
ON THE EXPRESSIVE POWER OF EFFECT

HANDLERS AND MONADIC REFLECTION

Yannick Forster
Master’s thesis supvervised by Ohad Kammar and Marcelo Fiore

computer science

saarland
university

Introduction Approach Expressiveness Conclusion

HOW TO INCORPORATE EFFECTS?

computer science

saarland
university

I global store (i.e. references),
I exceptions,
I I/O,
I random,
I nondeterminism,
I or concurrency

2

Introduction Approach Expressiveness Conclusion

AN EXAMPLE

computer science

saarland
university

exception Error
val r = ref 0
fun error () = raise Error

fun test () = (r := 5; error() handle Error => !r)

test() evaluates to?

Why not to 0?

3

Introduction Approach Expressiveness Conclusion

AN EXAMPLE

computer science

saarland
university

exception Error
val r = ref 0
fun error () = raise Error

fun test () = (r := 5; error() handle Error => !r)

test() evaluates to?

Why not to 0?

3

Introduction Approach Expressiveness Conclusion

WOULD BE COOL:

User definable effects on top of a functional language

I Monads
I Algebraic effects
I Delimited control

4

Introduction Approach Expressiveness Conclusion

WOULD BE COOL:

User definable effects on top of a functional language

I Monads
I Algebraic effects
I Delimited control

4

Introduction Approach Expressiveness Conclusion

GOAL

computer science

saarland
university

Compare two existing approaches in their expressiveness
Fine-grained notion needed, because most practical languages
are Turing-complete

More like
“Compare expressiveness of recursion and while-loops”
than like
“Compare expressiveness of Coq and Javascript”

5

Introduction Approach Expressiveness Conclusion

GOAL

computer science

saarland
university

Compare two existing approaches in their expressiveness
Fine-grained notion needed, because most practical languages
are Turing-complete

More like
“Compare expressiveness of recursion and while-loops”
than like
“Compare expressiveness of Coq and Javascript”

5

Introduction Approach Expressiveness Conclusion

APPROACH

computer science

saarland
university

I take a base language (functional, typed, strongly
normalising)

I add each concept to the language
I define denotational semantics to each resulting calculus
I prove denotational semantics to be adequate
I use this to compare expressiveness

6

Introduction Approach Expressiveness Conclusion

TAKE A BASE LANGUAGE

computer science

saarland
university

Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations

7
Levy (1999), Levy (2004)

Introduction Approach Expressiveness Conclusion

TAKE A BASE LANGUAGE

computer science

saarland
university

Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations

7
Levy (1999), Levy (2004)

Introduction Approach Expressiveness Conclusion

TAKE A BASE LANGUAGE

computer science

saarland
university

Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations

7
Levy (1999), Levy (2004)

Introduction Approach Expressiveness Conclusion

TAKE A BASE LANGUAGE

computer science

saarland
university

Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations

7
Levy (1999), Levy (2004)

Introduction Approach Expressiveness Conclusion

TAKE A BASE LANGUAGE

computer science

saarland
university

Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations

7
Levy (1999), Levy (2004)

Introduction Approach Expressiveness Conclusion

ADD EACH CONCEPT

computer science

saarland
university

I Effects and handler calculus λeff

I Monadic reflection calculus λmon

8
Kammar, Lindley, and Oury (2013), Filinski (2010)

Introduction Approach Expressiveness Conclusion

EFFECT HANDLERS

computer science

saarland
university

Exception handlers:

(... (raise e n : B) ...) : C
handle e (n : A) => (exp : C)

Effect handlers:

(... (e n : B) ...) : A
handle e (name : string, k : B -> A) =>
(exp2 : A)

9

Introduction Approach Expressiveness Conclusion

EFFECT HANDLERS

computer science

saarland
university

Exception handlers:

(... (raise e n : B) ...) : C
handle e (n : A) => (exp : C)

Effect handlers:

(... (e n : B) ...) : A
handle e (name : string, k : B -> A) =>
(exp2 : A)

9

Introduction Approach Expressiveness Conclusion

THE CALCULUS λeff

computer science

saarland
university

10

Introduction Approach Expressiveness Conclusion

THE CALCULUS λeff

computer science

saarland
university

10

Introduction Approach Expressiveness Conclusion

THE CALCULUS λeff

computer science

saarland
university

10

Introduction Approach Expressiveness Conclusion

THE CALCULUS λeff

computer science

saarland
university

10

Introduction Approach Expressiveness Conclusion

THE CALCULUS λeff

computer science

saarland
university

10

Introduction Approach Expressiveness Conclusion

PROGRAMMING WITH EFFECT HANDLERS

computer science

saarland
university

raise : string→ FA
try : U{exc:string→0}FA→ UE(string→ FA)→ FA

try{1 + raise "number"}{λs.if s = "number" then 0 else 1}

−→∗ 0

11

Introduction Approach Expressiveness Conclusion

PROGRAMMING WITH EFFECT HANDLERS

computer science

saarland
university

raise : string→ FA
try : U{exc:string→0}FA→ UE(string→ FA)→ FA

try{1 + raise "number"}{λs.if s = "number" then 0 else 1}

−→∗ 0

11

Introduction Approach Expressiveness Conclusion

PROGRAMMING WITH EFFECT HANDLERS

computer science

saarland
university

raise : string→ FA
try : U{exc:string→0}FA→ UE(string→ FA)→ FA

try{1 + raise "number"}{λs.if s = "number" then 0 else 1}

−→∗ 0

11

Introduction Approach Expressiveness Conclusion

PROGRAMMING WITH EFFECT HANDLERS

computer science

saarland
university

raise B λs.let x← exc s (λx.return x) in case0(x)

try B λc h.handle c! with H

where Hreturn B λx.return x and Hexc B λs k.h! s.

12

Introduction Approach Expressiveness Conclusion

MONADIC REFLECTION

computer science

saarland
university

Error monad: TA B A + 1

Reflecion for computations with errors:

M : 1 err−→ A
reifyerr(M) : A + 1

N : A + 1

reflecterr(N) : 1 err−→ A

Effects are ordered with the trivial effect ⊥.

13

Introduction Approach Expressiveness Conclusion

MONADIC REFLECTION

computer science

saarland
university

Error monad: TA B A + 1
Reflecion for computations with errors:

M : 1 err−→ A
reifyerr(M) : A + 1

N : A + 1

reflecterr(N) : 1 err−→ A

Effects are ordered with the trivial effect ⊥.

13

Introduction Approach Expressiveness Conclusion

THE CALCULUS λmon

computer science

saarland
university

14

Introduction Approach Expressiveness Conclusion

THE CALCULUS λmon

computer science

saarland
university

14

Introduction Approach Expressiveness Conclusion

THE CALCULUS λmon

computer science

saarland
university

14

Introduction Approach Expressiveness Conclusion

THE CALCULUS λmon

computer science

saarland
university

14

Introduction Approach Expressiveness Conclusion

THE CALCULUS λmon

computer science

saarland
university

14

Introduction Approach Expressiveness Conclusion

PROGRAMMING WITH MONADIC REFLECTION

computer science

saarland
university

Cex B α+ string
Nex

u B λx.return inj1 x
Nex

b B λx f .let y← x in case(y, x.fx, s.return (inj2 s)))
ex � ⊥ ∼ (α.Cex,Nex

u ,N
ex
b)

raise B λs.µ̂ex(return (inj2 s))
try B λc h.let s← [c]ex in case(s, a.return a, x.hx)

15

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

DENOTATIONAL SEMANTICS

computer science

saarland
university

I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed

16

Introduction Approach Expressiveness Conclusion

ADEQUACY AND SOUNDNESS

computer science

saarland
university

17

Introduction Approach Expressiveness Conclusion

ADEQUACY AND SOUNDNESS

computer science

saarland
university

17

Introduction Approach Expressiveness Conclusion

ADEQUACY PROOFS

computer science

saarland
university

Using logical relations

I By Levy for CBPV

I Contributed for λeff (Hermida’s lifting)
I Contributed for λmon (>>-lifting)

18
Levy (2004), Hermida (1993), Lindley, Stark (2005), Doczkal,
Schwinghammer (2009)

Introduction Approach Expressiveness Conclusion

TYPED MACRO EXPRESSABILITY

computer science

saarland
university

One concept can express another if there is a local translation
function that:

I is homomorphic on the base calculus,
I replaces new syntactic constructs without rearranging the

whole program,
I translates terms ∅ `M : FG such that M −→∗ return V⇐⇒

M ∗return V,
I translates terms ∅ `M : X to terms ∅ `M : X.

19
Felleisen (1990)

Introduction Approach Expressiveness Conclusion

λeff CAN MACRO EXPRESS λmon

computer science

saarland
university

µ̂ε(N)
E
= opε {NE} (λx.return x)

[N]εE = handle NE with HE
ε

for (ε ∼ (Nu,Nb)) ∈ E and

HE
ε B

{
return V 7→ NuEV, opεp f 7→ NbE

p f
}

∪
{

opε′p f 7→ opε′p f
∣∣∣ε 6= ε′ ∈ E

}
leteffect ε � e be (α.C,Nu,Nb) in N

E
= NE,ε∼(Nu,Nb)

20

Introduction Approach Expressiveness Conclusion

FOCUS IN THIS THESIS

computer science

saarland
university

Produce negative results: Prove that no translation exists with
the help of denotational semantics

21

Introduction Approach Expressiveness Conclusion

λmon CAN NOT TYPED MACRO EXPRESS λeff

computer science

saarland
university

I There are only finitely many terms for every type in λmon

I Some types in λeff have countably many observationally
distinguishable terms

I Given a translation λeff → λmon, take the type F1
I F1 has k terms
I F1 has more than k observationally distinguishable terms
I Derive a contradiction

22

Introduction Approach Expressiveness Conclusion

THE BIG PICTURE

computer science

saarland
university

23

Introduction Approach Expressiveness Conclusion

CONTRIBUTION

computer science

saarland
university

I Adequacy proof for the set theoretic model for calculus of
effect handlers λeff

I Adequate denotational semantics for calculus of monadic
reflection λmon

I Definition of (typed) macro expressability
I Proof that λmon is macro expressible in λeff

I Proof that λeff is not macro typed expressible in λmon

24

Introduction Approach Expressiveness Conclusion

FUTURE WORK

computer science

saarland
university

I Show that λmon is not typed macro expressible in λeff;
I extend the type system of λeff to typed macro express λmon;
I do similar comparison for calculus of delimited control

(partially solved).

I Formalise this in Coq?

25

Introduction Approach Expressiveness Conclusion

FUTURE WORK

computer science

saarland
university

I Show that λmon is not typed macro expressible in λeff;
I extend the type system of λeff to typed macro express λmon;
I do similar comparison for calculus of delimited control

(partially solved).

I Formalise this in Coq?

25

Introduction Approach Expressiveness Conclusion

RELATED WORK / BIBLIOGRAPHY

computer science

saarland
university

I Paul Blain Levy. Call-By-Push-Value: A
Functional/Imperative Synthesis, volume 2 of Semantics
Structures in Computation. Springer, 2004.

I Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers
in action. SIGPLAN Not. 48(9):145–158, September 2013.

I Andrzej Filinski. Monads in action. SIGPLAN Not.,
45(1):483–494, January 2010.

I Matthias Felleisen. On the expressive power of
programming languages. In Science of Computer
Programming, pages 134–151. Springer-Verlag, 1990.

26

27

28

29

30

MONAD

computer science

saarland
university

31

ALGEBRA FOR A MONAD T

computer science

saarland
university

A T-algebra for a monad T is a pair C = 〈|C|, c〉where |C| is a set
and c : T |C| → |C| is a function satisfying:

c(return x) = x c(fmap c xs) = c(xs>>= id)

for all x ∈ |C| and xs ∈ T2 |C|. |C| is called the carrier and we call
c the algebra structure.

32

	Introduction
	Approach
	Expressiveness
	Conclusion

