
ON THE EXPRESSIVE POWER OF EFFECT

HANDLERS AND MONADIC REFLECTION

Yannick Forster
Master’s thesis supvervised by Ohad Kammar and Marcelo Fiore

computer science

saarland
university



Introduction Approach Expressiveness Conclusion
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I global store (i.e. references),
I exceptions,
I I/O,
I random,
I nondeterminism,
I or concurrency
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exception Error
val r = ref 0
fun error () = raise Error

fun test () = (r := 5; error() handle Error => !r)

test() evaluates to?

Why not to 0?
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User definable effects on top of a functional language

I Monads
I Algebraic effects
I Delimited control
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Compare two existing approaches in their expressiveness
Fine-grained notion needed, because most practical languages
are Turing-complete

More like
“Compare expressiveness of recursion and while-loops”
than like
“Compare expressiveness of Coq and Javascript”

5



Introduction Approach Expressiveness Conclusion

GOAL

computer science

saarland
university

Compare two existing approaches in their expressiveness
Fine-grained notion needed, because most practical languages
are Turing-complete

More like
“Compare expressiveness of recursion and while-loops”
than like
“Compare expressiveness of Coq and Javascript”

5



Introduction Approach Expressiveness Conclusion

APPROACH
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I take a base language (functional, typed, strongly
normalising)

I add each concept to the language
I define denotational semantics to each resulting calculus
I prove denotational semantics to be adequate
I use this to compare expressiveness
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Call-by-push-value lambda-calculus from Levy

Distinguishes between values and computations

7
Levy (1999), Levy (2004)
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ADD EACH CONCEPT
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I Effects and handler calculus λeff

I Monadic reflection calculus λmon

8
Kammar, Lindley, and Oury (2013), Filinski (2010)
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EFFECT HANDLERS
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Exception handlers:

(... (raise e n : B) ...) : C
handle e (n : A) => (exp : C)

Effect handlers:

(... (e n : B) ...) : A
handle e (name : string, k : B -> A) =>
(exp2 : A)
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PROGRAMMING WITH EFFECT HANDLERS
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raise : string→ FA
try : U{exc:string→0}FA→ UE(string→ FA)→ FA

try{1 + raise "number"}{λs.if s = "number" then 0 else 1}

−→∗ 0
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PROGRAMMING WITH EFFECT HANDLERS
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raise B λs.let x← exc s (λx.return x) in case0(x)

try B λc h.handle c! with H

where Hreturn B λx.return x and Hexc B λs k.h! s.
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MONADIC REFLECTION
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Error monad: TA B A + 1

Reflecion for computations with errors:

M : 1 err−→ A
reifyerr(M) : A + 1

N : A + 1

reflecterr(N) : 1 err−→ A

Effects are ordered with the trivial effect ⊥.
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PROGRAMMING WITH MONADIC REFLECTION
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Cex B α+ string
Nex

u B λx.return inj1 x
Nex

b B λx f .let y← x in case(y, x.fx, s.return (inj2 s)))
ex � ⊥ ∼ (α.Cex,Nex

u ,N
ex
b )

raise B λs.µ̂ex(return (inj2 s))
try B λc h.let s← [c]ex in case(s, a.return a, x.hx)
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DENOTATIONAL SEMANTICS
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I Denotational semantics for CBPV by Levy
I Denotational semantics for λeff by Kammar et al.
I Denotational semantics for λmon contributed
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ADEQUACY AND SOUNDNESS
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ADEQUACY PROOFS
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Using logical relations

I By Levy for CBPV

I Contributed for λeff (Hermida’s lifting)
I Contributed for λmon (>>-lifting)

18
Levy (2004), Hermida (1993), Lindley, Stark (2005), Doczkal,
Schwinghammer (2009)



Introduction Approach Expressiveness Conclusion

TYPED MACRO EXPRESSABILITY
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One concept can express another if there is a local translation
function that:

I is homomorphic on the base calculus,
I replaces new syntactic constructs without rearranging the

whole program,
I translates terms ∅ `M : FG such that M −→∗ return V⇐⇒

M ∗return V,
I translates terms ∅ `M : X to terms ∅ `M : X.

19
Felleisen (1990)
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λeff CAN MACRO EXPRESS λmon
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µ̂ε(N)
E
= opε {NE} (λx.return x)

[N]εE = handle NE with HE
ε

for (ε ∼ (Nu,Nb)) ∈ E and

HE
ε B

{
return V 7→ NuEV, opεp f 7→ NbE

p f
}

∪
{

opε′p f 7→ opε′p f
∣∣∣ε 6= ε′ ∈ E

}
leteffect ε � e be (α.C,Nu,Nb) in N

E
= NE,ε∼(Nu,Nb)
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FOCUS IN THIS THESIS
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Produce negative results: Prove that no translation exists with
the help of denotational semantics
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λmon CAN NOT TYPED MACRO EXPRESS λeff
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I There are only finitely many terms for every type in λmon

I Some types in λeff have countably many observationally
distinguishable terms

I Given a translation λeff → λmon, take the type F1
I F1 has k terms
I F1 has more than k observationally distinguishable terms
I Derive a contradiction
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THE BIG PICTURE
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CONTRIBUTION
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I Adequacy proof for the set theoretic model for calculus of
effect handlers λeff

I Adequate denotational semantics for calculus of monadic
reflection λmon

I Definition of (typed) macro expressability
I Proof that λmon is macro expressible in λeff

I Proof that λeff is not macro typed expressible in λmon
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FUTURE WORK
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I Show that λmon is not typed macro expressible in λeff;
I extend the type system of λeff to typed macro express λmon;
I do similar comparison for calculus of delimited control

(partially solved).

I Formalise this in Coq?
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ALGEBRA FOR A MONAD T
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A T-algebra for a monad T is a pair C = 〈|C|, c〉where |C| is a set
and c : T |C| → |C| is a function satisfying:

c(return x) = x c(fmap c xs) = c(xs>>= id)

for all x ∈ |C| and xs ∈ T2 |C|. |C| is called the carrier and we call
c the algebra structure.

32


	Introduction
	Approach
	Expressiveness
	Conclusion

