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We thank T. Thacher Robinson for showing us on August 19, 1962
by a counterexample the existence of an error in our handling of
bound variables.

— S. C. Kleene
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Motivation

Some standard sentences when doing proofs about ASTs

“We identify terms up to α-equivalence, i.e. λx .x = λy .y”

Barendregt Variable Convention: “Choose a representative parse
tree whose bound variables are fresh, i.e mutually distinct and
distinct from any free variables in the current context ”

Implicit assumption: All constructions and predicates and proofs

are independent of the names chosen for bound variables.
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Examples

x [y := t ′] = if x = y then t ′ else x

(t1 t2)[y := t ′] = (t1[y := t ′]) (t2[y := t ′])

(λx .t)[y := t ′] = λx .t[y := t ′]) where x 6= y and x /∈ fv(t ′)

Is total when defined over Λ/=α
but partial when defined over Λ

ist x = ∅

ist(t1 t2) = {t1, t2}

ist(λx .t) = {t}

Is inconsistent when defined over Λ/=α
but fine over Λ
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Common definitions of Nominal Logic

Atoms
Permutations
Support

Differences between various approaches

FO-Nominal Logic / FM-HOL
HOL-Nominal

Specifics of Isabelle/HOL-Nominal

Features
Limitations
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Atoms

Definition (Atoms)

We fix some family (An | n ∈ N) of atom sorts where:

∀n, n′ : n 6= n′ ⇒ An ∩ An′ = ∅ ∧ ∀n : An
∼= N

A =
⋃

n∈N

An
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Atom Permutations and Actions

Definition (Perm)

Let Perm be the set of all finite, sort respecting,
atom-permutations. Thus (Perm, ◦) is a group with unit element
ι generated by the set of all transpositions (a a′)

Definition (Action)

An action of Perm on a set X is a function · ∈ Perm × X → X

satisfying:

ι · x = x

π · (π′ · x) = (π ◦ π′) · x
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Some actions of Perm

Lemma

Given actions of Perm on α and β the following are also actions of

Perm.

A : π · a = π a

bool : π · b = b

unit : π · () = ()

α × β : π · (x1, x2) = (π · x1, π · x2)

α set : π · X = {π · x | x ∈ X}

α → β : π · f = λx .π · (f (π−1 · x))

α list : π · [ ] = [ ] and π · (x :: t) = (π · x) :: (π · t)
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Some actions of Perm

Lemma

Given actions of Perm on α and β the following are also actions of

Perm.

A : π · a = π a

bool : π · b = b

unit : π · () = ()

α × β : π · (x1, x2) = (π · x1, π · x2)

α set : π · X = {π · x | x ∈ X}

α → β : π · (f x) = (π · f ) (π · x)

α list : π · [ ] = [ ] and π · (x :: t) = (π · x) :: (π · t)
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Example - λ-calculus

x ∈ A0

t ::= x | t t | λx .t

π · x = π x

π · (s t) = (π · s) (π · t)

π · (λx .t) = λ(π · x).π · t
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Support and Freshness

Definition (Support)

The support of x is defined as:

supp(x) ≡ {a | infinite{b | (a b) · x 6= x}}

Definition (Freshness)

a ♯ x ≡ a /∈ supp(x)
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Example - λ-calculus

supp(x) ≡ {a | infinite{b | (a b) · x 6= x}}

π · x = π x

π · (s t) = (π · s) (π · t)

π · (λx .t) = λ(π · x).π · t

supp(x) = {x}

supp(s t) = supp(s) ∪ supp(t)

supp(λx .t) = supp(t) ∪ {x} for Λ
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Example - λ-calculus

supp(x) ≡ {a | infinite{b | (a b) · x 6= x}}

π · x = π x

π · (s t) = (π · s) (π · t)

π · (λx .t) = λ(π · x).π · t

supp(x) = {x}

supp(s t) = supp(s) ∪ supp(t)

supp(λx .t) = supp(t) − {x} for Λ/=α
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Support and Freshness

Definition (Supports)

S supports x ≡ ∀a, a′ /∈ S : (a a′) · x = x

Lemma

finite(supp(x)) ⇒ ∃a : a ♯ x

∀a, a′ : a ♯ x ∧ a′ ♯ x ⇒ (a a′) · x = x

⇒ supp(x) supports x

finiteS ∧ S supports x ⇒ supp(x) ⊆ S
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Support and Freshness

Definition (Supports)

S supports x ≡ ∀a, a′ /∈ S : (a a′) · x = x

Lemma

finite(supp(x)) ⇒ ∃a : a ♯ x

∀a, a′ : a ♯ x ∧ a′ ♯ x ⇒ (a a′) · x = x

⇒ supp(x) supports x

S supports x 6⇒ supp(x) ⊆ S
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Example Support

Want to show: S supports x 6⇒ supp(x) ⊆ S

Remember:

∀n : An
∼= N

Consider some An = EVEN ⊎ ODD using the isomorphism to N

We have ODD supports EVEN

We also have supp(EVEN) = An

Thus ODD supports EVEN but supp(EVEN) = An 6⊆ ODD
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Example Support

Want to show: S supports x 6⇒ supp(x) ⊆ S

Remember:

supp(z) ≡ {a | infinite{b | (a b) · z 6= z}}

Consider some An = EVEN ⊎ ODD using the isomorphism to N
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Nominal Sets

Definition

A nominal set is a set X together with an action of Perm such that

∀x ∈ X : finite(supp x))

Lemma

Given nominal sets α and β then α list, α × β, A, bool and unit

are also nominal sets using the actions defined previously
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Approaches

There are (at least) two approaches to dealing with finite support

Build a new logic and axiomatize everything to have finite
support

Nominal Logic: A First Order Theory of Names and Binding
[Pitts 2001]
FM-HOL, A Higher Order Theory of Names [Gabbay 2002]
Models in the FM set theory

Work in ordinary HOL and prove finite support whenever
needed.

Alpha Structural Recursion and Induction [Pitts 2006]
Nominal Techniques in Isabelle/HOL [Urban 2007]
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Approaches

Pitts’ axioms for FO-Nominal Logic include equivariance:

(∀a, a′ : A)(∀~x : ~S) (a a′) · f (~x) = f ((a a′) · ~x)

(∀a, a′ : A)(∀~x : ~S) R(~x) ⇒ R((a a′) · ~x)

Theorem (Finite Support Principle)

Any function or relation that is defined from finitely supported

functions and relations using higher-order logic is itself finitely

supported.
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Approaches

There is no finitely supported function choose : (A →fs bool) → A

satisfying
∃a.f (a) ⇒ f (choose(f ))
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HOL-Nominal

Work in ordinary higher-order logic

Make only definitional extensions to HOL

⇒ no soundness argument required

Compatible with choice

Implementation provides nominal_datatype declaration with

Built in α-equivalence
Permutation operation - finite support
Strong induction principles
Primitive recursion operators - with freshness conditions
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Type Classes and Finite Support

Assume we have: atom_decl name

HOL-Nominal provides ...

a type class pt_name of permutation types
- types with an action of perm.

a type class fs_name of finitely supported types
- representing nominal sets.

instance declarations of all types obtainable by the lemmas
above including types declared by nominal_datatype
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Nominal Datatypes

atom_decl name

nominal_datatype lam =

Var "name"

| App "lam" "lam"

| Lam "<<name>>lam"
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Nominal Datatypes

atom_decl name

datatype plam =

PVar "name"

| PApp "plam" "plam"

| PLam "name => plam option"

Restrict to:

[a].t ≡ λb.if a = b then Some(t)

else if b ♯ t then Some((a b) · t) else None
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Nominal Datatypes

atom_decl name

datatype plam =

PVar "name"

| PApp "plam" "plam"

| PLam "name => plam option"

Restrict to:

[a].t ≡ λb.if a = b then Some(t)

else if b ♯ t then Some((a b) · t) else None

representing α-equivalence classes
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Nominal Datatypes

atom_decl name

datatype plam =

PVar "name"

| PApp "plam" "plam"

| PLam "name => plam option"

Restrict to:

[a].t ≡ λb.if a = b then Some(t)

else if b ♯ t then Some((a b) · t) else None

[a].s = [b].t ⇐⇒ a = b∧ s = t ∨ a 6= b∧ s = (a b) · t ∧ a ♯ t
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Strong Induction

The nominal_datatype declaration provides:

∀c a. P (Var a) c

∀c s t. (∀d .P s d) ∧ (∀d .P t d) ⇒ P (App s t) c

∀c a t. a ♯ c ∧ (∀d .P t d) ⇒ P (Lam a t) c

P t c

where a :: name, s, t :: lam and c :: α :: fs name

Common instantiation: P is the theorem to prove with all free
variables (except t) abstracted into c
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Strong Induction

The nominal_datatype declaration provides:

∀c a. P (Var a) c

∀c s t. (∀d .P s d) ∧ (∀d .P t d) ⇒ P (App s t) c

∀c a t. a ♯ c ∧ (∀d .P t d) ⇒ P (Lam a t) c

P t c

where a :: name, s, t :: lam and c :: α :: fs name

proof (nominal_induct t avoiding: x t’

rule: lam.strong_induct)
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Restrictions

no function types in nominal_datatype declarations

only one type of atom abstraction is allowed

no nested recursion - has to be unwinded “by hand”

no support for non-primitive recursion - one needs to prove
pattern completeness, functionality, and termination “by
hand”
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Thank You!
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Example - Weakening

Weakening : Γ ⊢ [t]α : τ ⇒ ∀a′ /∈ dom Γ. Γ, a′ : τ ′ ⊢ [t]α : τ

Proof by ’rule induction’ - case:
Γ, a : τ1 ⊢ [t]α : τ2 a /∈ dom Γ

Γ ⊢ [λa.t]α : τ1 → τ2

Given weakening on premise Γ, a : τ1 ⊢ [t]α : τ2 show:

For all a′ /∈ dom Γ we have Γ, a′ : τ ′ ⊢ [λa.t]α : τ1 → τ2

Problematic case a = a′ : Cannot weaken the premise to
Γ, a : τ1, a

′ : τ ′ ⊢ [t]α : τ2 without renaming beforehand.

Need equivariance of the typing relation
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