
The strong invariance thesis for a λ-calculus
Yannick Forster
Saarland University

forster@ps.uni-saarland.de

Fabian Kunze
Saarland University

Max Planck Institute for Informatics
fkunze@mpi-inf.mpg.de

Marc Roth
Saarland University

Cluster of Excellence (MMCI)
mroth@mmci.uni-saarland.de

Abstract
�e model of computation most commonly used in the areas of complexity
and algorithm theory is Turing machines. Time and space measure for
algorithms are thus de�ned via the running time and space consumption
of a Turing machine. However, Turing machines are notoriously hard and
di�cult to reason about, and the de�nitions are rarely used in a rigorous
way.

�e (strong) invariance thesis states that all reasonable models of compu-
tation also agree, to some extent, in their notions of complexity: ‘Reasonable’
machines can simulate each other within a polynomially bounded overhead
in time and a constant-factor overhead in space.”

We prove the invariance thesis between a call-by-value λ-calculus and
Turing machines. We are currently formalising the proof in the proof
assistant Coq.

We propose a talk on ongoing work concerning the simulation
of a λ-calculus with Turing machines, establishing the invariance
thesis [7] for our kind of λ-calculus. �e weak invariance thesis,
only concering the time of the simulation, has been established
for a weak λ-calculus by Dal Lago and Martini [3] and the full
λ-calculus by Acca�oli and Dal Lago[1]. We base our studies on a
variant of the weak λ-calculus [3]. We describe two interpretation
strategies that are both on their own not su�cient to prove the
strong invariance thesis, before combining them into a su�cient
strategy.

While we currently formalise our work, for this talk we will
focus on an informal presentation of the interpretation strategies,
introducing the, to the best of our knowledge, �rst proof of the
strong invariance thesis for any kind of λ-calculus. We hope that
this enables us to formalise results in the area of complexity theory,
relying on both the simple measures and powerful veri�cation
techniques available for our calculus.

1 Weak call-by-value λ-calculus L
We use a variant of Dal Lago and Martini’s calculus [3] we call L,
where we only allow abstraction as values:

(λx .s)(λy.t) � s[x := λy.t]
s � s ′

st � s ′t

t � t ′

st � st ′

In L, the only β-redexes are applications of abstractions and no
redexes occur under binders. Reduction for L is uniformly con�uent,
making every reduction path to a normal form have the same length.
�e calculus was formalised as a computational model in order to
analyse computability theory [5].

We de�ne the time-consumption of a closed L-term as the num-
ber of steps it takes to evaluate to a normal form. I.e. if

s = s0 � s1 � . . . sk = v

for a term s and an abstraction v , then

Time(s) := k .

Note that this de�nition is well-formed because the number of steps
to a normal forms does not depend on the concrete reduction path.

�is di�ers from an approach where the size of β-redexes is
incorporated into the cost measure [3]. By our de�nition we gain

a simpler measure, enabling future formalisations of complexity
theory.

We de�ne the space consumption of a closed L-term as the size
of the biggest intermediate term occuring in any reduction to the
normal form:

Space(s) := max
{si |s�∗si }

|si |

with |x | = de Bruijn index of x , |st | = 1 + |s | + |t | , |λx .s | = 1 + |s |.
Note that this does not work for sub-linear computations, so all
further results have to be read as excluding sub-linearity. Our space
measure may result in a larger space consumption than needed in
realistic implementations that use structure sharing. �is allows
for the in-principle very naive simulation described in Section 3.

2 Simulating Turing machines
�e simulation of Turing machines in L is the easier part. Similar
to Dal Lago and Martini, we use Sco�-encodings and a �xed-point
combinator to program in L.

Formally, we de�ne the type of Turing machines with n addi-
tional tapes over alphabet Σ as a type consisting of

• a �nite type of states Q
• a transition function δ :

Q × Σn+1 → Q × Σn+1 ×
{L,N ,R}

• a start state s : Q
• a halting function Q → B

and follow Asperti and Riccio�i [2] in the de�nition of the semantics
by looping the transition function on the initial con�guration (con-
sisting of the start state and the input tape) until a halting state is
reached.

We have a formalisation in Coq [8] of the functional correctness
of a simulation of Turing machines in L, which is very similar to
the one presented in [3].

3 Simulating L with a constant-factor overhead
in space

�e most straightforward way of simulating L is as one would
on paper. To do so, we follow Dal Lago and Martini and encode
the de Bruijn representation of L-terms by a pre�x notation with
the tokens @ (to denote applications), λ (for abstractions), . and |
(for numbers). We encode positions of a subterm in a term by
strings over the alphabet {@L ,@R , λ}. For example, the term
(λxy.xy)(λx .x) has de Bruijn representation (λ10)(λ0), resulting
in the encoding @λλ@ . | . λ.. �e position of 1 in this term is
@Lλλ@L (i.e. it is on the le� side of an application, below two
lambdas, on the le� side of the application below the lambdas).

To evaluate a single (le�most) reduction step s � s ′, the inter-
preter uses 5 additional tapes (pre, funct, arg, post, position) and
proceeds as follows

· · ·︸︷︷︸
pre

@λ · · ·︸︷︷︸
funct

λ · · ·︸︷︷︸
arg

· · ·︸︷︷︸
post

1. Find the �rst β-redex,
• copy to pre until @λ is read

• copy next complete term to funct (and remember its
position on the position tape)

• if the next token is λ, copy the next term to arg and
remaining tokens to post

• otherwise, move funct onto pre and start from begin-
ning

2. copy funct to pre, replacing bound variables with arg
3. copy post to pre

A�erwards, the content of pre contains s ′ and can be copied
to the main working tape, and the process iterated until the �rst
symbol is a λ.

�e commonly known problem when de�ning the time measure
for terms of λ-calculi is that a term can have multiple occurences
of a variable, making the substitution-based simulation of k steps
potentially exponential in k . �e church encoding of 2, namely
2̄ = λxy.x(xy), can double the size of a term in one step:

2̄t � λy.t(ty)

So, with I := λx .x the term

2̄(2̄(· · · (2̄︸ ︷︷ ︸
k times

I) . . .))

normalises in k steps, but takes 2k time when interpreting with
this naive substitution-based approach.

4 Simulating L with a polynomially bounded
overhead in time

�e issue described in the last section also occurs in the imple-
mentation of real programming languages and is circumvented by
implementing closures, replacing the explicit copying of the argu-
ment by a pointer to the argument-term in some kind of storage
structure (e.g. a heap). We have a formalisation of the computa-
tional equivalence proof for L and a very similar λ-calculus with
explicit closures.

�e main idea is that a term consists of a representation part and
a heap. �e representation part can contain pointers to the heap at
the position of variables. For a β-reduction, the argument now has
to be copied to the heap and all variables replaced by a pointer.

�e pointers to a heap with k elements need size O(k), which
means that the iterated process of replacing the variable with a
pointer is possible in polynomial time.

However, this approach has a di�erent problem: the size of
pointers may become too big. To make this clear, let N := (λxy.xx)I .
�en

N(· · · (N︸ ︷︷ ︸
k times

I) . . .) �k (λy.I I)(· · · ((λy.I I)︸ ︷︷ ︸
k times

I) . . .) �2k I

needs 3k entries on the heap (some of them containing heap ad-
dresses), resulting in quadratic space consumption. While assuming
O(k) space for a pointer is overestimated, storing pointers in binary
will still result in non-linear (O(k logk)) space consumption.

5 Simulating L
�e situation for the two described approaches is that for k le�most
reductions of the form s = s0 � s1 � · · · � sk we have:

substitution-based heap-based
time O(

∑
i |si |

2) O(poly(k, |s | , |sk |)
space O(Space(s)) O(poly(|s | ,k))

Note that because |si | can be exponential in k , the time of the
substitution-based interpreter is exponential, but the space con-
sumption has only constant-factor overhead. �e |sk | in the running

time of the heap-based interpreter is needed to unfold the closure
into a plain L term encoding. As encoded booleans have constant
size, this is no problem for decision functions used in complexity
theory.

For some families of terms where the size depends on k , the
factor |s |+k in the space consumption of the heap-based interpreter
leads to a non-linear space overhead, while the time overhead is
polynomially bounded.

�is is su�cient to simulate L with polynomially bounded over-
head in time and to simulate L with constant-factor overhead in
space, but not su�cient to simulate with both constraints ful�lled
at the same time.

However, the problematic cases turn out to be mutually exclusive.
We can thus build an interpreter ful�lling the invariance thesis by
dovetailing the two previous interpreters.

As the number of β-reductions from a term s to a normal form
is not known initially, we execute the following strategy while
iteratively incrementing k : �e substitution-based interpreter is
executed until the space consumption exceeds k2 · (|s | + k) or a
normal form is found. �is space constraint can be checked on the
�y in the given bounds. A�erwards, the heap-based approach is
used on s for exactly k steps. �e process is repeated with increased
k if this did not yield a normal form.

�is results in a Turing-machine interpreter for L with a polyno-
mially bounded overhead in time and a constant-factor overhead
in space, establishing the strong invariance thesis between L and
Turing machines.

6 Formalisation
We already formalised the functional correctness of both simula-
tion approaches, however not as Turing machines, but as simple
end-recursive Coq-functions using lists as stacks. We also have
a functionally correct Turing machine interpreter in L, extracted
from the functions in the de�nition of Turing machines by a generic
Coq-to-L extraction framework [4]. We are currently enriching
the framework by semi-automatic time-complexity. �e following
table gives an overview over the proof size:

spec proof
Functional correctness of L-interpreters 1192 1390
L-extraction framework 1316 610
TM-interpreter (no veri�ed complexity analysis) 388 335

�e largest remaining part is to verify Turing machines executing
the veri�ed algorithms. We are currently investigating whether a
relational approach [2] can be mechanised with methods used for
while-programs by Pous [6] or whether a di�erent approach using
for instance separation logic is more promising.

References
[1] Beniamino Acca�oli and Ugo Dal Lago. (Le�most-outermost) beta reduction is

invariant, indeed. Logical Methods in Computer Science, 12(1), 2016.
[2] Andrea Asperti and Wilmer Riccio�i. A formalization of multi-tape Turing

machines. �eoretical Computer Science, 603:23–42, October 2015.
[3] Ugo Dal Lago and Simone Martini. �e weak lambda calculus as a reasonable

machine. �eor. Comput. Sci., 398(1-3):32–50, 2008.
[4] Yannick Forster and Fabian Kunze. Veri�ed extraction from Coq to a

lambda-calculus. Coq workshop 2016, h�ps://www.ps.uni-saarland.de/∼forster/
coq-workshop-16/ , 2016.

[5] Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as a
model of computation in Coq. unpublished, submi�ed for review, h�ps://www.ps.
uni-saarland.de/extras/L-computability/ , 2017.

[6] Damien Pous. Kleene algebra with tests and coq tools for while programs. In ITP
2013, pages 180–196, 2013.

[7] Cees Slot and Peter van Emde Boas. �e problem of space invariance for sequential
machines. Information and Computation, 77(2):93 – 122, 1988.

[8] �e Coq Proof Assistant. h�p://coq.inria.fr.

https://www.ps.uni-saarland.de/~forster/coq-workshop-16/
https://www.ps.uni-saarland.de/~forster/coq-workshop-16/
https://www.ps.uni-saarland.de/extras/L-computability/
https://www.ps.uni-saarland.de/extras/L-computability/
http://coq.inria.fr

	Abstract
	1 Weak call-by-value -calculus L
	2 Simulating Turing machines
	3 Simulating L with a constant-factor overhead in space
	4 Simulating L with a polynomially bounded overhead in time
	5 Simulating L
	6 Formalisation
	References

