Nominal Logic and its Isabelle Incarnation

Christian Doczkal

Advisor: Jan Schwinghammer

November 28, 2008

→ Ξ →

Motivation

We thank T. Thacher Robinson for showing us on August 19, 1962 by a counterexample the existence of an error in our handling of bound variables.

Motivation

- S. C. Kleene

副 🖌 🖉 🕨 🗸 🖻

Motivation

Some standard sentences when doing proofs about ASTs

"We identify terms up to α -equivalence, i.e. $\lambda x.x = \lambda y.y$ "

Barendregt Variable Convention: "Choose a representative parse tree whose bound variables are *fresh*, i.e mutually distinct and distinct from any free variables in the current context "

Motivation

Implicit assumption: All constructions and predicates and proofs are independent of the names chosen for bound variables.

Motivation

Some standard sentences when doing proofs about ASTs

"We identify terms up to α -equivalence, i.e. $\lambda x.x = \lambda y.y$ "

Barendregt Variable Convention: "Choose a representative parse tree whose bound variables are *fresh*, i.e mutually distinct and distinct from any free variables in the current context "

Motivation

Implicit assumption: All constructions and predicates and proofs are independent of the names chosen for bound variables.

Motivation Outline

Examples

$$x[y := t'] = if \ x = y \ then \ t' \ else \ x$$

 $(t_1 \ t_2)[y := t'] = (t_1[y := t']) (t_2[y := t'])$
 $(\lambda x.t)[y := t'] = \lambda x.t[y := t']) \ where \ x \neq y \ and \ x \notin fv(t')$

Is total when defined over $\Lambda_{/=_\alpha}$ but partial when defined over Λ

$$ist \ x = \emptyset$$
$$ist(t_1 \ t_2) = \{t_1, t_2\}$$
$$ist(\lambda x.t) = \{t\}$$

Is inconsistent when defined over $\Lambda_{/=_\alpha}$ but fine over Λ

- * 🗇 * - * 注 * - * 注

Motivation Outline

Outline

- Common definitions of Nominal Logic
 - Atoms
 - Permutations
 - Support
- Differences between various approaches
 - FO-Nominal Logic / FM-HOL
 - HOL-Nominal
- Specifics of Isabelle/HOL-Nominal
 - Features
 - Limitations

Atoms and Permutations Support and Freshness Approaches

Atoms

Definition (Atoms)

We fix some family $(\mathbb{A}_n \mid n \in \mathbb{N})$ of atom sorts where:

$$\forall n, n' : n \neq n' \Rightarrow \mathbb{A}_n \cap \mathbb{A}_{n'} = \emptyset \quad \land \quad \forall n : \mathbb{A}_n \cong \mathbb{N}$$
$$\mathbb{A} = \bigcup \mathbb{A}_n$$

 $n \in \mathbb{N}$

《曰》《圖》《臣》《臣》

3

Atoms and Permutations Support and Freshness Approaches

Atom Permutations and Actions

Definition (Perm)

Let *Perm* be the set of all *finite*, *sort respecting*, **atom-permutations**. Thus (*Perm*, \circ) is a group with unit element ι generated by the set of all transpositions (*a a'*)

Definition (Action)

An **action** of *Perm* on a set X is a function $\cdot \in Perm \times X \rightarrow X$ satisfying:

$$\iota \cdot x = x$$
$$\pi \cdot (\pi' \cdot x) = (\pi \circ \pi') \cdot x$$

▲□ ► ▲ □ ► ▲

Atoms and Permutations Support and Freshness Approaches

Some actions of Perm

Lemma

Given actions of Perm on α and β the following are also actions of Perm.

$$A : \pi \cdot a = \pi a$$

$$bool : \pi \cdot b = b$$

$$unit : \pi \cdot () = ()$$

$$\alpha \times \beta : \pi \cdot (x_1, x_2) = (\pi \cdot x_1, \pi \cdot x_2)$$

$$\alpha \text{ set} : \pi \cdot X = \{\pi \cdot x \mid x \in X\}$$

$$\alpha \rightarrow \beta : \pi \cdot f = \lambda x \cdot \pi \cdot (f(\pi^{-1} \cdot x))$$

$$\alpha \text{ list} : \pi \cdot [] = [] \text{ and } \pi \cdot (x :: t) = (\pi \cdot x) :: (\pi \cdot t)$$

A □ > A □ > A

Atoms and Permutations Support and Freshness Approaches

Some actions of Perm

Lemma

Given actions of Perm on α and β the following are also actions of Perm.

$$\mathbb{A} : \pi \cdot a = \pi a$$

$$bool : \pi \cdot b = b$$

$$unit : \pi \cdot () = ()$$

$$\alpha \times \beta : \pi \cdot (x_1, x_2) = (\pi \cdot x_1, \pi \cdot x_2)$$

$$\alpha \text{ set } : \pi \cdot X = \{\pi \cdot x \mid x \in X\}$$

$$\alpha \rightarrow \beta : \pi \cdot (f x) = (\pi \cdot f) (\pi \cdot x)$$

$$\alpha \text{ list } : \pi \cdot [] = [] \text{ and } \pi \cdot (x :: t) = (\pi \cdot x) :: (\pi \cdot t)$$

▲ □ ▶ ▲ □ ▶ ▲

Atoms and Permutations Support and Freshness Approaches

Example - λ -calculus

$$x \in \mathbb{A}_0$$

$$t ::= x \mid t t \mid \lambda x.t$$

$$\pi \cdot x = \pi x$$

 $\pi \cdot (s t) = (\pi \cdot s) (\pi \cdot t)$
 $\pi \cdot (\lambda x.t) = \lambda (\pi \cdot x).\pi \cdot t$

<ロ> <同> <同> < 回> < 回>

æ

Atoms and Permutations Support and Freshness Approaches

Support and Freshness

Definition (Support)

The support of x is defined as:

$$\mathsf{supp}(x) \equiv \{a \mid \mathsf{infinite}\{b \mid (a b) \cdot x \neq x\}\}$$

Definition (Freshness)

 $a \ \sharp \ x \equiv a \notin supp(x)$

(日) (同) (三) (三)

э

Atoms and Permutations Support and Freshness Approaches

Example - λ -calculus

$$supp(x) \equiv \{a \mid infinite\{b \mid (a b) \cdot x \neq x\}\}$$

$$\pi \cdot x = \pi x$$

 $\pi \cdot (s t) = (\pi \cdot s) (\pi \cdot t)$
 $\pi \cdot (\lambda x.t) = \lambda (\pi \cdot x).\pi \cdot t$

$$supp(x) = \{x\}$$

$$supp(s t) = supp(s) \cup supp(t)$$

$$supp(\lambda x.t) = supp(t) \cup \{x\} \text{ for } \Lambda$$

<ロ> <同> <同> < 回> < 回>

æ

Atoms and Permutations Support and Freshness Approaches

Example - λ -calculus

$$supp(x) \equiv \{a \mid infinite\{b \mid (a b) \cdot x \neq x\}\}$$

$$\pi \cdot x = \pi x$$
$$\pi \cdot (s t) = (\pi \cdot s) (\pi \cdot t)$$
$$\pi \cdot (\lambda x.t) = \lambda (\pi \cdot x).\pi \cdot t$$

$$supp(x) = \{x\}$$

$$supp(s t) = supp(s) \cup supp(t)$$

$$supp(\lambda x.t) = supp(t) - \{x\} \text{ for } \Lambda_{/=\alpha}$$

イロン イロン イヨン イヨン

æ

Atoms and Permutations Support and Freshness Approaches

Support and Freshness

Definition (Supports)

S supports $x \equiv \forall a, a' \notin S : (a a') \cdot x = x$

Lemma

• finite(supp(x)) $\Rightarrow \exists a : a \ \sharp x$

•
$$\forall a, a' : a \ \sharp x \land a' \ \sharp x \Rightarrow (a \ a') \cdot x = x$$

 \Rightarrow supp(x) supports x

• finite $S \land S$ supports $x \Rightarrow \text{supp}(x) \subseteq S$

イロン イボン イヨン イヨン

Atoms and Permutations Support and Freshness Approaches

Support and Freshness

Definition (Supports)

S supports $x \equiv \forall a, a' \notin S : (a a') \cdot x = x$

Lemma

• finite(supp(x)) $\Rightarrow \exists a : a \ \sharp x$

•
$$\forall a, a' : a \ \sharp \ x \land a' \ \sharp \ x \Rightarrow (a \ a') \cdot x = x$$

 \Rightarrow supp(x) supports x

• S supports $x \neq supp(x) \subseteq S$

イロン イボン イヨン イヨン

Atoms and Permutations Support and Freshness Approaches

Example Support

Want to show: S supports $x \neq supp(x) \subseteq S$ Remember:

$$\forall n : \mathbb{A}_n \cong \mathbb{N}$$

Consider some $\mathbb{A}_n = EVEN \uplus ODD$ using the isomorphism to \mathbb{N}

We have ODD supports EVEN

We also have $supp(EVEN) = A_n$

Thus *ODD* supports *EVEN* but supp $(EVEN) = \mathbb{A}_n \not\subseteq ODD$

Atoms and Permutations Support and Freshness Approaches

Example Support

Want to show: S supports $x \neq supp(x) \subseteq S$ Remember:

S supports
$$x \equiv \forall a, a' \notin S : (a a') \cdot x = x$$

Consider some $\mathbb{A}_n = EVEN \uplus ODD$ using the isomorphism to \mathbb{N}

We have ODD supports EVEN

We also have $supp(EVEN) = A_n$

Thus *ODD* supports *EVEN* but supp $(EVEN) = \mathbb{A}_n \not\subseteq ODD$

Atoms and Permutations Support and Freshness Approaches

Example Support

Want to show: S supports $x \neq supp(x) \subseteq S$ Remember:

$$\mathsf{supp}(z) \equiv \{a \mid \mathsf{infinite}\{b \mid (a \, b) \cdot z \neq z\}\}$$

Consider some $\mathbb{A}_n = EVEN \uplus ODD$ using the isomorphism to \mathbb{N}

We have ODD supports EVEN

We also have $supp(EVEN) = \mathbb{A}_n$

Thus *ODD* supports *EVEN* but supp $(EVEN) = \mathbb{A}_n \not\subseteq ODD$

Atoms and Permutations Support and Freshness Approaches

Example Support

Want to show: S supports $x \neq supp(x) \subseteq S$ Remember:

$$\mathsf{supp}(z) \equiv \{a \mid \mathsf{infinite}\{b \mid (a \, b) \cdot z \neq z\}\}$$

Consider some $\mathbb{A}_n = EVEN \uplus ODD$ using the isomorphism to \mathbb{N}

We have ODD supports EVEN

We also have $supp(EVEN) = \mathbb{A}_n$

Thus *ODD* supports *EVEN* but supp $(EVEN) = \mathbb{A}_n \not\subseteq ODD$

Atoms and Permutations Support and Freshness Approaches

Nominal Sets

Definition

A nominal set is a set X together with an action of Perm such that

 $\forall x \in X : finite(supp x))$

Lemma

Given nominal sets α and β then α list, $\alpha \times \beta$, \mathbb{A} , bool and unit are also nominal sets using the actions defined previously

A (1) > A (2) > A

Atoms and Permutations Support and Freshness Approaches

Approaches

There are (at least) two approaches to dealing with finite support

- Build a new logic and axiomatize everything to have finite support
 - Nominal Logic: A First Order Theory of Names and Binding [Pitts 2001]
 - FM-HOL, A Higher Order Theory of Names [Gabbay 2002]
 - Models in the FM set theory
- Work in ordinary HOL and prove finite support whenever needed.
 - Alpha Structural Recursion and Induction [Pitts 2006]
 - Nominal Techniques in Isabelle/HOL [Urban 2007]

< ロ > < 同 > < 三 > < 三

Introduction Atoms and Support and Approaches

Approaches

Pitts' axioms for FO-Nominal Logic include equivariance:

$$(\forall a, a' : A)(\forall \vec{x} : \vec{S}) (a a') \cdot f(\vec{x}) = f((a a') \cdot \vec{x})$$
$$(\forall a, a' : A)(\forall \vec{x} : \vec{S}) R(\vec{x}) \Rightarrow R((a a') \cdot \vec{x})$$

Theorem (Finite Support Principle)

Any function or relation that is defined from finitely supported functions and relations using higher-order logic is itself finitely supported.

Atoms and Permutations Support and Freshness Approaches

Approaches

There are (at least) two approaches to dealing with finite support

- Build a new logic and axiomatize everything to have finite support
 - Nominal Logic: A First Order Theory of Names and Binding [Pitts 2001]
 - FM-HOL, A Higher Order Theory of Names [Gabbay 2002]
 - Models in the FM set theory
- Work in ordinary HOL and prove finite support whenever needed.
 - Alpha Structural Recursion and Induction [Pitts 2006]
 - Nominal Techniques in Isabelle/HOL [Urban 2007]

< ロ > < 同 > < 三 > < 三

Atoms and Permutations Support and Freshness Approaches

Approaches

There is no finitely supported function $\mathit{choose}:(\mathbb{A}\to_{\mathit{fs}}\mathit{bool})\to\mathbb{A}$ satisfying

 $\exists a.f(a) \Rightarrow f(choose(f))$

(日) (同) (三) (三)

э

Atoms and Permutations Support and Freshness Approaches

Approaches

There are (at least) two approaches to dealing with finite support

- Build a new logic and axiomatize everything to have finite support
 - Nominal Logic: A First Order Theory of Names and Binding [Pitts 2001]
 - FM-HOL, A Higher Order Theory of Names [Gabbay 2002]
 - Models in the FM set theory
- Work in ordinary HOL and prove finite support whenever needed.
 - Alpha Structural Recursion and Induction [Pitts 2006]
 - Nominal Techniques in Isabelle/HOL [Urban 2007]

< ロ > < 同 > < 三 > < 三

Type Classes Nominal Datatypes Strong Induction

HOL-Nominal

- Work in ordinary higher-order logic
- Make only definitional extensions to HOL
 - \Rightarrow no soundness argument required
- Compatible with choice
- Implementation provides nominal_datatype declaration with
 - Built in α -equivalence
 - Permutation operation finite support
 - Strong induction principles
 - Primitive recursion operators with freshness conditions

Type Classes Nominal Datatypes Strong Induction

Type Classes and Finite Support

Assume we have: atom_decl name

HOL-Nominal provides ...

- a type class pt_name of permutation types
 types with an action of perm.
- a **type class** fs_name of finitely supported types - representing nominal sets.
- **instance declarations** of all types obtainable by the lemmas above including types declared by nominal_datatype

Type Classes Nominal Datatypes Strong Induction

Nominal Datatypes

atom_decl name
nominal_datatype lam =
 Var "name"
 App "lam" "lam"
 Lam "<<name>>lam"

(日) (同) (三) (三)

э

Type Classes Nominal Datatypes Strong Induction

Nominal Datatypes

atom_decl name
datatype plam =
 PVar "name"
 PApp "plam" "plam"
 PLam "name => plam option"

Restrict to:

 $[a].t \equiv \lambda b.if \ a = b \ then \ Some(t)$ else if $b \ \sharp \ t \ then \ Some((a \ b) \cdot t) \ else \ None$

- 4 同 2 4 日 2 4 日 2

Type Classes Nominal Datatypes Strong Induction

Nominal Datatypes

```
atom_decl name
datatype plam =
    PVar "name"
    PApp "plam" "plam"
    PLam "name => plam option"
```

Restrict to:

$$[a].t \equiv \lambda b.if \ a = b \ then \ Some(t)$$

else if $b \ \sharp \ t \ then \ Some((a \ b) \cdot t) \ else \ None$

representing α -equivalence classes

・ 同 ト ・ ヨ ト ・ ヨ ト

Type Classes Nominal Datatypes Strong Induction

Nominal Datatypes

Restrict to:

$$[a].t \equiv \lambda b.if \ a = b \ then \ Some(t)$$

else if $b \ \sharp \ t \ then \ Some((a \ b) \cdot t) \ else \ None$
$$[a].s = [b].t \iff a = b \land s = t \quad \lor \quad a \neq b \land s = (a \ b) \cdot t \land a \ \sharp \ t$$

<ロ> <同> <同> < 回> < 回>

æ

Type Classes Nominal Datatypes Strong Induction

Strong Induction

The nominal_datatype declaration provides:

$$\forall c \ a. \ P \ (Var \ a) \ c$$
$$\forall c \ s \ t. \ (\forall d.P \ s \ d) \land (\forall d.P \ t \ d) \Rightarrow P \ (App \ s \ t) \ c$$
$$\forall c \ a \ t. \ a \ \sharp \ c \land (\forall d.P \ t \ d) \Rightarrow P \ (Lam \ a \ t) \ c$$

P t c

where a :: name, s, t :: lam and $c :: \alpha :: fs_name$

Common instantiation: P is the theorem to prove with all free variables (except t) abstracted into c

A (1) > A (1) > A

Introduction Type Classes Atoms, Permutations, and Support HOL-Nominal Strong Induction

Strong Induction

The nominal_datatype declaration provides:

$$\forall c \ a. \ P \ (Var \ a) \ c \\ \forall c \ s \ t. \ (\forall d.P \ s \ d) \land (\forall d.P \ t \ d) \Rightarrow P \ (App \ s \ t) \ c \\ \forall c \ a \ t. \ a \ \sharp \ c \land (\forall d.P \ t \ d) \Rightarrow P \ (Lam \ a \ t) \ c \\ \end{cases}$$

P t c

where a :: name, s, t :: lam and $c :: \alpha :: fs_name$

A (1) > A (1) > A

Type Classes Nominal Datatypes Strong Induction

Restrictions

- no function types in nominal_datatype declarations
- only one type of atom abstraction is allowed
- no nested recursion has to be unwinded "by hand"
- no support for non-primitive recursion one needs to prove pattern completeness, functionality, and termination "by hand"

- 4 同 2 4 日 2 4 日 2

Type Classes Nominal Datatypes Strong Induction

References

- C. Urban, Nominal Techniques in Isabelle/HOL, Journal of Automatic Reasoning, Vol. 40(4), pap: 327-356, 2008
- A. Pitts, Nominal Logic: A First Order Theory of Names and Binding, LNCS Vol. 2215, pp: 219-242, Springer Verlag, 2001
- A. Pitts Alpha-Structural Recursion and Induction. Journal of the ACM, Volume 53, Issue 3, pp: 459 - 506, 2006

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Introduction Type Classes Atoms, Permutations, and Support Nominal Datatypes HOL-Nominal Strong Induction

Thank You!

- * @ * * 注 * * 注 *

æ

Type Classes Nominal Datatypes Strong Induction

Example - Weakening

Weakening :
$$\Gamma \vdash [t]_{\alpha} : \tau \Rightarrow \forall a' \notin \text{dom } \Gamma. \ \Gamma, a' : \tau' \vdash [t]_{\alpha} : \tau$$

Proof by 'rule induction' - case: $\frac{\Gamma, a: \tau_1 \vdash [t]_{\alpha}: \tau_2 \qquad a \notin \operatorname{dom} \Gamma}{\Gamma \vdash [\lambda a.t]_{\alpha}: \tau_1 \to \tau_2}$

Given weakening on premise Γ , $a : \tau_1 \vdash [t]_{\alpha} : \tau_2$ show:

For all
$$a' \notin \text{dom } \Gamma$$
 we have $\Gamma, a' : \tau' \vdash [\lambda a.t]_{\alpha} : \tau_1 \rightarrow \tau_2$

Problematic case a = a': Cannot weaken the premise to $\Gamma, a: \tau_1, a': \tau' \vdash [t]_{\alpha}: \tau_2$ without renaming beforehand.

Need equivariance of the typing relation

マロト イラト イラト