The strong invariance thesis for a A-calculus

Yannick Forster
Saarland University
forster@ps.uni-saarland.de

Abstract

The model of computation most commonly used in the areas of complexity
and algorithm theory is Turing machines. Time and space measure for
algorithms are thus defined via the running time and space consumption
of a Turing machine. However, Turing machines are notoriously hard and
difficult to reason about, and the definitions are rarely used in a rigorous
way.

The (strong) invariance thesis states that all reasonable models of compu-
tation also agree, to some extent, in their notions of complexity: ‘Reasonable’
machines can simulate each other within a polynomially bounded overhead
in time and a constant-factor overhead in space.”

We prove the invariance thesis between a call-by-value A-calculus and
Turing machines. We are currently formalising the proof in the proof
assistant Coq.

We propose a talk on ongoing work concerning the simulation
of a A-calculus with Turing machines, establishing the invariance
thesis [7] for our kind of A-calculus. The weak invariance thesis,
only concering the time of the simulation, has been established
for a weak A-calculus by Dal Lago and Martini [3] and the full
A-calculus by Accattoli and Dal Lago[1]. We base our studies on a
variant of the weak A-calculus [3]. We describe two interpretation
strategies that are both on their own not sufficient to prove the
strong invariance thesis, before combining them into a sufficient
strategy.

While we currently formalise our work, for this talk we will
focus on an informal presentation of the interpretation strategies,
introducing the, to the best of our knowledge, first proof of the
strong invariance thesis for any kind of A-calculus. We hope that
this enables us to formalise results in the area of complexity theory,
relying on both the simple measures and powerful verification
techniques available for our calculus.

1 Weak call-by-value A-calculus L

We use a variant of Dal Lago and Martini’s calculus [3] we call L,
where we only allow abstraction as values:

s>s’ t>t

(Ax.s)(Ay.t) > s[x := Ay.t] st>s't st > st’

In L, the only f-redexes are applications of abstractions and no
redexes occur under binders. Reduction for L is uniformly confluent,
making every reduction path to a normal form have the same length.
The calculus was formalised as a computational model in order to
analyse computability theory [5].

We define the time-consumption of a closed L-term as the num-
ber of steps it takes to evaluate to a normal form. Le. if

§=S>81>...8k =0
for a term s and an abstraction v, then
Time(s) := k.

Note that this definition is well-formed because the number of steps
to a normal forms does not depend on the concrete reduction path.

This differs from an approach where the size of f-redexes is
incorporated into the cost measure [3]. By our definition we gain

Fabian Kunze
Saarland University
Max Planck Institute for Informatics

fkunze@mpi-inf.mpg.de

Marc Roth
Saarland University
Cluster of Excellence (MMCI)
mroth@mmci.uni-saarland.de

a simpler measure, enabling future formalisations of complexity
theory.

We define the space consumption of a closed L-term as the size
of the biggest intermediate term occuring in any reduction to the
normal form:

Space(s) := max |s;|
{sils>*si}
with |x| = de Bruijn index of x, |st| = 1+ [s| + [t], [Ax.s| = 1 + [s].
Note that this does not work for sub-linear computations, so all
further results have to be read as excluding sub-linearity. Our space
measure may result in a larger space consumption than needed in
realistic implementations that use structure sharing. This allows
for the in-principle very naive simulation described in Section 3.

2 Simulating Turing machines

The simulation of Turing machines in L is the easier part. Similar
to Dal Lago and Martini, we use Scott-encodings and a fixed-point
combinator to program in L.

Formally, we define the type of Turing machines with n addi-
tional tapes over alphabet X as a type consisting of

o a finite type of states Q

e a transition function § :
QXZ”+1—>QXZH+1X
{L,N,R}

e astart states: Q
e a halting function Q — B

and follow Asperti and Ricciotti [2] in the definition of the semantics
by looping the transition function on the initial configuration (con-
sisting of the start state and the input tape) until a halting state is
reached.

We have a formalisation in Coq [8] of the functional correctness
of a simulation of Turing machines in L, which is very similar to
the one presented in [3].

3 Simulating L with a constant-factor overhead
in space
The most straightforward way of simulating L is as one would
on paper. To do so, we follow Dal Lago and Martini and encode
the de Bruijn representation of L-terms by a prefix notation with
the tokens @ (to denote applications), A (for abstractions), > and |
(for numbers). We encode positions of a subterm in a term by
strings over the alphabet {@r, @g,A}. For example, the term
(Axy.xy)(Ax.x) has de Bruijn representation (110)(10), resulting
in the encoding @AA@ » | » A>. The position of 1 in this term is
@1 A@L (i.e. it is on the left side of an application, below two
lambdas, on the left side of the application below the lambdas).
To evaluate a single (leftmost) reduction step s > s’, the inter-
preter uses 5 additional tapes (pre, funct, arg, post, position) and
proceeds as follows

S~ e N
pre funct arg post

1. Find the first f-redex,
e copy to pre until @4 is read

e copy next complete term to funct (and remember its
position on the position tape)
o if the next token is A, copy the next term to arg and
remaining tokens to post
e otherwise, move funct onto pre and start from begin-
ning
2. copy funct to pre, replacing bound variables with arg
3. copy post to pre

Afterwards, the content of pre contains s’ and can be copied
to the main working tape, and the process iterated until the first
symbol is a A.

The commonly known problem when defining the time measure
for terms of A-calculi is that a term can have multiple occurences
of a variable, making the substitution-based simulation of k steps
potentially exponential in k. The church encoding of 2, namely
2 = Axy.x(xy), can double the size of a term in one step:

2t > Ay.t(ty)
So, with I := Ax.x the term

33(---(21)...))
k times

normalises in k steps, but takes 2¥ time when interpreting with
this naive substitution-based approach.

4 Simulating L with a polynomially bounded
overhead in time

The issue described in the last section also occurs in the imple-
mentation of real programming languages and is circumvented by
implementing closures, replacing the explicit copying of the argu-
ment by a pointer to the argument-term in some kind of storage
structure (e.g. a heap). We have a formalisation of the computa-
tional equivalence proof for L and a very similar A-calculus with
explicit closures.

The main idea is that a term consists of a representation part and
a heap. The representation part can contain pointers to the heap at
the position of variables. For a f-reduction, the argument now has
to be copied to the heap and all variables replaced by a pointer.

The pointers to a heap with k elements need size O(k), which
means that the iterated process of replacing the variable with a
pointer is possible in polynomial time.

However, this approach has a different problem: the size of
pointers may become too big. To make this clear, let N := (Axy.xx)I.
Then

N(---(NI)...) 5 Qu.ID(- - ((Ay.IDT)..) =2k 1
—_— - -
k times k times
needs 3k entries on the heap (some of them containing heap ad-
dresses), resulting in quadratic space consumption. While assuming
O(k) space for a pointer is overestimated, storing pointers in binary
will still result in non-linear (O(k log k)) space consumption.

5 Simulating L
The situation for the two described approaches is that for k leftmost
reductions of the form s = sy > s > - - - > s we have:
‘ substitution-based ‘
time 0% Isi®)
space O(Space(s))

heap-based
O(poly(k, |s[, [sk)
O(poly([s|, k)
Note that because |s;| can be exponential in k, the time of the
substitution-based interpreter is exponential, but the space con-
sumption has only constant-factor overhead. The |s | in the running

time of the heap-based interpreter is needed to unfold the closure
into a plain L term encoding. As encoded booleans have constant
size, this is no problem for decision functions used in complexity
theory.

For some families of terms where the size depends on k, the
factor |s|+k in the space consumption of the heap-based interpreter
leads to a non-linear space overhead, while the time overhead is
polynomially bounded.

This is sufficient to simulate L with polynomially bounded over-
head in time and to simulate L with constant-factor overhead in
space, but not sufficient to simulate with both constraints fulfilled
at the same time.

However, the problematic cases turn out to be mutually exclusive.
We can thus build an interpreter fulfilling the invariance thesis by
dovetailing the two previous interpreters.

As the number of f-reductions from a term s to a normal form
is not known initially, we execute the following strategy while
iteratively incrementing k: The substitution-based interpreter is
executed until the space consumption exceeds k? - (|s| + k) or a
normal form is found. This space constraint can be checked on the
fly in the given bounds. Afterwards, the heap-based approach is
used on s for exactly k steps. The process is repeated with increased
k if this did not yield a normal form.

This results in a Turing-machine interpreter for L with a polyno-
mially bounded overhead in time and a constant-factor overhead
in space, establishing the strong invariance thesis between L and
Turing machines.

6 Formalisation

We already formalised the functional correctness of both simula-
tion approaches, however not as Turing machines, but as simple
end-recursive Coq-functions using lists as stacks. We also have
a functionally correct Turing machine interpreter in L, extracted
from the functions in the definition of Turing machines by a generic
Coq-to-L extraction framework [4]. We are currently enriching
the framework by semi-automatic time-complexity. The following
table gives an overview over the proof size:

spec | proof
Functional correctness of L-interpreters | 1192 | 1390

L-extraction framework 1316 610
TM-interpreter (no verified complexity analysis) 388 335

The largest remaining part is to verify Turing machines executing
the verified algorithms. We are currently investigating whether a
relational approach [2] can be mechanised with methods used for
while-programs by Pous [6] or whether a different approach using
for instance separation logic is more promising.

References

[1] Beniamino Accattoli and Ugo Dal Lago. (Leftmost-outermost) beta reduction is
invariant, indeed. Logical Methods in Computer Science, 12(1), 2016.

[2] Andrea Asperti and Wilmer Ricciotti. A formalization of multi-tape Turing
machines. Theoretical Computer Science, 603:23-42, October 2015.

[3] Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable
machine. Theor. Comput. Sci., 398(1-3):32-50, 2008.

[4] Yannick Forster and Fabian Kunze. Verified extraction from Coq to a
lambda-calculus. Coq workshop 2016, https:// www.ps.uni-saarland.de/~forster/
cog-workshop-16/, 2016.

[5] Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as a
model of computation in Coq. unpublished, submitted for review, https://www.ps.
uni-saarland.de/ extras/ L-computability/, 2017.

[6] Damien Pous. Kleene algebra with tests and coq tools for while programs. In ITP
2013, pages 180-196, 2013.

[7] Cees Slot and Peter van Emde Boas. The problem of space invariance for sequential
machines. Information and Computation, 77(2):93 — 122, 1988.

[8] The Coq Proof Assistant. http://coq.inria.fr.

https://www.ps.uni-saarland.de/~forster/coq-workshop-16/
https://www.ps.uni-saarland.de/~forster/coq-workshop-16/
https://www.ps.uni-saarland.de/extras/L-computability/
https://www.ps.uni-saarland.de/extras/L-computability/
http://coq.inria.fr

	Abstract
	1 Weak call-by-value -calculus L
	2 Simulating Turing machines
	3 Simulating L with a constant-factor overhead in space
	4 Simulating L with a polynomially bounded overhead in time
	5 Simulating L
	6 Formalisation
	References

