
Introduction
Atoms, Permutations, and Support

HOL-Nominal

Nominal Logic and its Isabelle Incarnation

Christian Doczkal

Advisor: Jan Schwinghammer

November 28, 2008

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Motivation
Outline

Motivation

We thank T. Thacher Robinson for showing us on August 19, 1962
by a counterexample the existence of an error in our handling of
bound variables.

— S. C. Kleene

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Motivation
Outline

Motivation

Some standard sentences when doing proofs about ASTs

“We identify terms up to α-equivalence, i.e. λx .x = λy .y”

Barendregt Variable Convention: “Choose a representative parse
tree whose bound variables are fresh, i.e mutually distinct and
distinct from any free variables in the current context ”

Implicit assumption: All constructions and predicates and proofs

are independent of the names chosen for bound variables.

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Motivation
Outline

Motivation

Some standard sentences when doing proofs about ASTs

“We identify terms up to α-equivalence, i.e. λx .x = λy .y”

Barendregt Variable Convention: “Choose a representative parse
tree whose bound variables are fresh, i.e mutually distinct and
distinct from any free variables in the current context ”

Implicit assumption: All constructions and predicates and proofs

are independent of the names chosen for bound variables.

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Motivation
Outline

Examples

x [y := t ′] = if x = y then t ′ else x

(t1 t2)[y := t ′] = (t1[y := t ′]) (t2[y := t ′])

(λx .t)[y := t ′] = λx .t[y := t ′]) where x 6= y and x /∈ fv(t ′)

Is total when defined over Λ/=α
but partial when defined over Λ

ist x = ∅

ist(t1 t2) = {t1, t2}

ist(λx .t) = {t}

Is inconsistent when defined over Λ/=α
but fine over Λ

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Motivation
Outline

Outline

Common definitions of Nominal Logic

Atoms
Permutations
Support

Differences between various approaches

FO-Nominal Logic / FM-HOL
HOL-Nominal

Specifics of Isabelle/HOL-Nominal

Features
Limitations

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Atoms

Definition (Atoms)

We fix some family (An | n ∈ N) of atom sorts where:

∀n, n′ : n 6= n′ ⇒ An ∩ An′ = ∅ ∧ ∀n : An
∼= N

A =
⋃

n∈N

An

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Atom Permutations and Actions

Definition (Perm)

Let Perm be the set of all finite, sort respecting,
atom-permutations. Thus (Perm, ◦) is a group with unit element
ι generated by the set of all transpositions (a a′)

Definition (Action)

An action of Perm on a set X is a function · ∈ Perm × X → X

satisfying:

ι · x = x

π · (π′ · x) = (π ◦ π′) · x

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Some actions of Perm

Lemma

Given actions of Perm on α and β the following are also actions of

Perm.

A : π · a = π a

bool : π · b = b

unit : π · () = ()

α × β : π · (x1, x2) = (π · x1, π · x2)

α set : π · X = {π · x | x ∈ X}

α → β : π · f = λx .π · (f (π−1 · x))

α list : π · [] = [] and π · (x :: t) = (π · x) :: (π · t)

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Some actions of Perm

Lemma

Given actions of Perm on α and β the following are also actions of

Perm.

A : π · a = π a

bool : π · b = b

unit : π · () = ()

α × β : π · (x1, x2) = (π · x1, π · x2)

α set : π · X = {π · x | x ∈ X}

α → β : π · (f x) = (π · f) (π · x)

α list : π · [] = [] and π · (x :: t) = (π · x) :: (π · t)

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Example - λ-calculus

x ∈ A0

t ::= x | t t | λx .t

π · x = π x

π · (s t) = (π · s) (π · t)

π · (λx .t) = λ(π · x).π · t

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Support and Freshness

Definition (Support)

The support of x is defined as:

supp(x) ≡ {a | infinite{b | (a b) · x 6= x}}

Definition (Freshness)

a ♯ x ≡ a /∈ supp(x)

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Example - λ-calculus

supp(x) ≡ {a | infinite{b | (a b) · x 6= x}}

π · x = π x

π · (s t) = (π · s) (π · t)

π · (λx .t) = λ(π · x).π · t

supp(x) = {x}

supp(s t) = supp(s) ∪ supp(t)

supp(λx .t) = supp(t) ∪ {x} for Λ

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Example - λ-calculus

supp(x) ≡ {a | infinite{b | (a b) · x 6= x}}

π · x = π x

π · (s t) = (π · s) (π · t)

π · (λx .t) = λ(π · x).π · t

supp(x) = {x}

supp(s t) = supp(s) ∪ supp(t)

supp(λx .t) = supp(t) − {x} for Λ/=α

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Support and Freshness

Definition (Supports)

S supports x ≡ ∀a, a′ /∈ S : (a a′) · x = x

Lemma

finite(supp(x)) ⇒ ∃a : a ♯ x

∀a, a′ : a ♯ x ∧ a′ ♯ x ⇒ (a a′) · x = x

⇒ supp(x) supports x

finiteS ∧ S supports x ⇒ supp(x) ⊆ S

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Support and Freshness

Definition (Supports)

S supports x ≡ ∀a, a′ /∈ S : (a a′) · x = x

Lemma

finite(supp(x)) ⇒ ∃a : a ♯ x

∀a, a′ : a ♯ x ∧ a′ ♯ x ⇒ (a a′) · x = x

⇒ supp(x) supports x

S supports x 6⇒ supp(x) ⊆ S

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Example Support

Want to show: S supports x 6⇒ supp(x) ⊆ S

Remember:

∀n : An
∼= N

Consider some An = EVEN ⊎ ODD using the isomorphism to N

We have ODD supports EVEN

We also have supp(EVEN) = An

Thus ODD supports EVEN but supp(EVEN) = An 6⊆ ODD

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Example Support

Want to show: S supports x 6⇒ supp(x) ⊆ S

Remember:

S supports x ≡ ∀a, a′ /∈ S : (a a′) · x = x

Consider some An = EVEN ⊎ ODD using the isomorphism to N

We have ODD supports EVEN

We also have supp(EVEN) = An

Thus ODD supports EVEN but supp(EVEN) = An 6⊆ ODD

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Example Support

Want to show: S supports x 6⇒ supp(x) ⊆ S

Remember:

supp(z) ≡ {a | infinite{b | (a b) · z 6= z}}

Consider some An = EVEN ⊎ ODD using the isomorphism to N

We have ODD supports EVEN

We also have supp(EVEN) = An

Thus ODD supports EVEN but supp(EVEN) = An 6⊆ ODD

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Example Support

Want to show: S supports x 6⇒ supp(x) ⊆ S

Remember:

supp(z) ≡ {a | infinite{b | (a b) · z 6= z}}

Consider some An = EVEN ⊎ ODD using the isomorphism to N

We have ODD supports EVEN

We also have supp(EVEN) = An

Thus ODD supports EVEN but supp(EVEN) = An 6⊆ ODD

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Nominal Sets

Definition

A nominal set is a set X together with an action of Perm such that

∀x ∈ X : finite(supp x))

Lemma

Given nominal sets α and β then α list, α × β, A, bool and unit

are also nominal sets using the actions defined previously

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Approaches

There are (at least) two approaches to dealing with finite support

Build a new logic and axiomatize everything to have finite
support

Nominal Logic: A First Order Theory of Names and Binding
[Pitts 2001]
FM-HOL, A Higher Order Theory of Names [Gabbay 2002]
Models in the FM set theory

Work in ordinary HOL and prove finite support whenever
needed.

Alpha Structural Recursion and Induction [Pitts 2006]
Nominal Techniques in Isabelle/HOL [Urban 2007]

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Approaches

Pitts’ axioms for FO-Nominal Logic include equivariance:

(∀a, a′ : A)(∀~x : ~S) (a a′) · f (~x) = f ((a a′) · ~x)

(∀a, a′ : A)(∀~x : ~S) R(~x) ⇒ R((a a′) · ~x)

Theorem (Finite Support Principle)

Any function or relation that is defined from finitely supported

functions and relations using higher-order logic is itself finitely

supported.

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Approaches

There are (at least) two approaches to dealing with finite support

Build a new logic and axiomatize everything to have finite
support

Nominal Logic: A First Order Theory of Names and Binding
[Pitts 2001]
FM-HOL, A Higher Order Theory of Names [Gabbay 2002]
Models in the FM set theory

Work in ordinary HOL and prove finite support whenever
needed.

Alpha Structural Recursion and Induction [Pitts 2006]
Nominal Techniques in Isabelle/HOL [Urban 2007]

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Approaches

There is no finitely supported function choose : (A →fs bool) → A

satisfying
∃a.f (a) ⇒ f (choose(f))

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Atoms and Permutations
Support and Freshness
Approaches

Approaches

There are (at least) two approaches to dealing with finite support

Build a new logic and axiomatize everything to have finite
support

Nominal Logic: A First Order Theory of Names and Binding
[Pitts 2001]
FM-HOL, A Higher Order Theory of Names [Gabbay 2002]
Models in the FM set theory

Work in ordinary HOL and prove finite support whenever
needed.

Alpha Structural Recursion and Induction [Pitts 2006]
Nominal Techniques in Isabelle/HOL [Urban 2007]

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

HOL-Nominal

Work in ordinary higher-order logic

Make only definitional extensions to HOL

⇒ no soundness argument required

Compatible with choice

Implementation provides nominal_datatype declaration with

Built in α-equivalence
Permutation operation - finite support
Strong induction principles
Primitive recursion operators - with freshness conditions

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Type Classes and Finite Support

Assume we have: atom_decl name

HOL-Nominal provides ...

a type class pt_name of permutation types
- types with an action of perm.

a type class fs_name of finitely supported types
- representing nominal sets.

instance declarations of all types obtainable by the lemmas
above including types declared by nominal_datatype

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Nominal Datatypes

atom_decl name

nominal_datatype lam =

Var "name"

| App "lam" "lam"

| Lam "<<name>>lam"

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Nominal Datatypes

atom_decl name

datatype plam =

PVar "name"

| PApp "plam" "plam"

| PLam "name => plam option"

Restrict to:

[a].t ≡ λb.if a = b then Some(t)

else if b ♯ t then Some((a b) · t) else None

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Nominal Datatypes

atom_decl name

datatype plam =

PVar "name"

| PApp "plam" "plam"

| PLam "name => plam option"

Restrict to:

[a].t ≡ λb.if a = b then Some(t)

else if b ♯ t then Some((a b) · t) else None

representing α-equivalence classes

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Nominal Datatypes

atom_decl name

datatype plam =

PVar "name"

| PApp "plam" "plam"

| PLam "name => plam option"

Restrict to:

[a].t ≡ λb.if a = b then Some(t)

else if b ♯ t then Some((a b) · t) else None

[a].s = [b].t ⇐⇒ a = b∧ s = t ∨ a 6= b∧ s = (a b) · t ∧ a ♯ t

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Strong Induction

The nominal_datatype declaration provides:

∀c a. P (Var a) c

∀c s t. (∀d .P s d) ∧ (∀d .P t d) ⇒ P (App s t) c

∀c a t. a ♯ c ∧ (∀d .P t d) ⇒ P (Lam a t) c

P t c

where a :: name, s, t :: lam and c :: α :: fs name

Common instantiation: P is the theorem to prove with all free
variables (except t) abstracted into c

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Strong Induction

The nominal_datatype declaration provides:

∀c a. P (Var a) c

∀c s t. (∀d .P s d) ∧ (∀d .P t d) ⇒ P (App s t) c

∀c a t. a ♯ c ∧ (∀d .P t d) ⇒ P (Lam a t) c

P t c

where a :: name, s, t :: lam and c :: α :: fs name

proof (nominal_induct t avoiding: x t’

rule: lam.strong_induct)

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Restrictions

no function types in nominal_datatype declarations

only one type of atom abstraction is allowed

no nested recursion - has to be unwinded “by hand”

no support for non-primitive recursion - one needs to prove
pattern completeness, functionality, and termination “by
hand”

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

References

C. Urban, Nominal Techniques in Isabelle/HOL, Journal of
Automatic Reasoning, Vol. 40(4), pap: 327-356, 2008

A. Pitts, Nominal Logic: A First Order Theory of Names and
Binding, LNCS Vol. 2215, pp: 219-242, Springer Verlag, 2001

A. Pitts Alpha-Structural Recursion and Induction. Journal of
the ACM, Volume 53, Issue 3, pp: 459 - 506, 2006

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Thank You!

Christian Doczkal Nominal Logic and its Isabelle Incarnation

Introduction
Atoms, Permutations, and Support

HOL-Nominal

Type Classes
Nominal Datatypes
Strong Induction

Example - Weakening

Weakening : Γ ⊢ [t]α : τ ⇒ ∀a′ /∈ dom Γ. Γ, a′ : τ ′ ⊢ [t]α : τ

Proof by ’rule induction’ - case:
Γ, a : τ1 ⊢ [t]α : τ2 a /∈ dom Γ

Γ ⊢ [λa.t]α : τ1 → τ2

Given weakening on premise Γ, a : τ1 ⊢ [t]α : τ2 show:

For all a′ /∈ dom Γ we have Γ, a′ : τ ′ ⊢ [λa.t]α : τ1 → τ2

Problematic case a = a′ : Cannot weaken the premise to
Γ, a : τ1, a

′ : τ ′ ⊢ [t]α : τ2 without renaming beforehand.

Need equivariance of the typing relation

Christian Doczkal Nominal Logic and its Isabelle Incarnation

	Introduction
	Motivation
	Outline

	Atoms, Permutations, and Support
	Atoms and Permutations
	Support and Freshness
	Approaches

	HOL-Nominal
	Type Classes
	Nominal Datatypes
	Strong Induction

