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1 Introduction

This thesis aims to give models for hereditarily finite sets and finitary sets based on constructive
type theory. Constructive type theory is a logic which differs from classical mathematics in
two main points:

e Whereas in the former, types are ubiquitous, the latter has set theory at its foundation.
Many constructs in classical mathematics thus rely - more or less explicitly - on sets,
and their counterparts in constructive type theory are more often than not just (inductive)
types.

The natural numbers provide a simple example for this: they are defined as sets in
classical mathematics, but are represented by an inductive type in constructive type
theory (n: Nuz:= 0O | S n).

Furthermore, there is the so-called Curry-Howard isomorphism [1], which states that
statements can also be represented by types. The elements of such a type then represent
the proofs of the respective statement. As a consequence, checking the correctness of a
proof becomes equivalent to type-checking the proof term, which facilitates automated
proof checking.

e As the name implies, constructive type theory only allows constructive proofs. This is
not the case for classical mathematics, where one usually relies on an assumption called
excluded middle (XM for short, sometimes referred to as "tertium non datur”), which
states that for every proposition P, either P or its negation holds. This principle justifies a
technique called proof by contradiction, which is often used to prove existence of certain
things. This technique, however, is intrinsically non-constructive. As a consequence,
sometimes the problem arises that we know some element of a type has a property,
but we do not have an explicit element satisfying that property. In constructive type
theory, on the other hand, every existential proof comes with a so-called witness, i.e. an
explicit element that satisfies the property, hence avoiding the aforementioned problem.
Therefore, constructive type theory does not have the assumption XM.

The entire development related to this thesis is formalized in the proof assistant Coq, which
is one of many proof assistants based on constructive type theory (more specifically the
calculus of inductive definitions) that make use of the Curry-Howard isomorphism to check
the correctness of proofs. The aforementioned assumption XM is independent in Coq, which
means that we can either assume XM or its negation, and the resulting logic remains consistent.

As mentioned before, classical mathematics is based on set theory. Various axiomatizations of
sets have been proposed, the standard choice of today being the so-called ZF-theory due to
Zermelo and Fraenkel [2] [3] [4] , which is comprised of an element relation € and the following
axioms:

e The axiom of extensionality characterizes the equality of sets:
VMNM=N < (W x.xeM < xe&N)

e The axiom of existence guarantees the existence of a unique empty set denoted by @
such that VMM & .

e The axiom of pairing guarantees for any M, N the existence of a unique set that we
denote by {M, N} such that YMNN' N € {M,N} <= N =MV N =N.
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As a consequence, this also gives us the existence of a singleton set containing only a
single set M, for any set M:

{M} := {M, M} such that x € (M} < x =M.

Sets obtained by the axiom of pairing are called unordered pairs, since the order of M
and N is irrelevant (due to the axiom of extensionality).

e The axiom of union guarantees the existence of a unique set denoted by [JN for any set
N such that WMN.M e [N < IN' e NMe N

There is also the notion of a binary union operator U, which can be defined in terms of |
as follows:

MU N = J{M, N}.
It is easy to see that x e MUN < xeMVxeN.
Furthermore, there is an operation called adjunction which will be important later on.

Its definition is M; N := M U {N}. Note that x e MiN < x e MV x = N.

e The axiom of power guarantees, for any set M, the existence of a unique set, the so-called
power set, that we denote by P(M)

such that VN.N € PM) << N CM.

e The axiom of separation guarantees the existence of a unique set that we denote by
{x € M | P x} for any set M and predicate P

such thaty € {x e M| P x} < y & M A P y. While predicates are usually modelled
by sets in classical mathematics, we model predicates by the intrinsic functions of
constructive type theory. In particular, such a predicate P has type Set — Prop. Prop is
the universe of predicates, which means that any statement has type Prop. Note that,
in order to avoid inconsistencies, P has to be an extensional predicate. This will be
discussed in the second part of the thesis.

e The axiom of replacement guarantees the existence of a unique set denoted by

{f x|x € M} for any set M and function f. As with the axiom of separation, functions are
also sets in classical mathematics. However, since in this thesis, we study sets from the
perspective of constructive type theory, we use its native functions. In particular, the
type of f for this axiom has to be f: Set — Set. There is another, more general, version
of this axiom that uses relations instead of functions. If the given relation is total, we
basically have the same case as here. However, if we are only given a partial relation,
the result will be a subset of the set which results from our version of replacement. Due
to the axiom of separation, however, this system does not lose any expressiveness, as we
can combine the axioms of replacement and separation to model replacement based on
relations. On the other hand, if we were to use the stronger version of replacement, the
axiom of separation would become redundant.

e The axiom of infinity guarantees the existence of an infinite set X such that

feXNVy.ye X = y;yeX.

Note that y;y = y U {y}. Without this axiom, we are not able to construct sets with
infinitely many elements. Often, X is restricted to be minimal, in which case it coincides
with the von Neumann ordinal [5] w, which is basically the set of all natural numbers N.
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e The axiom of regularity (also called axiom of foundation) is different from the previous
axioms in that it does not give us the possibility to construct new sets, but limits the sets
we can potentially build. It states that every set is well-founded, i.e. every descending
chain of elements is finite. In other words, every set only has finitely many successors
with respect to the membership relation.

The need for a consistent axiomatization of set theory arose due to Cantor’s naive set theory,
where sets are defined as any imaginable collection of elements, being inconsistent: Consider
the set R := {x|x ¢ x}. It is easy to see that R € R < R ¢ R. This inconsistency of
Cantor’s naive set theory is known as Russel's paradox [6].

Furthermore, there is the axiom of choice, whose usual formulation is as follows: For any set X
whose elements are non-empty, there is a choice function f: X — [ J X such that Vy € X.fy € y.
While the axiom of choice seems intuitive and entirely reasonable, it has some unexpected
and counter-intuitive consequences, such as the Banach-Tarski paradox [7] and Zermelo’s
well-ordering theorem [8][9], which states that any set with a choice function has a well-ordering.
Therefore, the axiom of choice has caused a lot of controversy. It should be noted that the
axiom of choice is independent of the remaining ZF-axioms. Hence, it can either be consistently
assumed or omitted. Furthermore, if one omits the axiom of infinity, it is easy to construct
a choice function, since only finite sets remain. The aforementioned controversy regarding
this axiom persists only in the presence of the axiom of infinity. When assuming the axiom of
choice in addition to the remaining ZF-axioms, one reaches a set theory commonly abbreviated
ZFC (Zermelo-Fraenkel + choice).

There is an operation on sets whose usual construction relies on the axiom of infinity, namely
the transitive closure of a set M, which basically gives us a set that contains all sets that can
be reached via a descending chain of elements of M. The aforementioned construction goes as
follows:
teM:= |J (U" M), where | J" denotes iterating [ J n times.

neN
A special class of well-founded sets are the so-called hereditarily finite sets. These are sets
with only finitely many elements, all of which are in turn hereditarily finite.
One application of hereditarily finite sets is Robin Millner’s calculus of communicating systems
(CSS)[10Q], which is one of many process calculi that can be used to model concurrent behaviour.
Hereditarily finite sets can be used to model the fragment of CCS consisting of only one
action, the empty process, a binary + operator on processes and action prefixes, as shown by
Abramsky [11].

Another kind of sets is non-well-founded sets. These may contradict the axiom of reqularity,
i.e. they are not necessarily well-founded. The simplest example of such a set is the
set Q = {Q}. It is obvious that Q is not well-founded. However, non-well-founded
sets also include all well-founded sets. Non-well-founded sets have been thoroughly
invastigated by many people, and the most fundamental work on them is due to Peter
Aczel. In his book [12], he axiomatizes non-well-founded sets and gives examples of
applications of non-well-founded sets. In lieu of the axiom of reqularity, there is the
so-called Anti-Foundation Axiom (AFA) for non-well-founded sets, which states that every
accessible pointed graph (apg) corresponds to a unique set. An accessible pointed graph is a
directed graph with a root vertex that can reach every other vertex. We will use a similar
representation for graphs, but do not require accessibility, i.e. we allow vertices that are
unreachable from the root, but these are basically irrelevant for our purposes and interpretation.

8
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We use the term finitary to denote a special class of non-well-founded sets. This class is very
similar to hereditarily finite sets in that every finitary set has only finitely many elements,
each of which are in turn finitary. However, as opposed to hereditarily finite sets, finitary sets
need not be well-founded. Q is the prime example of a finitary set.

Continuing on the connection of sets to CCS, if we also allow recursive processes in the
fragment of CCS considered above, we end up with a fragment of CCS that can be modelled by
finitary sets.

The relation between (general) non-well-founded set and full CCS has been studied before, e.g.
by Aczel [12] and Baldamus [13].

In the first part of the thesis, we give a model for hereditarily finite sets based on binary
trees. We will consider a couple of possible equivalence relation on these trees, prove their
equivalence and show how to decide tree equivalence.

In the second part of the thesis, we construct a premodel for finitary sets based on graphs and
give constructions for the axioms of existence, pairing, union, separation, replacement, power
and extensionality modulo bisimulation. Since finitary sets are non-well-founded and only
have finitely many elements, the axioms of reqularity and infinity do not make sense.
Furthermore, we also give a construction for the transitive closure modulo bisimulation, whose
standard definition is not possible in our model, since we do not have the axiom of infinity.
We show that the bisimulation we define is decidable and - based on a mapping between
graphs and natural numbers - give a construction for the quotient type G /~, which we define
as our type for finitary sets. Furthermore, we additionaly have Aczel's AFA, which states that
for every apg, there exists a unique non well-founded set. The respective construction is trivial
in our case, since every graph belongs to a unique equivalence class. The constructions for the
axioms discussed above and the transitive closure then hold in their original form for our type
of finitary sets. In addition, we also give a choice function on finitary sets. Since we do not
have the axiom of infinity, it is intuitively clear that this works. Our characterization of the
choice function y we give looks slightly different than the axiom of choice above: We have
that YM # §. yM € M. However, this formulation is equivalent to the usual one given above,
although in our opinion much simpler.

Concerning conventions for this thesis, we should note the following two points:
e Whenever a free variable occurs somewhere, it is implicitly universally quantified.

e Since we study sets based on constructive type theory, we will in general prefer inductive
characterizations and definitions over the first-order characterizations and definitions
encountered in classical set theory.

Related Work

The initial interest for this thesis arose owing to the Bachelor Thesis of Kathrin Stark [14],
which - among others - featured a formalization of a restricted subset of CCS without recursion
in the proof assistant Coq. Incidentally, if one adds the restriction that there is only a single
action, the fragment of CCS considered by Kathrin is exactly the same as one that can be
modelled by hereditarily finite sets.
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Dominik Kirst's Bachelor thesis [15] provides a substantial formalization of the classical ZF
theory implemented in the proof assistant Coq.

Alexandre Miquel’s slides on inconsistent type systems [16] contain a representation of sets
as pointed graphs. He models extensional equality of sets by bisimilarity and membership as
shifted bisimilarity, which is the same idea that we use in the second part of the thesis.

Contribution

We seem to be the first to give a formalization of a constructive model for finitary sets in Coq.
In contrast to a lot of other work, the model we give does not assume any ZF axioms, but has
explicit constructions for all ZF axioms that make sense for finitary sets, as well as for Aczel’s
AFA.

We also present a model for hereditarily finite sets based on binary trees and give different
characterization of equivalence on these trees, and although we do not give explicit constructions
for most ZF axioms in this case, the constructions used in the second part can be generalized
and applied to our binary tree model, which would give us a model for hereditarily finite sets
that admit all ZF axioms except infinity.

Part |

Hereditarily finite sets

2 Basics

In this first part of the thesis, we will give a model of hereditary finite (HF) sets based on
constructive type theory. One possible characterization of HF sets is the following inductive
predicate:

S HFM  HF N
HF § HF (M ; N)

We will model these sets using binary trees.

Definition 2.1. s, t: T ==§|s.t

The constructor s.t is right associative, i.e. s.t.u = s.(t.u). We use the following semantics for
binary trees:

o [0] =1
o [st] = {[sI} vl

Recall that the adjunction has the following property : M;N = M U {N}. It is easy to see that
the semantics we use for binary trees give us a model of hereditarily finite sets (although the
order of the arguments is reversed).

We can get all child trees of a given tree using the £ function, which collects all left children
of elements along the right spine of the tree (which are, according to our semantics for binary
trees, exactly the trees which model the children of the set modelled by the original tree). This

is shown in figure [1} which depicts the tree s.t.uff. The children of this tree are s, t and u.

10
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Figure 1: interpretation of tree structure

Definition 2.2. £ :T — [T]
L =]
L(s.t):=s:(Lt)

We can, of course, invert this operation.

Definition 2.3. 7 :[T] - T
T):=0
T (t:ts):=t.(T ts)

We can also append two trees:

Definition 2.4. append: T - T — T
append @ t:=t
append (s.s') t := s.(append s’ t)

We write s @ t instead of append s t.

Note that L(s@t) = L(s) 4 L(t) and T(L++ l') = T()) @ T(l).

Denis Miiller

These functions will be very useful later on when we discuss characterizations of tree equiva-

lence.

3 Equivalence

There are multiple ways to define equivalence on our model of hereditarily finite sets. In fact,
we will see a few possibilities and prove their equivalence. Note that one usually defines
equivalence based on an element relation. However, defining an element relation based on set

equivalence is just as easy, since M e N < N={M}UN.

There are two crucial properties that a relation which is intended to model set equivalence

has to satisfy:

e Duplicate elements can be ignored

1"
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e The ordering of the elements is irrelevant

In fact, these two properties are already sufficient. Consider the least congruence satisfying
these rules:

Definition 3.1. =: T - T — Prop

sst=s.t s.t.u=ts.u g=0
s=¢ t=t s=t t=u ﬁ#szt#ﬁ
st=s.t S=Eu S s=t

The first two rules (Deletion and Swap, respectively) realise the properties discussed above.
Technically speaking, the least congruence satisfying the two aforementioned properties is
exactly the one given here, except for the symmetry rule, where we restricted both elements to
be different from the empty tree. The rule we use, however, gives us slightly shorter proofs
for certain lemmas in the Coq development. Moreover, it is easy to see that an unrestricted
symmetry rule is admissible for this equivalence relation:

Lemma 3.2. Vst.s=t — t=s
Proof. Induction on s = t. All cases are trivial. O

Reflexivity can also easily be established by induction. Note that = is obviously a congruence
relation.
Furthermore, note that a tree is equivalent to @ iff it is equal to #:

Lemma 3.3. Vs.s = ﬂ = s = ﬁ

Proof. By induction on s = fi. Due to the restriction in the symmetry rule, all cases are
trivial. O

Of course, the same holds for § = s, due to symmetry.

Note that equivalent trees have equivalent children:
Definition 3.4. s S t:=Vs' € L(s).3t' € L(t).s' = t'.
Lemma 3.5. Vst.s=t = s tAt3s
Proof. Induction on s = t.
o lfs = =t, the claim follows, since = g holds vacuously.
o If s =s's't' and t = s't’ (or vice-versa), we can see that Yu.u € L(s) < u € L(t).

o If s =s't'u and t = t's'u’ (or vice-versa), Yu.u € L(s) < u € L(t) again holds.

e For the symmetry rule, the claim follows by IH. This is the reason why we have to prove
s=t = s tAtZsinstead of simply s =t = s 3t - in the latter case, the IH
would not be strong enough.

e In the transitivity case, the claim again follows by IH and due to transitivity of =.

12
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e In the remaining case, we have s = ', t = t’ and want to prove (s.t) 2 (s'.t') (the other
direction is analogous). Let u € L(s.t) = st L(t). If u = s, the claim follows, since
s=s e L(s'.t). If ue L(t), the claim follows by IH and due to transitivity of =.

O

The other direction will be discussed later and is considerably harder to prove without further
characterizations of =.
Let us now consider a second equivalence relation.

Definition 3.6. > : T — T — Prop

s> s to t

s.s.t> s.t s.t.uv t.s.u ot ot st st

We call > the step relation. This relation basically captures the behaviour of the Deletion and
Swap rules.

Definition 3.7. =,: T - T — Prop

s>t t=, u t> s t=, u
S=, u S=y u

S=, S

While the step relation handles the domain specific behaviour, =, adds reflexivity and admits
transitivity and symmetry. The reason for having a second characterization is that in some
cases, induction on =, is much easier than induction on =.

We will soon see that = and =, are in fact equivalent.

Lemma 3.8. Vst.spt = s=, t.

Proof. Consider the proof tree for this lemma:

s>t t=,
s=,t
O
Lemma 3.9. =, admits transitivity, iLe.
Vstu.s=, t —= t=, u — sS=, U.
Proof. By induction on s =, t. The reflexivity case is trivial.
The case for the 2nd and 3rd rule are analogous.
Consider the second case. Let s> t, t =, t' =, u. Due to the IH, t =, u. O

Lemma 3.10. =, admits symmetry, iLe.
Vst.s=, t —= t=, s.

Proof. By induction on s =, t. The reflexivity case is again trivial.

In the second case, s >t and t =, u. Since s >t, we know that s =, t, hence t =, s. The claim
follows by transitivity of =, .

By the same reasoning, the claim follows in the third case. O

We will now show the equivalence of the two relations. Note that if s >t, then s = t, as can be
proven easily by induction.

13
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Lemma 3.11. Vst.s=t < s=, t.

Proof.
'=": Induction on s = t. The Deletion and Swap rules are handled by the step relation,
whereas the cases for symmetry, transitivity have already been shown, since these rules are

”

admissible for =, and I} = g follows due to reflexivity.

In the remaining case, s.t = 5.t where s = ', t = t/, the claim follows due to IH and transitivity
of =,.

"<": Induction on s =, t. Reflexivity is admissible for =.

Let s>tand t =,u. By IH, t = u. Note that s = t, since s >t. The claim follows due to
transitivity of =.

The remaining case, t »s and t =, u, is analogous to the second case.

This lemma, together with 3.5 immediately gives us the following lemma:

Lemma 3.12. Vst.s =, t —
(Vs € L(s)TA' € L(t).s' =, )N (V' € L(t)Ts' € L(s). t' = &).

4 Decidability

Now that we have seen some characterizations of tree equivalence, the question of how to
decide whether two given trees are equivalent arises. We will do so by sorting the trees such
that

e two sorted trees are equivalent iff they are equal
e Every tree is equivalent to its sorted form

Note that equality on trees is decidable, since trees are a simple inductive type.

4.1 Comparing trees
Definition 4.1. Order Order == LT | EQ | GT
Definition 4.2. cmp: T — T — Order

cme § =EQ
cmp @ - = LT
cmp _ @ =GT

» cmp tt’ cmpss' =EQ
cmp (s) (s't) = {X cmp ss'=x# EQ

Lemma 4.3. Vst.cmp st=EQ = s=t.

Proof. By induction on s. The base case is trivial.

If tis empty, cmp (s.s') t # EQ.

Otherwise, t = t.t" and cmp (s.s') (t.t') = EQ.

If cmp st = EQ, thens =t by IH for s. In this case, s.s’ = t.t’ follows by the IH for s’, since
cmp s’ t' = cmp (s.s') (t.t') = EQ.

If cmp s t # EQ, then cmp (s.s') (t.t') # EQ, yielding a contradiction. %

14
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Similarly, cmp s s = EQ can be easily proven by induction.
We need three additional properties of cmp that any reasonable compare function should
satisfy:

ecmpst=LT = cmpts=CGT
ecmpst=CT = cmpts=LT
ecmpst=LT = cmptu=LT = cmpsu=LT

Lemma 4.4. Vst.cmpst=LT = cmpts = GT.

Proof. We prove the equivalent Vts. cmpst=LT = cmp ts = GT by induction on t.
In the base case, cmp s § = LT yields a contradiction.

In the inductive case, we have cmp s (t1.t2) = LT. If s = g, cmp (t.12) i = GT follows from the
definition of cmp. Otherwise, s = s1.s5; and cmp (s1.52) (t1.t2) = LT.
Case analysis on cmp t; s1.

o Ifcmp t1 51 = GT, cmp (t1.t2) (s1.52) = GT follows immediately.

e If cmp t; 51 = EQ, we know that t; = sq. Since cmp (s1.52) (s1.t2) = LT, we know that
cmp sy t, = LT, and the claim follows by IH for t,.

e In the last case, cmp t; s1 = LT. Case analysis on cmp s t1.

— cmp s1 t; = GT contradicts cmp (s1.52) (t1.t2) = LT.

— If cmp s1 t; = EQ, we again have s; = t;, contradicting cmp t; s1 = LT.

— In the last remaining case, cmp s1 t; = LT, it follows by IH for t; that cmp t; 51 =
GT, contradicting cmp t; s = LT.

O

The proof for the second lemma is analogous to the one we have just seen.
Lemma 45. Vstu.cmpst=LT = cmptu=LT = cmptu=LT

Proof. By induction on s.

The base case is trivial.

In the inductive case, s = s1.55. ‘ ‘
Likewise, t = t1.t; and u = uq.u>, since neither t nor u can be @, since Yv. cmp v @ # LT, as
can be easily proven by induction.

Case analysis on cmp s1 ty.

e cmp s1 t1 = GT contradicts cmp s t = LT.

o Ifcmp s; t1 = EQ, sy =ty and cmp s, t; = LT. In a further case analysis on cmp t; uy,
all cases are easy.

e In the remaining case, cmp sy t; = LT. Case analysis on cmp t; uy.

— cmp ty up = GT contradicts cmp t u = LT.
— If emp t; uq, cmp s1 uq = LT follows by IH for sq, implying cmp s u = LT.

— Ifemp 4 uy = EQ, we know that ¢ = uy, hence cmp s u = LT follows, since cmp s
u = LT.

O

15
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4.2 Sorting trees

Now that we have a sensible way to compare trees, we can sort them. For simplicity, we use
insertion sort.

Definition 4.6. insert: T — T — T
inserts @ =s .. @
s.t1.h cmp sty =LT
insert s (t1.t2) = 4 1.t cmp sty = EQ
ti.(insertst)) cmp sty =GT

Definition 4.7. sort : T — T

sortf =0

sort (s1.s2) = insert (sort s1) (sort s3)

Note that we sort the trees strictly, i.e. there will be no duplicates in a sorted tree.
We first prove that =, is invariant under sortlng.

Lemma 4.8. Vst. (s. t) = (insert s t)

Proof. By induction on t.

In the base case, insert s Qj = sﬂ hence the claim follows due to reflexivity of =, .

In the inductive case, t = t1.t; and we want to show s.ty.t; =, insert s (t1.t;). Case analysis on
cmp s tq.

o If cmp s ty = LT, then insert s (t1.t;) = s.t;.to.

o If cmp s t; = EQ, then s = t; and insert s (t1.t2) = ty.t,. Since ty.t1.t, > ty.ty, the claim
follows.

e If cmp s t1 = GT, then insert s (t1.t2) = 4. (insert s t;). Note that s.t1.t; =, t1.5.t2. By
IH for t,, insert s t, =, s.t; and the claim follows due to transitivity of =, .

O
Lemma 4.9. Vs. s =, (sort s)

Proof. By induction on s. The base case is trivial.

In the inductive case, we have s = s1.57 and s1 =, (sort s1), so =, (sort s;) due to IH. The claim
follows due to transitivity and

51.52 =, (sort s1).52 =, (sort s1). (sort s3) =, insert (sort s1) (sort s3), where the last step was
proven in the previous lemma. 0

As mentioned at the beginning of this section, we want to prove that two sorted trees are
equivalent iff they are equal. The direction from right to left follows from the reflexivity of
=, . For the other direction, we first prove that the Swap and Deletion rules play nicely with
sorting.

Lemma 4.10. Vs t. sort (s.s.t) = sort (s.t)

Proof. We prove the equivalent Vy x. insert x (insert x y) = insert x y by induction on y.

In the base case, insert x (x.0) = x.@, since cmp x x = EQ.
In the inductive case, we want to show that insert x (insert x (yq . yz)) = insert x (y1 . yz).
Case analysis on cmp x y;.
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e If cmp x y1 = LT, then insert x (y1.y2) = X.y1.y2. The claim follows, since cmp x x = EQ.

o If cmp x y1 = EQ, then x = y1 and insert x (y1.y2) = y1.y2 and the claim follows since
cmp y1 y1 = EQ.

e If cmp x y; = GT, then insert x (y1.y2) = yi.(insert x yz). By IH for y,, we know that
insert x (insert x yz) = insert x y3), which proves the claim.

O

Lemma 4.11. Vs tu. sort (s.t.u) = sort (t.s.u)

Proof. By induction on u. The base case is easy. In the inductive case, we want to show that
sort (s.t.uq.up) = sort (ts.uq.up). fcmpst=EQ or cmp t uy = EQ or cmp s uy = EQ, we
know that the respective trees are equal and that the duplicates will be removed, hence these
cases are easy. Otherwise, w.l.o.g, cmp st = LT.

If cmp t uq = LT, then cmp s u1 = LT and sort (t.s.uq.uz) = s.t.uq.uy = sort (s.t.ug.uz). Otherwise,
cmp t uy = GT and there are two cases for cmp s uq (barring the EQ case):

e cmp s uq = LT. In this case, sort (t.s.uq.up) = s.uq.t.uy = sort (s.t.uq.uy).

e cmp s uq = GT. In this case, sort (s.t.uq.uz) = uy. (insert s (insert t uy)) and sort (t.s.uq.u2z)
= uq.insert t (insert s (uz)) and the claim follows by the IH for u;.

O

These two lemmas give us the following property:
Lemma 4.12. Vst.s> t = s=1t.

Proof. By induction on s >t. The base cases are handled by the two lemmas above, and the
inductive cases follow by transitivity. 0

Finally, we can prove our goal:
Lemma 4.13. Vst.s=, t = sorts=sortt

Proof. By induction on s =, t. The reflexivity case is trivial. Otherwise, w.l.o.g., s>t and t =, u.
Then sort t = sort u by IH and sort s = sort t follows due to the previous lemma. 0

Since we can decide if s =t for any s,t : T, we can decide whether s =, t by checking if sort s
= sort t.
Note that this also gives us a simple proof for the idempotency of sort:

Lemma 4.14. Vs. sort (sort s) = sort s.

Proof. It suffices to show that sort s =, s, which follows from the symmetry of =, and the fact
that s =, sort s. O
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5 Elements and subsets

As mentioned before, set equivalence is usually defined via an element relation. In our case,
however, it is more convenient to take the opposite route and start from an equivalence relation,
in our case =, .

Definition 5.1. € : T - T — Prop
s Et:=t=,st

The definition of s &€t states that s is an element of t if adding s to t does not change its
equivalence. In set terms, if M = {N} U M, we can see that N has to be an element of M.
We can use the same idea to define a subset relation. While s.t adds s to t's children, we can
use s@t to add all elements of L(s) to t's children.

Definition 5.2. € : Tree - T — Prop
s Qt =t =, s@t.

In this section, we will see alternative characterizations of €and Cand prove that sCt =
tCs = s =, t. This so-called double inclusion principle is commonly used in mathematics
to prove that two sets are equal.

5.1 Element Characterisation

One property that immediately follows from its definition is that &is invariant under tree
equivalence:

o Vss't.sct = s'=, s = &t
e Vstt.set = t= t = se&t

Recall that the £ function gives us a list of all child trees, which can be considered its elements
(modulo tree equivalence).

Lemma 5.3. Vst.s € L(t) = s&t.

Proof. By induction on t. The base case is trivial.

In the inductive case, t = t1.t and s = t; Vs € L(t) 2.

If s=ty, thens €s.t, due to the Deletion rule.

If s € L(t)2, by IH for t;, we know that s € t,, i.e. t, =, s.to.

Hence, t1.t =, t1.5.t) =, s.ty.t. ]

Lemma 5.4. Vst.s€t < ' € L(t).s=, 1.

Proof.

"=": Lets €t. We know that t =, s.t. Hence, lemma gives us that there has to be t’ € L(t)
such that s =, t.

"<": This time, the proof goes by induction on s =, t'.

o If s =t we know that s &t by the previous lemma.

e letsps,s' =, t'and t' € L(t). By IH, we know that s’ €t, ie. t =, st

Therefore, t =, s.t follows, since s =, s' and & s invariant under =, .

e The last case is analogous to the second case.
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5.2 Subset Characterisation

The definition of subset for setsis NC M :=Vx & N.x € M.
We can also characterize C this way:

Lemma 5.5. Vst.sCt < Vs Es.s'Et.

Proof

"=:" Let s’ €s. We know that t =, s@t. Hence, by lemma t 3 s@t and s@t 3 t.

Since s' €s, Ix € L(s).s' =, x follows by lemma We want to show s’ €1, so it suffices to
show Jy € L(t).s' =, y. Since s@t 3 t, and x € L(s), hence x € L(s@t), the claim follows.
"«<:" Induction on s. The base case is trivial.

In the inductive case, we want to show that t =, s1.(s,@t), assuming that Vx.x €s1.5) = x & t.
First of all, note that s, Ct, due to IH for s,: If we have s’ & s, then by lemma we know
that Ix € L(s,).s' = x, hence also s’ € sq1.s5, when our assumption implies that s' & t.
Furthermore, it is easy to see that s; €t, since s1 € L(s1.52).

Due to transitivity of =, , in order to show t =, s1.(s,@t), it suffices to prove t = s1.t, which is
equivalent to s &t. O

Similarly to &€, Cis also invariant under tree equivalence:
Lemma 5.6. Vss't.sCt = s=, s = s Ct

Proof. By lemma we know that s 2 s" and s’ Z's. Let x €s'. It suffices to show x €t.
Since s" 3 s and due to lemma we know that x €s, which gives us x €t. O

Lemma 5.7. Vstt'.sCt —= t=, t = sC¢t
Proof. Analogously to the proof above. O

As mentioned, before, the double-inclusion principle is a very common way to prove set equality
in classic mathematics and is obviously based on the axiom of extensionality:

IVNM.N=M & NCMAMCN.

We will prove that =, and C also behave this way. The direction from left to right is obvious,
while the proof of the other direction is easy using the following lemma:

Lemma 5.8. Vst.s@t =, t@s.

Proof. By nested induction on s and t. The cases where s = f ort =@ are trivial.

We want to show s1.(s2@(t1.12)) =s t1.(L@(S1.52))-

Note that, by IH for &, t1.(t@(s1.52))) =» t1.51.(52@1%2) and t1.51.(s2@62) =» t1.51.(6@s2) by
IH for s5.

Similarly, s1.(s2@(t1.t2)) =u s1.4.(L@5S2).

Due to transitivity, it suffices to show s1.t1.(t@s2) = t1.51.(t2@s2), which follows due to the
Swap rule. O

Using this lemma, it is easy to prove double-inclusion:
Lemma 5.9. Vst.sCt — tCs = s=, t.

Proof Lets Ctandt Cs. We know that s =, t@s and t =, s@t. Due to transitivity, it suffices
to show that t@s =, s@t, which follows by the previous lemma. O

With double-inclusion established, we can finally prove the other direction of lemma
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Lemma 5.10. Vst.s 3t = sCt

Proof. Lets 3 tand u €s. We show that u €t. Note that lemma gives us x € L(s) such
that x =, u. since s 3 t, this means that there is y € L(t) such that y =, u, and the claim
follows due to transitivity and by lemam O

Lemma 5.11. Vst.s 3t = t s = s=t.

Proof. Sinces 2 tandt s, we have s Ctandt Cs by the previous lemma, and s =, t follows
by the double inclusion principle. O

6 Bisimulation

So far, the equivalence relations we have looked at were based on the Deletion and Swap rules.
Another possibility to define tree equivalence is bisimulation. The standard mathematical way
to do this is by defining when a relation is a bisimulation. Two trees are then bisimilar if there
is a bisimulation between them. We will take this approach in the second part of the thesis
when considering non-well-founded sets. Another way of defining bisimulation, that is more
natural for constructive type theory, is giving a coinductive definition:

Definition 6.1. ~: T — T — Prop

Vs' e L(s)It' € L(t).s' =t/ Vt' e L(t)Ts’ € L(s). ' = &

st

We use a double line in the inference rule to denote a coinductive definition. One way to think
of coinductive proofs as opposed to inductive proofs is that coinductive proof trees may bhe
infinite, whereas inductive proof trees have to be finite. However, our binary trees and all
descending chains of L-steps are also finite, which means that in the end, it does not make a
difference whether the definition of = on binary trees uses an inductive or coinductive rule. In
this section, we will prove the equivalence of =~ and =.

In Coq, the definition uses "Colnductive” instead of "Inductive”. The tactic "cofix” is the
coinductive equivalent of "fix". One major difference between using induction and coinduction
in Coq is that, while Coq generates induction lemmas automatically, it does not do so for
coinductive definitions, which means any necessary coinduction principles have to be proven
by hand, unless one decides to use third-party libraries.

We can easily prove that = is reflexive and transitive, and that it admits both Deletion and
Swap using induction on trees.

For transitivity, we need a coinduction lemma which basically relates our coinductive definition
to the usual mathematical definition of bisimulation, namely that two trees are bisimilar if
there exists a bisimulation between them:

Lemma 6.2. Given any relation R : Tree — Tree — Prop),
Vst Rst =

(Vs el(s)dt €Lt) Rst' A

(Vt elt)ds" €l(s). Rt's")) =
Vst Rst—osxt.
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Proof. The proof basically just constructs a recursive function. In Coq, instead of the usual "fix",
"cofix” is required here.

The basic idea is that given R s t, we can easily show Vs € L(s)3t' € L(t).s' ~ t' (and
Vt' € L(t)Is’ € L(s).t' ~ s is analogous): due to the premise, R s t implies that Vs’ € L(s) 3
t" € L(t). Rs' t, and by recursion, s = t. O

Transitivity follows by using lemma [6.2 with R := (= o =).
We have shown that all rules of = are admissible for &, hence Vst.s =t = s t.
In order to show the other direction, we need a stronger induction lemma:

Lemma 6.3. (Vs.(Vt € L(s).Pt) = Ps) = Vs.Ps.

Proof. Note that if (Vs. (Vt € L(s). Pt) = Ps), then Vvu.u € L(v) = Pu. We can prove
this by induction on v.

The base case is trivial, since u € £(#) is a contradiction.

In the inductive case, v = vi.va. Let u € L(vi.v2), le. u= vy Vu € L(v2).

If u = vq, then the IH for vy gives us that (Vx € L(u). P x), hence P u by our assumption.

Otherwise, u € L(v2), and P u follows due to IH for v;.
The original claim now follows, since s € L(s.s). O

In order to show s = t, it suffices to show's Ct At Cs. Hence the following lemma completes
the equivalence proof:

Lemma 6.4. Vst.sxt = sCtAtCs.

Proof. By induction on s (using the stronger induction principle [6.3). Let s = t. We show that
s Ct(t Csis analogous). Let x &s. It suffices to show that x €t. Since x &s, we know that
Js’ € L(s).x =, 5. Note that, because s = t, we know that 3’ € L(t).s' =~ t. By IH,s" Ct’
and t' Cs’, hence s = t and the claim follows due to transitivity. O

Part Il

Finitary sets

7 Basics

Non well-founded sets are sets that, in contrast to ZF sets, can have an infinite descending
chain of elements. The smallest example of such a set is called Omega : Q = {Q}.

Peter Aczel defines non well-founded sets as sets that can be depicted by an accessible pointed
graph (apg). Apgs are basically rooted, connected graphs.

For example, Omega can be represented apg in figure [}

(o

Figure 2: Q
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We use a very similar notion of graphs, but will not require connectivity. This makes our
definitions and proofs simpler, which is especially noticeable in the Coq development. However,
unreachable vertices are irrelevant for our representation. We represent finitary sets as rooted
graphs up to bisimulation.

Definition 7.1. A graph is a 4-tuple (X, edgeRel, dom, root), where
e X is a type with decidable equality
e edgeRel: X — X — B is the transition relation
e dom : [X] is the domain of the graph
e root denotes the root of the graph
We use G to denote the type of graphs.

For any graph g, we use the notation root g to denote the root of g, etc. In Coq, this is
accomplished using a record for the definition of graphs. We need the decidable equality on X
in Cogq, but for the sake of clarity, we neglect it in this text.

We also use the notation x : g as a shortcut for x : t g. While this is an intuitive notation, it
only gives us information about the type of x and does not imply that x is also in the domain in
g. The domain of the graph is the set of all its vertices. We always consider only the subgraph
induced by the domain, which means we will usually use the following function instead of
edgeRel.

Definition 7.2. E: g 5 g — B

Exu e edgeRel xy x & dom(g)A\y € dom(g)
Y7 ) fatse otherwise

We construct graphs as G edgeRel dom root, and leave the type of the graph, as well as the
decider for equality on its type, implicit.

In the next section, will first introduce the notion of bisimulation for our representation of
graphs and prove its decidability.

Then, we will define a membership relation on graphs and prove that our model supports all ZF
axioms except for infinity and reqularity modulo bisimulation. As mentioned in the introduction,
we want to use graphs to model finitary sets, the axioms of regularity and infinity do not make
sense for our purposes.

We will also show how the transitive closure of a graph can be computed, since the usual ZF
construction for the transitive closure of a set requires the axiom of infinity.

Thereafter, we will actually construct a type for non well-founded sets, namely the quotient type
G /. Every non-well founded set is represented by a graph such that two non well-founded
sets are equal iff the underlying graph is the same. We achieve this by giving a mapping
between graphs and natural numbers and show that for any type X with a decidable equivalence
relation R and a suitable mapping X < N, we can construct X /R. Note that the existence of
such a quotient type is not clear in general, from the perspective of constructive type theory.
Finally, we show how to lift the definition of equality, the element relation and the constructions
for the ZF axioms we are interested in to this type.
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8 Bisimulation

Definition 8.1. We call a relation p : g1 — g2 — B a bisimulation for two graphs g1, g, iff
Vxy.pxy =true =
(VX' Exx' = true =
Yy Eyy =trueANpx'y = true)A
Vy Eyy =true =
X Exx'=true Apx'y=true).
Two graphs g1 and g, are bisimilar (g1 = g2) :=
dp:g1 — g2 — B.bisimp A p(rootgq)(rootgy) = true

We use the notation dom’ g := (root g) :: dom g. Though it is not often needed, x € dom’ g is
much more readable than x = rootg V x € dom g.
It is easy to see that our bisimulation is an equivalence relation:

o Reflexivity : Vg.g x~ g
— Consider p:= Axy.x = y.
e Symmetry : Vg1 g2.g1 X g2 = §2 X g1

— Given a bisimulationr: g1 —» g, - B

— Consider p: g — g1 = B := Ayx.rxy
e Transitivity : Vg1 9293.91 X g2 = g2 X g3 = ¢§1 X g3

— Given two bisimulationsr: g1 > g, —>B,q: ¢g»—> g3 — B

— Considerp: g1 — g3 - B :=
Axz.Ay.(y e dom’ g)) Arxy =trueNqyz=true

e In each case, it is easy to verify that the given p actually is a bisimulation.

We will first show how to prove whether a given p: g1 — g, — B is a bisimulation.
Afterwards, we will show that for any two graphs g1, g2 we can decide whether g1 = g, by
trying all possible relations p: g1 — g2 — B.

It is easy to see that for any p: g1 — g2 — B with
Vxy.Pxy=true = x € dom’gi Ay € dom’g,
it suffices to only consider x, X', y and y’ that are in the respective domain, i.e.
p is a bisimulation for g4, g, <=
Vx € dom’ g1.Vy € dom’gy.pxy = true =
(VX' € dom’gq. Exx’ = true =
Jy' e dom’ g, Eyy’ =true Apx'y’ = true)A
Yy € dom’gy. Eyy’ = true =
X' € dom’g1. Exx' =true Apx'y = true).
This characterization makes the decidability proof much easier : If a given p behaves this way,
then it is trivially decidable whether p is a bisimulation or not (in fact, this is so easy that
Coq can automatically derive this proof), since at each point, we only have to consider a finite
amount of vertices. Note that the root of a graph g need not be contained in its domain. Hence,
we need to explicitly check for the root when we want to limit our relation to the "relevant”
elements, which is we we use dom’ in the characterization above and in the definition below.
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We will see later on that any graph whose root is not contained in its domain represents the

empty set.
Definition 8.2. p| g1 — g, —> B

edgeRel xy x & dom’ g1 ANy € dom’ g,

dom’ *

Plaom XY = .
‘d"’" false otherwise
We can use p|d0m, to restrict p to the "relevant” elements. Note that for any bisimulation p,

p|dom, is also a bisimulation.

Definition 8.3. Let X, Y be types and xs : [X], ys : [Y].
allFuns xs ys := map(AMA.Ax y.(x, y) € A)(P(xs x ys)

Note that the P in the definition denotes the power list, not the power set, which is basically
the same construction, but the order matters.

We can prove that f € allFuns xs ys for any f with (Vxy.fxy = true = x € xsAy € ys),
provided that equality on X and Y is decidable.

This assumes an axiom called functional extensionality, i.e. Vfg.f = g & Vx.fx = fy,
which is not built into Coq. If we do not want to assume this axiom, we can proof a slightly
weaker version, namely 3f" € allFunsxsys.¥xy.fxy = f xy, but we feel that functional
extensionality is a very intuitive notion, and is in fact the usual definition of function equality
in classical mathematics.

To prove this claim, we need the additional lemma Vxsys.ys C xs = dzs € Pxs A zs = ys.
This is intuitive, since it also holds for power sets, and can be proven by induction on xs.

This implies that for any p, p’dom, € allFuns (dom’ g1) (dom’ g3).

Theorem 8.4. Vg1 g2, dec(g1 = g2)

Proof. We know that for any bisimulation p: g1 — g, — B,

p!dom, € allFuns (dom’ g1) (dom’ g»). Since any function in allFuns(dom’ g1) (dom’ g;) can
only ever return true for arguments in dom’ g1 and dom’ g,, we can easily decide if p
bisimulation.

It suffices to decide if there is a bisimulation p in allFuns(dom’ gi)(dom’g;) such that
p (rootgi) (rootg,) = true. We can obviously decide that, since we only have finitely many
functions to consider. Assume there is such a bisimulation in allFuns(dom’gq)(dom’ g2).
Then we have a bisimulation for g1, g, and are done.

Suppose there is no such bisimulation in allFuns(dom’ g1) (dom’ g3). Then g1 # g2: Assume
otherwise. Then we have a bisimulation p : g1 — g» — B. However, then p| €
allFuns (dom’ g1) (dom’ g3) is a bisimulation 4.

| dom’ isa

dom’

O

9 ZF Axioms

In this section, define an element relation based on the bisimulation of the previous section
and give constructions for all ZF axioms except Regularity and Infinity.

Definition 9.1. subgraph (x : g) := G (edgeRel g) (dom g) x.

The subgraph for any given node x in a graph g can be obtained by just replacing the root
with the node x. Note that x is not required to be reachable from the root. This makes the
definitions in Coq easier, but we will never use subgraph on an unreachable node.
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Definition 9.2. child_nodes, children
child_nodes g := filter (fun x = E (root g) x = true) (dom g)
children g := map subgraph child_nodes

The child_nodes of a graph g are all nodes reachable from the root in one step and the children
are the respective subgraphs. Now we can define our element relation for graphs:

Definition 9.3. g1 € g, := 3g3 € children g;. g1 = gs.

Needless to say, our element relation is of course decidable and Coq can derive this automati-
cally. Consider the definition inclusion and equivalence based on &:

Definition 9.4. g1 C g, := Vg. g € g1.implies, g € ga.

This relation is also decidable : Note that if we have some g € g4, then there is a ¢’ €
children gy such that g = g’, by the definition of €. Since the subgraph for g’ is trivially an
element of g4, and due to the transitivity of =, it suffices to show that Vg € childrengi.g € g
is decidable, which is easy, since there are only finitely many children.

Definition 9.5. g1 = g2 == g1 C g2 A g2 C gy

Two graphs g1, g, are equivalent, i.e. g1 = g, iff they have the same elements. We will now
give a proof of the first ZF axiom (modulo bisimulation) for graphs: extensionality.

Theorem 9.6. Extensionality
Vg1 g2.g1 X g2 < g1 = (.

Proof

"=" Let g1 = g>. Due to symmetry of =, it suffices to show g; C g>. Let g € gq. By the
definition of &€, we have a vertex x € dom g4 such that E(root g1)x = true Ag = subgraph x.
Because g1 = g, and E(root g1)x = true, we also have a vertex y € dom g, such that

E (rootgy)y = true A pxy = true, where p is the witness of g; = g».

Obviously, subgraphy € children g;. It remains to be shown that g =~ subgraphy. Since
g =~ subgraph x and due to the transitivity of =, it suffices to show that subgraphx =
subgraph y.

It can easily be shown that the relation p is also a bisimulation for subgraph x and subgraph y.
"<" Let g1 = g and p := Axy.subgraph x = subgraph y.

Obviously, p (root g1) (root gz) = true.

Consider x, x" € dom g4 such that E xx’ = true and y € dom g.

It is clear that subgraph x’ € subgraph x.

Since subgraphx = subgraphy, there is some y’ € domg; such that Eyy’ = true A
subgraphx’ =~ subgraphy’'.

Due to the direction already proven, we know that subgraph x’ = subgraph y'. O

Next, we will see how we can actually represent sets as graphs.

9.1 Empty

Definition 9.7. § := G(Ax y. false)[tt]tt.
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The empty set is represented by a graph with no transitions where Unit := tt is a type with
exactly one element. Note that it is bisimilar to any graph whose root is not in its domain.
Later on, we will see that there is a reason why we chose this definition instead of using an
empty domain.

Note that has the same characterization as the empty set: Ag.g &0, which means that it
represents our construction for the axiom of existence.

9.2 Adjunction
Next, we will give a construction for adjunction:

Definition 9.8. Adjunction

g1;g2:= G f ({None} U {Some(inlx) | x € domg1} U {Some(inry) | y € domg,}) None,
where f is defined as follows:

f None (Some (inl (root g1)):= true

f None (Some (inr y)) := E (root g2) y

f (Some (inl x)) (Some (inl y)) := E x y

f (Some(inr x)) (Some (inr y)) := E x y

f_ _:= false

)

Figure 3: Graph for g1; g»

Note that in the definition of adjunction, we use the more readable set notation for replacement
and binary union to define the domain of the new graph; these of course denote the respective
map and append operations on lists.

Figure 3] shows an example for adjunction. The idea is to construct a new graph g whose
children are the root of g and all children of g,. Note that the type of this new graph is option
(g1+g2). This gives us an additional vertex (None), which we use as the new root. Furthermore,
we make sure that there is no edge from any vertex to the root or between vertices from the
left and right part of the graph (i.e. those corresponding to g1 and g», respectively).

It is easy to see that Vxy : g1. E (Some (inl x)) (Some (inl y) = true < E x y = true.
Analogously, Vx y : g2. E (Some (inr x)) (Some (inr y) = true < E x y = true.

Since we have the same structure in the left part of the graph as in g4, it is easy to see
that for any x : g1, subgraph x = subgraph (Some (inl x)). Likewise, for any y : g, we have
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subgraph y = subgraph (Some (inr y)).

The characteristic property of Adjunction is: Yg.g € g1;92 <= g=x g1V geEg. Itiseasyto
see that our construction fulfils this property:

Proof. If g € g1; g2, then there is a vertex (Some z) such that E None (Some z) = true. In the
case where z = Some (inl x), we know that subgraph (Some (inl x)) = (subgraph x).
Furthermore, we know that in this case, x must be the root of g;. By transitivity of =, we know
that g = g;.

In the other case, z = Some (inr y), we know that subgraph (Some (inr y)) = subgraph y.
Furthermore, we know that E (root g») y = true, hence g € g».

If g ~ g1V g€ gy, by the same reasoning as above, we know that g € g1; g».
O

We already know how to get the list of child graphs for any given graphs. Adjunction allows us
to define the reverse operation : To build a graph that contains all graphs in a given list as its
children.

Definition 9.9.
L]]=0

L(x = xs) =x; Lxs

It is easy to show that Vxsg. g€ Lxs < Jg' € xs.g ~ g’

Due to extensionality and this property of L(,) it is easy to show that Vg.g ~ L(childreng).
Using £ and children, we can define the remaining ZF axioms easily by transforming our graphs
to lists of graphs, transforming this list according to the requirements of the axiom at hand,
and finally transforming the resulting list back to a graph.

9.3 Pairing

The axiom of pairing has the characteristic property Vg.g € {g1, g2} < g=x g1V g = g2

Definition 9.10.
{g1.92} == L[g1,92]

The characteristic property follows directly from the properties of L. Using pairing, we can
define singleton in the usual way:

Definition 9.11. Singleton {g} := {g. g}

Of course, Vg'. g’ € {g} < g = g’ follows immediately from the characteristic property of
UPair.

9.4 Union

The next ZF axiom we will consider is union.
Its characteristic property is: Yg1g2.91 € | Jg2 < 3Jg € go. g1 €g. We will again do the
main work on lists of graph.
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Definition 9.12.

Ug := L(flatten(map children(children g)))
or, written in set notation:

Ug:={g” |39’ € childreng.g” € childreng’}

The function flatten used in the definition flattens a list of lists :

Definition 9.13.
flatten [| =[]
flatten (x :: xs) = x 4 flatten xs

Using induction, we can easily prove the following: Vxs, x € flatten xs <= dys € xs.x € ys.
The characteristic property of Union follows from this property and the properties of £ that we
have already seen.

9.5 Separation

The next ZF axiom we will consider is separation. Its characteristic property is
g1€{g€g:|Pg} < Fg€g.Pgrgi=g.

Definition 9.14. {g' € g|P g’} := L(filterP(childrenM))
In order for this to work, there are two requirements for P :
e P needs to be decidable. This is required by filter.

o P needs to be extensional, that is Vg1 = g2. Pg1 <= P gs. The reason for this is
the following : If we have to graphs g1 = g2, then {g’ € g1|P g’} should be bisimilar to
{g’ € g2|P g’}. Suppose g1 and g are singletons with elements g} and g5, respectively. If
we have a given P that is not extensional and, say P g/, but # P g5, then {¢’ € g1|P ¢’} =
{9} #£ 0= {g'€gs|Pg'}. We can avoid such cases by requiring that P be extensional.

9.6 Replacement

The next axiom, replacement, is similar to separation:

Its characteristic property is g1 € {fg|lg €g:} < 3FJg&gr.91 = fg where f: Graph —
Graph is an extensional function.

We can define Replacement as follows:

Definition 9.15. {fg|lg € g’} := L(map f (children g'))

Note that f is required to be extensional, i.e. Vg1 g2.g1 = go = f g1 = f g3, due to the same
reasons why we require extensionality for Separation.

9.7 Power

The last ZF axiom we consider is power. In set theory, the power axiom gives us the existence
of a power set for any given set. Its characteristic property is :

gi1€P(g2) & g1Cqgn

We can use the power function on lists to do the hard work :

Definition 9.16. P(g) := L(map L(P(children g)))
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The proof is not hard and requires only the following lemma in addition to what we have
already seen: filter P xs € P(xs), where xs is any list over any type X and p: X = Prop is
any decidable proposition.

The proof of this lemma is a simple induction on xs. This works because the elements of the
lists in P(xs) appear in the same order as they do in xs.

10 Transitive closure

As stated in the introduction, the usual construction of the transitive closure of a set in ZF
depends on the axiom of infinity. In this section, we will give a construction for the transitive
closure of a graph.

Definition 10.1. transitive (g) :==Vg'.g'€g = ¢’ Cg.

The transitive closure of a set is basically the set of all its successors with respect to the
element relation. In our case, this is basically the set of all subgraphs whose root is reachable
from the root of the original graph. Therefore, we will first show the decidability of reachability
in a graph and then give a construction of tc.

We call a vertex y in a graph g reachable from another vertex x if there is a path xs of vertices
such that the first vertex is y, the last vertex is x and every vertex in xs is adjacent to its
neighbours in xs.

Definition 10.2. xs: x =* y

x € domg Exx" = true xs:x' =%y

[x]:x =% x (x xs):x >*y

We use the notation x —* y to denote that y is reachable from x, L.e. x =»* y:=3dxs: x -* y,
and xs : x —»* y to denote that xs is a path from x to y. Note that Vxs: x =»* y.xs C dom g.
We want to decide whether x —* y. The idea is that any path from x to y without loops has
at most |dom g| — 1 edges (the corresponding list of vertices contains all vertices v € dom g).
Therefore, it is sufficient to decide whether x reaches y in less than |dom g| steps.

Definition 10.3. reach_.in: g g > N - B
reachiinxy 0 :=x € domgAx=y

. true reach_in x yn=true
reach_inxy (Sn):=

Ix" € domg. Exx" = true ANreach_inx"yn = true otherwise

reach_in x y n decides if x reaches y in less than n steps, i.e. using a path with at most n
vertices.

There are a few properties of reach_in and xs : x —=* y we will need that are easy to prove by
induction :

e reach.in xy(Sn)=true = x=yVIdz.Exz=trueAreach.in zyn = true
e reach.in xyn =true = m>n = reach.in xym = true
e xs:x =%y = reach_in xy|xs| = true

e reach.in xyn =true = x ="y
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Consider the following function p which remove all loops from a path:

Definition 10.4. p:[g] — [g]
pll=1]

o(x : x5) = remove_untilx (pxs) x € pxs

X 1 (pxs) otherwise

p uses the following function remove_until which removes all elements appearing before a given
x from a list:

Definition 10.5. remove_until g — [g] — [g]
remove_until x [] = ]

remove_until x (x 11 xs) = x 1 xs
remove_until x (y :: xs) = remove_until x xs

It is obvious that for any x and xs, [remove_until x xs| <= |xs]|.
Note that remove_until preserves paths:

Lemma 10.6. Vz(xs: x =" y).z € xs = (remove_untilzxs):z =* y.
Proof. Induction on xs: x =* y.

e In the base case, xs = [x]. Since z € xs, we know that xs = [Z].

Therefore, remove_until xs = [z] : z »* z

e In the inductive case, xs = (x =1 xs'), xs' : X’ =>* y and E x x' = true.
If x =z, then (z :: xs') is a path from z to y.

Otherwise, remove_until z (x :: xs') = remove_until z xs' and we know that z € xs’, since
z € (x :: xs') and z # x. Therefore, remove_until z xs' is a path from z to y by IH.

O

Using the previous lemma, it is easy to show that p preserves paths, i.e.

Vxs:x =% y.pxs:x - y.

Furthermore, for any xs, pxs does not contain duplicates. It is easy to see that for any
duplicate-free xs C ys, |xs| < |ys|. These two properties, along with the simple fact that
pxs C xs, imply that |pxs| <= |dom g|, since for any xs: x =* y,xs C dom g.

Theorem 10.7. Vxy.x »* y < reach_inxy|domg| = true

Proof.

"<" 1 We have already seen that this holds for any n, not just for |dom g|.
"=": Assume we have a path xs: x —* y and that reach_in x y |[dom g| = false.
We know that pxs:x —* y and |pxs| < |domg|.

This means that reach_in x y |p xs| = true,

which in turn implies that reach_in x y |dom g| = true,

since reach_in x y remains true for larger step size. 4
O

The theorem gives us an easy way to decide whether x —* y. We use x =T y to denote that x
reaches y using at least one edge.
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Definition 10.8. x =% y:=3Ix". Exx’ = true A x’ -* y.

We will need this definition later on when defining the transitive closure of a graph. Furthermore,
x =T y is obviously decidable and x -1 y < Ixs:x =>* y.|xs| > 1.
Consider the following inductive definition of € :

Definition 10.9. ) )
glxg2 gl €g2 g2 €" g3

gl €%g2 gl €°" g3

We can see that for any graph g1, g2 and r, x: g2,

r —*x = g1~ subgraph x = 3dn.g1&" (sugraph r).

Likewise, r -7 x = g1 = subgraph x = 3n > 0.¢g1 &€"(sugraphr).

The first property is easy to prove by induction on the path, while the second one is even
easier to prove by giving a path of length > 1. Note that, in the special case where r = root
g2, subgraph g, r = ga.

We can also proof the other direction, that is

g1 €"g; = rootg,; € domg, = 3Ix.root g2 —* x A g1 & subgraph x and

n>0 = gl1&€"g2 = 3x.(rootg2) - x A g1 = subgraph x, respectively. This time, the
proof is of course by induction on n. The restriction g, € dom g5 is necessary: Consider the
case where dom g, =[] As we have seen before, this means that g, =~ f. However, [root g2] is
not a valid path in this case. In the second case, no such restriction is required, since, as we
cansee, g1 €"gy = n>0 = rootg2 € domg2.

Next, we give the definition of the transitive closure:

Definition 10.10. tc : Graph — Graph

tc g := G f (None :: (map Some (dom g))) (None) where
f (Some x) (Some y) := edgeRel x y

f None (Some y) := (rootg) —»7 y.

f__:=false

)

Figure 4: Example graph g

Consider the graph g shown in figure [4] Its transitive closure is shown in figure bl

We will prove that g1 €tcg, < 3In > 0.9, €"ga.

The reason why we need root g —* y in the definition is because x € domg = x —* x holds,

as mentioned before. If we replaced —* by —* in the definition of tc, and root g, € dom g,

then subgraph (root gz) = g2 € tc ga. However, if there is no other vertex v : g, that reaches
. n

the root again, ng gz for any n > 0.
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Figure 5: transitive closure of g

Another question that might arise is why we need to use option g as the type and not simply
g, and use edgeRel (root g) x := root g =% x in the definition of tc, i.e. leave all edges as they
are and add edges from the root to every reachable vertex. While this might seem sensible at
first, there is a problem, namely that the structure of the "old” graph is changed.

Consider the example graph g from figure (4} Using the faulty method just described would

yield the following result on g:

Figure 6: Wrong way of construction tc(g)

What should be the case in this scenario instead is that g €" tc g, but by changing the
transitions from the root, we have "lost” the old graph. Our construction makes sure that there
never is an edge from (Some x) to None, i.e. from some other vertex to the root of (tc g).
Note that tc g €" tc g (n > 0) is not a contradiction by itself, e.g. if g = Q. This is because
Omega is already its own transitive closure, i.e. Q = tcQ and of course, Q € Q.

From the definition of tc, it follows that E (root (tc g)) (Some x) = true <= (rootg) —* x.
All other vertices have the same edges as before : E x y = E (Some x) (Some y). This gives us
the property that Vx : g. (subgraph x) = subgraph (Some x), where subgraph x is of course a
subgraph of g, whereas subgraph (Some x) is a subgraph of tc g.

Lemma 10.11. Vg g'. ¢’ €(tcg) < In > 0.9’ €"g
Proof.

"=": Let g’ €(tc g). It is obvious that there has to be some x : g2 such that
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root g2 —»* x and g’ = subgraph x (= subgraph (Some x)).
This means that there is some n > 0 such that g’ € " subgraph x, by the equivalences regarding
€™ and —7* discussed above.
"<" Let n > 0 and g’ €"g. We know that there is some x such that
rootg —% x A g’ = subgraph x.
Since root g —»* x, we know that E None (Some x) = true. Due to the transitivity of =~ and
subgraph (Some x) = subgraph x, we know that g’ € tcg.
O

Let us consider the ZF characterization of the transitive closure next. The transitive closure (tc
M) of a set M is the least transitive superset of M. Using the characterization ¢’ € tcg <
dn > 0.g’ €"g, proving this property is fairly straightforward:

e tc g is transitive. Let " € g’ &€ tc g. We know that g €" g for some n > 0. Hence, ¢"
€°" g, which in turn implies g" € tc g.

e g C tcg. Letg & g. By the definition of &, this gives us an x : g such that E (root g)
x = true and g’ = subgraph g. [root g, x] : rootg —* x and |root g, x| > 1 gives us that
root g =% x, which means that E None (Some x) = true. g’ € tc g follows from the fact
that subgraph x = subgraph (Some x).

e Vg*. transitiveg* = gCg* = tcgCg*. Let g* be transitive and g C g*.
We show Vn > 0Vg'. ¢’ €"g = g’ € g* (which gives us that tc g C g*) by induction on
n.
The base case is trivial.

In the inductive case, n =S n"and g¢'€°"g. If ' =0,ie. n=1,¢9'€"'g & ¢’ &g,
which immediately gives us that g’ € g*, since g C g*. If i’ = S m, the inductive hypothesis
holds for any h with h €°>™g, since (S m) > 0. Since g’ €°"g, there is some graph h
such that g’ € h and h€°™g. By IH, we know that h € g*. Since g* is transitive, this
means that h C g*, and in particular g’ € g* follows due to g’ € h.

11 Constructing a set type

We have seen how we can use graphs to implement all ZF axioms (except regularity and
infinity). Our versions of the these axioms, however, differ from the usual ones in that they use
bisimulation instead of actual equality.

We can give a model for the usual axioms by moving from graphs to the quotient type of
graphs modulo bisimulation. To achieve this in constructive type theory, we will give conversion
functions f: G— N, ' : N — G such that

® (1 X (gr — fg1=fg2
e grf(fg)
We will proceed as follows :
e Show that every graph g is bisimilar to some graph whose vertices are natural numbers

e Give a function to compute the list of all such graphs (modulo bisimulation) up to a certain
domain size
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e Use the indices of these lists to convert between graphs and natural numbers

e Show that for every type X with a decidable equivalence relation R and a suitable
mapping between X and N, we can construct X /R.

11.1  Graphs over N

For any graph g, we can get a bisimilar graph over natural numbers. The idea is to use the
index of each element in the domain instead of the element itself and map the transitions
between two elements to transitions between their indices.

Definition 11.1. We call graph g is called well formed if it does not contain duplicates and its
domain starts with the root, i.e. dupfree g Adxs. domg = root g :: xs.

The notion of a well formed graph will be useful later on, since each element in a well formed
graph has exactly one index. Furthermore, we know that the root of any well formed graph

will always have index 0. Note that fis well formed, which is why dom fwas defined as [tt].

Lemma 11.2. reordering lemma
For every graph g, we can give a bisimilar graph that is well-formed.

Proof.

e If rootg ¢ dom g, then the g ~ ff

e If rootg € dom g, then we can reorder the elements of g and remove duplicates to obtain
a bisimilar graph.

O

The proof of the second claim is not hard. It is even easier if we use the fact that every
isomorphism gives us a bisimulation:

Definition 11.3. Let X, Y be types and f : X — Y. Let xs and ys be lists of type X and
Y, respectively. We call f an isomorphism on xs and ys if 3f'. (Vx € xs. f'(fx) = x) A (Vy €

ys. f(f'y) = y).

Definition 11.4. Let g1 and g, be graphs and f : g1 — g». We call g; mutated according to f
if :

e map f (dom g1) = dom g, and
e f (root g1) = root g, and
o Vxy:g1.Exy=true & E(fx)(fy) = true

Lemma 11.5. Let g4, g2 be graphs mutated according to some isomorphism f : g1 — g2 on dom
g1 and dom g,. Then g1 = g».

Proof. Consider p := Axy. (fx) = y.

o Letx,x’ € domgq, Exx’ =true,y € domg,,pxy = true. Consider y' :=fx". Obviously,
p X'y = true. To show that E y y' = true, note that p xy =true = y=1fx. Eyy
follows from the definition of mutated.
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e let x € domygy,y,y € domgy, Eyy’

Denis Miiller

= true,pxy = true. Consider X' := y y’

Obviously, p X" y' = true. since f, ' are inverse functions, we again have E x x' = true.

e p (root gq) (root g;) follows from the definition of mutated.

O

We will use this lemma to prove that every well formed graph g is bisimilar to a graph over N
by constructing an isomorphism between g and N on the domains of the respective graphs.
But first, we need to define a few functions to convert between elements and indices and prove

their correctness.

Definition 11.6. nth : [X] - N — option X
nth [] - = None

nth (x :: xs) 0 = Some x

nth (x :: xs) (S n) = nth xs n

Definition 11.7. index : X — [X] — option N
index - [| = None
index y (y :: xs) = Some 0

Some(Sn)

index y (x = xs) = N
one

otherwise

indexyxs = Somen

Note that both nth and index return None in case the index/element was not contained in
the given list. The following properties of nth and index can be proven by induction on the

argument list:

e nth xs n = Some x = x € xs An < |xs]

e n < |xs| = 3Ix. nth xs n = Some x

e X € xs = dn. index x xs = Some n

e index x xs = Some n = x € xs An < |xs|

e index x xs = Some n —

nth xs n = Some x

e dupfree xs = nth xs n = Some x = index x xs = Some n

e dupfree xs = nth xs n = Some x = nthxs m = Some x = n=m

We can construct the list of all elements from 0 until n using the range function:

Definition 11.8. range :
range 0 := ||
range (S n) := range n + [n]

N — [N]

Now, we can, for any well-formed graph g, give a graph over N that is bisimilar to g.

Definition 11.9. graph_to_nat g := G e (range |dom g|) 0,

where e is defined as follows:
Exy

enm= )
false otherwise

nth(domg)n = Somex,nth(domg)m = Somey
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graph_to_nat g relates any element x € dom g to its index in xs. Note that in any well-formed
graph g, root g has index 0. Furthermore, since, index x (dom g) denotes the index of x in (dom
g), we know that the following properties hold:

e E xy=true = index x (dom g) = Some n =

index y (dom g) = Some m = E n m = true

e Enm=true = nth (dom g) n = Some x =

nth (dom g) m = Some y = E x y = true.
We can use the following function to convert an x : g to n: N:

Definition 11.10. convert_index : g —» N

) n indexx (dom g) = Somen
convert_index (x : g) := )
|domg| otherwise

Note that for any x € dom g, convert_index will always return x's index. If x ¢ dom g, we get
an index that is clearly not in range |dom g| either. This, together with the previous points,
gives us that

Lemma 11.11. Vxy. E xy <= E (convert_index x) (convert_index y).
Theorem 11.12. For any well-formed graph g, g =~ graph_to_nat g.

Proof. We give an isomorphism on dom g and range |dom g|. Consider f := convert_index. Its
inverse function is:

X nth(dom g)n = Some x
f'nm = ( ] 9) )
rootg otherwise

Furthermore, f and f’ are inverse functions:

e Consider x € dom g. Since x € dom g, we know that convert x gives us an index n such
that

n < |domg|Anth(domg)n = Some x.

Hence, f' n = x.

e Consider n € range |dom g|. Since n € range |[domg| = n < |domg|,

there is some x € dom g such that index x (dom g) = Some n. Hence, f x = convert_index
X =n.

We still need to show that g is mutated with f and with respect to graph_to_nat g.
e map convert_index (dom g) === range |dom g| is obvious.
o f(root g) = 0 A f' 0 = root g follows from the fact that g is well-formed.
e due to lemma [TT.77} Vxy. E xy <= E (convert_index x) (convert_index y).
O

Note that for every well-formed graph g, graph_to_nat g is also well-formed. For any graph g,
by transitivity of &~ and the reordering lemma, we can thus give a well-formed graph g’ over N
such that g = g’
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11.2 Conversion functions

Consider the function find_first_index, which finds the first index in a list such that the element
in the list at the specified position satisfies a given property p.

Definition 11.13. find_first_index
find_first_index p [] = None

Some0 p x
find_first_index p (x :: xs) = 1 Some (Sn) find_first_indexpxs = Somen
None otherwise

find_first_index has a few nice properties that one can easily verify using induction on xs:
e find_first_index p xs = Some n = I x € xs. nth xs n = Some x A p x

e X € xs. px = 3dn. find_first.index p xs = Some n

prefix xs ys = find_first_index p xs = Some n = find_first_index p ys = Some n
o (Vx.px < gx) = findfirst_index p xs = find_first_index q xs

prefix is defined as expected, i.e. prefix xs ys := Jzs. xs # zs = ys.
The next function we will need is mapcat :

Definition 11.14. mapcat : (X — [Y]) — [X] = [Y]
mapcat f xs := flatten (map f xs)

Note the following properties of mapcat :
e Vy.y € mapcatfxs & Ixexs.y e fx
e mapcat preserves prefixes, i.e. Vxsys. prefixxsys = prefix(mapcatf xs)(mapcat f ys)
o (Vx,|fx| > 1) = Vxs.|mapcatfxs| > |xs|

Consider the list of natural numbers from 1 up to and including some given n:

[1.n] := map (+ 1) (range n)

It is obvious that for any two n, m € N with n <= m, [1..n] is a prefix of [1.m].

The next step is to enumerate all well-founded graphs over N with a given domain size and 0
as the root.

Definition 11.15. an := map (Af. G f (range n)0) (allFuns (range n) (range n))

We use the allFuns function to enumerate all possible transition functions between (range n)
and (range n) and for every such function f, we include the graph with 0 as the root, (range n)
as the domain and f as the transition function in the result. This gives us every possible graph
over natural numbers that is well-founded, has 0 as its root, (range n) as its domain and no
transitions to elements outside of its domain. Hence, the following properties of o should come
as no surprise.

en>0 = gean = well-formedgAtg=N

en>0 = well-formedg = |domg|=n = graph_-to.natg € an
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Note that the second point uses the correctness lemma for allFuns, which in turn uses functional
extensionality.

For n € N, we can enumerate all graphs g with 1 < |domg| < n (modulo bisimulation) as
follows:

Definition 11.16. B n := mapcat « [1..n]
Lemma 11.17. Yg. graph_to_nat g € B(S|dom g |)

Proof. Recall that |dom (graph_to_natg)| < S(ldom g|). Hence, it remains to show that
graph_to_natg € a(|dom (graph_to_nat g)|), which follows from the properties of a. O

Another property of Bis Vnm.n < m = prefix(B n)(B m), which immediately follows from
the fact that mapcat preserves prefixes, since [1..n] is a prefix of [1..m].
Now we convert between graphs and N

Definition 11.18. f, 1
P find_first_index (= g) (B (S|domg|)) = Some n
7= 0 otherwise

(1. 19 nth(Bn)(Sn) = Some g
|9 otherwise

Note that in both definitions, we know that the second case can never occur:

e We know that graphtonat g € B(S|dom g |), hence find findfirst.index
(~ g) (B(S|domgl)) will never be None.

e Note that for any n > 0, |an| > 0. Therefore, we know that |B(S n)| >= Sn > n, which
means that nth |B(Sn)| n can never be None.

Theorem 11.19. Vg.g =~ f~'(f g)

Proof. We know that find_first_index (= g) (B(S|dom gl|)) = Some (f g), which implies that there
is some g’ such that (nth (B(S|dom gl)) (f g)) = Some ¢ A g = g. Either fg < |domg| or
|domg| <= fg.

e Assume f g < |dom g|. We know that the second case in the definition of = can never
occur, hence there is some g’ such that nth(B(f g))(S(f g)) = Some ¢'. Furthermore, B
(S (f g)) is a prefix of B(S|dom g|).

Hence, nth (B(S(f g))) (f g) = nth (B(S|dom g])) (f g) = Some ¢’ and we know that ¢’ = g.

e Assume |dom g| < fg. Similarly to above, B(S|dom g|) is a prefix of B(S(f g)). Thus,
nth(B(S|dom g|)(f g)) = nth(B(S(f g)))|dom g| = Some g’ and we know that ¢’ % g.

O

Theorem 11.20. Uniqueness of f g
Vgg'.grg < fg=1_gqg.
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Proof.

"=" Let g % ¢g. W.lo.g., |[domg| <=|dom¢g’|.

Hence, [1..|dom g|] is a prefix of [1..|dom ¢'|]. Therefore, B (S|dom g|) is a prefix of B(S|dom ¢’
since mapcat preserves prefixes.

Note that, since g ~ ¢, Vg”. (¢" =~ g) < (9" = ¢').

Therefore, find firstiindex (= ¢') (B(S|domg’|))= find first_index (x~ g) (B(S|dom g'|))=
find_first_index (~ g) (B (S|dom gl)), because B (S|dom g|) is a prefix of B(S|dom ¢'|).

"&<": Let fg = fg’ We know that Vg.find_first_index(x~ g)(B(S|dom g|)) = Some(f g) A
Ag’.nth(B(S|dom g|))(f g) = Someg' Ag =~ ¢’

W.lo.g, |domg| <= |domg’|. The claim follows again, since B(S|domg|) is a prefix of
B(S|dom g'|).

),

O

11.3 Quotient types

The existence of quotient types in constructive type theory is not obvious. We give a construction
for the quotient type X /R, where

e Xisatype, and R: X - X — X is a decidable equivalence relation
o f: X > NsuchthatVxxy.fx="Ffy
e f~1:N — X such that Vx. R(f~1(f x)) x

The idea is to use {n | f(f~' n) = n}, which is the sigma type of all n € N paired with a
proof that f(f~! n) = n, as the quotient type. We can think of sigma types as dependent pairs.
Using this representation, the class of x : X is simply f x (together with a suitable proof that
f(f~1(f x)) = f x), whereas we can get a representative element of a class {n | A} by means of
~'n.

Definition 11.21. X/R
nn:=f(f'n)
XIR :={n|nn=n}

Lemma 11.22. Vx.fx = n(f x).
Proof. f x = n (f x) follows from the properties of f and . O

Definition 11.23.
repr: X/Rp — X
repr (n, J) :=f"'n
norm : X — X /R
norm x := (x, f_repr x)

Now that we have defined what the class of an element and the representative element of a
class are, we want to show that two elements are related via R iff they belong to the same
class, i.e. Vxy.Rxy <= normx = normy, and that two classes are equal whenever their
representative elements are related via R, i.e. Vab.a =b < R(repra)(repr b).

We will split the proofs in two parts, namely Vxy. Rxy <= repr(normx) = repr(normy)
and Vx y.repr(normx) = repr(normy) <= normx = normy. The second part might seem
trivial, but the problem is that not only do the first components have to be equal, but also the
second ones, i.e. the proofs. While we could assume the axiom proof irrelevance (PI), i.e. all
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proofs of a given type (i.e. statement) are equal, we can do without assuming this axiom.

Let us consider the first part now.
Lemma 11.24. Vxy.Rxy < repr(normx) = repr(normy)

Proof.

"=" f~'x = {1y follows from R x y.

"&:" Assume repr (norm x) = repr (norm y). This means that f~1(f x) = f~'(f y). We want to
show R x y. We know that R x (f~'(f x)) and R y (f~'(f y)). Due to symmetry and transitivity of
R, R x y follows. O

While lemma [T1.24]is the intuitively more interesting part, the second part,
Vxy.repr(normx) = repr(normy) <= normx = normy, is rather technical. As already
mentioned before, we basically want to prove the equality of two dependent pairs (f x, A) and (f
y,B) where A is a proof of n(f x) = n(f y) and B is a proof of n(f x) = n(f y) and we know that f
x =fuy.

This works without assuming Pl because the type N has unique identity proofs. In Cog-terms,
this means that every proof of type n = m, where n and m are natural numbers, is equal to
eq-refl.

We end the discussion about this second part with the remark that simply stating A = B
in Coq does not work, since A and B are of incompatible types. However, by matching on
the equality proof of type (f x = f y) first, we can state the desired lemma, which is easily
provable in Coq. We refer the interested reader to the Coq source code of this thesis and
the Homotopy Type Theory book [17] which discusses the fundamental ideas why there is
structure in equality proofs in chapter 2.

These two properties together give us the desired properties, namely
Vxy.Rxy < norm x =normy

and

Vab.a=b < R(repra)(reprb).

1.4 N

Since bisimulation on graphs is a decidable equivalence relation and we have suitable conversion
functions G <> N, we can construct the quotient type G /~, which is our type for finitary sets.
Furthermore, we can lift the definition of membership and the constructions we have for the ZF
axioms to this level. We will see that G /~, gives us a proper model for the ZF axioms that we
consider.

Definition 11.25. N:= G /.
Definition 11.26. M € N := (reprM) & (reprN).
Definition 11.27. MC N:=V¥x & M.x € N.

The constructions for the ZF-axioms we consider simply convert from N to G, use the construc-
tions for graphs, and convert back to N .

e Axiom of existence : f := norm0

e Axiom of pairing : {M, N} := norm{repr M, repr N}
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e Axiom of union : [JM := norm(Jrepr M)
e Axiom of power : PM := norm(P(reprM))

For the axioms of separation and replacement, we need to do a little extra work to convert the
given relation/function to the correct type.

Definition 11.28. Lifting functions and predicates from N to G
lift, (p : N — Prop) := Ag. p (norm g)
lifty (f: N = N) := Ag. repr (f (norm g))

Note that both lift, p and lift; f are extensional, since norm g = norm ¢ for any g = g.
Furthermore, lift, p is of course decidable, provided that p is decidable.

e Axiom of separation : {x € M | px} := norm{x € repr M | (lift, p) x}
e Axiom of replacement : {f x | x € M} := norm{(lift; f) x | x € repr M}

Furthermore, it is easy to see that M C N <= repr M C repr N. This implies that the axiom
of extensionality also holds for N :

M=N < MCNANCM.

Of course, M € N,M C N and M = N are decidable for A/, since we know how to decide the
respective properties modulo =~ on G.

As mentioned in the introduction, Aczel's AFA is trivial for our representation: We have
conversion functions (repr and norm) between G and N and know that bisimilarity on the
G level means equality on the N level.

Furthermore, it is easy to construct a choice function y on N such that YM # @. yM € M.

Definition 11.29. y : N > N
Mo g child_nodes (repr M) =]
Y= norm (subgraph x) child_-nodes (repr M) = x :: xs

Lemma 11.30. YM + @. yM € M.

Proof. Note that child_nodes (repr M) =[] < repr M ~ §. In this case, we know that M =
@, contradicting our assumption. Otherwise, (subgraph x) &€ (repr M), hence (norm (subgraph
x)) € M. O
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12  Future Work

There are a few directions in which one could further extend the work done in this thesis.
First of all, we can extend our binary tree model for hereditarily finite sets by generalizing the
constructions used in the second part, since all they rely on is an adjunction function and a
conversion from the type and hand (in our case, Gor T) and a list of that type, which basically
represents the children of the given element (and vice-versa). These conversions have to be
idempotent modulo the equivalence relation we consider, which in the case of Gis =, and
for Tis =. We have already seen that = plays nicely together with the conversion functions
(Land T). Hence, generalizing the construction for the above mentioned axioms gives us an
easy way to prove that T actually adheres to the ZF-model of HF sets (modulo =).

Furthermore, the mapping we have between G and Nbasically gives us an easy way to
enumerate finitary sets. We could also construct an enumeration for T. One way to do this
is by using Ackermann’s encoding for hereditarily finite sets as natural numbers [18], which
has already been formalized in Coq by Chad Brown [19]: every number has a unique binary
encoding. When considering any number n, if the i-th bit is set to one in n, i is considered
an "element” of n. For instance, the number 9 has the binary encoding 1001, and hence has
the elements 3 and 0. This means that the number 0 corresponds to @, 1 corresponds to {@}
and so on. Since we sort trees in ascending order, it would be easy to compute the number
corresponding to a sorted set by structural recursion.

Moreover, we have constructed an explicit quotient type G /~ as our type for finitary sets. This
construction depends on our mapping between G and N. It is possible to construct the quotient
type T /= as a model for hereditarily finite sets, and we do not need the enumerability of T for
this: We can use T /= := {t|sortt = t} as the quotient type. Since we know that sorting
equivalent trees yields identical trees, all that is left to show is that the equality proof in the
second component of the sigma type is unique. This holds, since equality on Tis decidable.
Note that this would not have worked for G, because equality on Gis undecidable.

In the introduction, we have mentioned the relation between CCS and sets. One application
for finitary sets is the fragment of CCS with an empty process, a binary + operator and action
prefix (with only a single action) and recursion. Formalizing this in Coq represents another
opportunity for future work.
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Part 1l

Appendix

13 File Structure

The Coq cIevelopmentﬂ is divided into two parts:

o Part

1 corresponds to the development regarding the binary trees and can be found in

the folder called "binary-trees”.

1.

e Part

Tree.v contains the basic definitions of trees, the equivalence relations = and =, and
their properties.

TreeOrder.v contains the properties and definitions concerning the comparison and
sorting of trees, as well as the decidability of =.

TreeSim.v contains the definitions and properties of €, Cand the double inclusion
principle.

Finally, Bisim.v contains the coinductive definition of =, as well as the equivalence
proof of = and %.

2 contains all the files that belong to the development concerning finitary sets and

can be found in the folder called "nwf-sets”.

. Graphs.v contains the definition of graphs, bisimulation on graphs and its decidability,

as well as the proof that two isomorphic graphs are bisimilar.

GraphAxioms.v contains the constructions and proofs for the ZF axioms on graphs.

3. GraphNat.v contains everything concerning the connection between graphs and

natural numbers, starting from the reordering and graph_to_nat up to the conversion
functions between G and Nand their correctness.

Quotient.v contains the generic construction for the quotient type X|R for a given
type X with a relation R assuming suitable conversion functions X < N.

GraphReach.v contains the definitions and lemmas connected to the reachability in
a graph and its decidability.

GraphTC.v contains the construction and correctness proof of our construction for
the transitive closure of a graph

NSet.v gives the definition of N and results regarding N': The constructions for the
ZF axioms, the transitive closure and the Anti-Foundation Axiom.

Both parts also contain the base library E]from the core lecture Introduction to Computational
Logic which is taught at Saarland University.

Tavailable under http://www.ps.uni-saarland.de/~dmueller/bachelor.php
2https://www.ps.uni-saarland.de/courses/cl-ss14/script/Base.v
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