the axiom proof irrelevance (PI), i.e. all
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proofs of a given type (i.e. statement) are equal, we can do without assuming this axiom.
Let us consider the first part now.
Lemma 11.24. ∀x y. R x y ⇐⇒ repr (normx) = repr (normy)
Proof.”⇒”: f−1 x = f−1 y follows from R x y.”⇐:” Assume repr (norm x) = repr (norm y). This means that f−1(f x) = f−1(f y). We want toshow R x y. We know that R x (f−1(f x)) and R y (f−1(f y)). Due to symmetry and transitivity ofR, R x y follows.While lemma 11.24 is the intuitively more interesting part, the second part,
∀x y.repr (normx) = repr (normy) ⇐⇒ normx = normy, is rather technical. As alreadymentioned before, we basically want to prove the equality of two dependent pairs (f x, A) and (fy,B) where A is a proof of η(f x) = η(f y) and B is a proof of η(f x) = η(f y) and we know that fx = f y.This works without assuming PI because the type N has unique identity proofs. In Coq-terms,this means that every proof of type n = m, where n and m are natural numbers, is equal toeq refl.We end the discussion about this second part with the remark that simply stating A = Bin Coq does not work, since A and B are of incompatible types. However, by matching onthe equality proof of type (f x = f y) first, we can state the desired lemma, which is easilyprovable in Coq. We refer the interested reader to the Coq source code of this thesis andthe Homotopy Type Theory book [17] which discusses the fundamental ideas why there isstructure in equality proofs in chapter 2.
These two properties together give us the desired properties, namely
∀x y. R x y ⇐⇒ norm x = norm yand
∀ab. a = b ⇐⇒ R(repra)(reprb).
11.4 NSince bisimulation on graphs is a decidable equivalence relation and we have suitable conversionfunctions G ↔ N, we can construct the quotient type G /≈ , which is our type for finitary sets.Furthermore, we can lift the definition of membership and the constructions we have for the ZFaxioms to this level. We will see that G /≈ gives us a proper model for the ZF axioms that weconsider.
Definition 11.25. N := G /≈ .
Definition 11.26. M ∈ N := (reprM) ∈̇ (reprN).
Definition 11.27. M ⊆ N := ∀x ∈ M. x ∈ N .The constructions for the ZF-axioms we consider simply convert from N to G , use the construc-tions for graphs, and convert back to N .
• Axiom of existence : ∅ := norm ∅̇

• Axiom of pairing : {M,N} := norm{repr M, repr N}
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• Axiom of union : ⋃M := norm(⋃ repr M)
• Axiom of power : PM := norm(P(reprM))

For the axioms of separation and replacement, we need to do a little extra work to convert thegiven relation/function to the correct type.
Definition 11.28. Lifting functions and predicates from N to G
liftp (p : N → Prop) := λg. p (norm g)
liftf (f : N → N ) := λg. repr (f (norm g))Note that both liftp p and liftf f are extensional, since norm g = norm g’ for any g ≈ g’.Furthermore, liftp p is of course decidable, provided that p is decidable.
• Axiom of separation : {x ∈ M | p x} := norm{x ∈̇ repr M | (liftp p) x}
• Axiom of replacement : {f x | x ∈ M} := norm{(liftf f ) x | x ∈̇ repr M}

Furthermore, it is easy to see that M ⊆ N ⇐⇒ repr M ⊆̇ repr N . This implies that the axiomof extensionality also holds for N :
M = N ⇐⇒ M ⊆ N ∧N ⊆ M .Of course, M ∈ N,M ⊆ N and M = N are decidable for N , since we know how to decide therespective properties modulo ≈ on G .As mentioned in the introduction, Aczel’s AFA is trivial for our representation: We haveconversion functions (repr and norm) between G and N and know that bisimilarity on the
G level means equality on the N level.Furthermore, it is easy to construct a choice function γ on N such that ∀M 6= ∅. γM ∈ M .
Definition 11.29. γ : N → N
γM := {∅ child nodes (repr M) = []

norm (subgraph x) child nodes (repr M) = x :: xs
Lemma 11.30. ∀M 6= ∅. γM ∈ M .
Proof. Note that child nodes (repr M) = [] ⇐⇒ repr M ≈ ∅̇ . In this case, we know that M =
∅, contradicting our assumption. Otherwise, (subgraph x) ∈̇ (repr M), hence (norm (subgraphx)) ∈ M.
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12 Future Work
There are a few directions in which one could further extend the work done in this thesis.First of all, we can extend our binary tree model for hereditarily finite sets by generalizing theconstructions used in the second part, since all they rely on is an adjunction function and aconversion from the type and hand (in our case, G or T ) and a list of that type, which basicallyrepresents the children of the given element (and vice-versa). These conversions have to beidempotent modulo the equivalence relation we consider, which in the case of G is ≈, andfor T is ≡. We have already seen that ≡ plays nicely together with the conversion functions(L and T ). Hence, generalizing the construction for the above mentioned axioms gives us aneasy way to prove that T actually adheres to the ZF-model of HF sets (modulo ≡).
Furthermore, the mapping we have between G and Nbasically gives us an easy way toenumerate finitary sets. We could also construct an enumeration for T . One way to do thisis by using Ackermann’s encoding for hereditarily finite sets as natural numbers [18], whichhas already been formalized in Coq by Chad Brown [19]: every number has a unique binaryencoding. When considering any number n, if the i-th bit is set to one in n, i is consideredan ”element” of n. For instance, the number 9 has the binary encoding 1001, and hence hasthe elements 3 and 0. This means that the number 0 corresponds to ∅, 1 corresponds to {∅}and so on. Since we sort trees in ascending order, it would be easy to compute the numbercorresponding to a sorted set by structural recursion.
Moreover, we have constructed an explicit quotient type G /≈ as our type for finitary sets. Thisconstruction depends on our mapping between G and N . It is possible to construct the quotienttype T /≡ as a model for hereditarily finite sets, and we do not need the enumerability of T forthis: We can use T /≡ := {t|sort t = t} as the quotient type. Since we know that sortingequivalent trees yields identical trees, all that is left to show is that the equality proof in thesecond component of the sigma type is unique. This holds, since equality on T is decidable.Note that this would not have worked for G , because equality on G is undecidable.
In the introduction, we have mentioned the relation between CCS and sets. One applicationfor finitary sets is the fragment of CCS with an empty process, a binary + operator and actionprefix (with only a single action) and recursion. Formalizing this in Coq represents anotheropportunity for future work.
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Part III
Appendix
13 File Structure
The Coq development1 is divided into two parts:
• Part 1 corresponds to the development regarding the binary trees and can be found inthe folder called ”binary-trees”.1. Tree.v contains the basic definitions of trees, the equivalence relations ≡ and ≡. andtheir properties.2. TreeOrder.v contains the properties and definitions concerning the comparison andsorting of trees, as well as the decidability of ≡.3. TreeSim.v contains the definitions and properties of ∈̇ , ⊆̇ and the double inclusionprinciple.4. Finally, Bisim.v contains the coinductive definition of ≈, as well as the equivalenceproof of ≡ and ≈.
• Part 2 contains all the files that belong to the development concerning finitary sets andcan be found in the folder called ”nwf-sets”.1. Graphs.v contains the definition of graphs, bisimulation on graphs and its decidability,as well as the proof that two isomorphic graphs are bisimilar.2. GraphAxioms.v contains the constructions and proofs for the ZF axioms on graphs.3. GraphNat.v contains everything concerning the connection between graphs andnatural numbers, starting from the reordering and graph to nat up to the conversionfunctions between G and N and their correctness.4. Quotient.v contains the generic construction for the quotient type X /R for a giventype X with a relation R assuming suitable conversion functions X ↔ N .5. GraphReach.v contains the definitions and lemmas connected to the reachability ina graph and its decidability.6. GraphTC.v contains the construction and correctness proof of our construction forthe transitive closure of a graph7. NSet.v gives the definition of N and results regarding N : The constructions for theZF axioms, the transitive closure and the Anti-Foundation Axiom.

Both parts also contain the base library 2 from the core lecture Introduction to ComputationalLogic which is taught at Saarland University.

1available under http://www.ps.uni-saarland.de/~dmueller/bachelor.php2 https://www.ps.uni-saarland.de/courses/cl-ss14/script/Base.v
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