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Abstract

The primary goal of this thesis is to give elegant constructions of the natural

numbers, positive rational numbers and finally the real numbers in the proof

assistant Coq. Coq is a widely used proof assistant implementing a program

specification and mathematical higher-level language called Gallina. Gallina is

based on an expressive formal language called the Calculus of Inductive Con-

structions that itself combines both a higher-order logic and a richly-typed func-

tional programming language. Thus Coq provides a platform to define functions

and predicates, to state mathematical theorems and to interactively develop for-

mal proofs of them. To construct the number systems we use Landau’s book

Grundlagen der Analysis as a guide. It contains constructions of the (positive)

rational numbers, the real numbers (based on Dedekind cuts) and the complex

numbers starting from the natural numbers and the Peano axioms.
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1 Introduction

1.1 Motivation

There are two different ways one can deal with number systems: Either giving

axiomatizations of the properties of the numbers or constructing them from

basic principles.

An axiomatization is a set of properties that specifies certain operations for a

special structure. At the end of the 19th century the basic principles of the

natural numbers were axiomatized by Peano [14] and Dedekind. According to

Tarski, Hilbert was the first mathematician who axiomatized the real numbers in

1900 [16].

Instead of giving an axiomatization of a certain number system and assuming

all of the properties one can assume a set of basic principles and prove the

properties of the corresponding axiomatization.

A standard construction of the natural numbers in set theory is to define the

natural numbers as follows:

0,

{0},
{0, {0}},
{0, {0}, {0, {0}}},
...

In a constructive type theory (including inductive types) one can define the natu-

ral numbers as a special inductive type. More precisely, constructive type theory

has a generalization of N in the form of inductive types.

Among the possible ways to construct the real numbers one has

• Cauchy sequences

• Positional expansions

• Dedekind cuts

Landau’s book Grundlagen der Analysis [13] contains constructions of the (posi-

tive) rational numbers, the real numbers (based on Dedekind cuts) and the com-

plex numbers starting from the natural numbers and the Peano axioms. That

1



1 Introduction

is, Landau combines both possibilities to deal with number systems. He uses an

axiomatization of the natural numbers and constructs further number systems.

In about 300 theorems and lemmas he proves the most common properties of

numbers. He was very attentive in his work. However, the underlying set theory

and logic he uses stay implicit. In this thesis we will construct the real numbers

using Landau’s book as a guide.

1.2 Constructions in this Thesis

In this thesis we construct different number systems in Coq and its underlying

Calculus of Constructions based on constructive type theory. As it comes to the

constructions, we will try to follow Landau’s book as close as we can. If it makes

sense to diverge from Landau’s constructions due to additional assumptions or

the underlying inductive structure in Coq, we will mention it explicitly and point

out the reasons why we are doing so. Following Landau, we will mainly consider

Dedekind cuts to construct the real numbers. We have the following sequence

for the construction:

N+ → Fractions → Q+ → R+ → R

From the natural numbers (without 0) we define the set of all fractions as pairs of

natural numbers. After that we define the positive rational numbers as a special

subset of the fractions, namely the reduced fractions. Thereafter we construct

Dedekind cuts representing the positive real numbers and finally we get the real

numbers including zero and negative numbers.

1.2.1 Coq and the Calculus of Inductive Constructions

The Calculus of Inductive Constructions is an expressive formal language com-

bining both a higher-order logic and a richly typed programming language. Coq

is a widely used proof assistant implementing a program specification and math-

ematical higher-level language based on the Calculus of Inductive Constructions.

Thus Coq provides a platform to define functions and predicates, to state math-

ematical theorems and to interactively develop formal proofs of them [1].

In Coq we consider propositions as types. To prove a proposition means

to find a term with the corresponding type. That is, proofs are typed terms.

Coq provides so called tactics that allow to construct a proof term step by step

instead of giving it explicitly. In Coq bool is a finite inductive type with two

constructors true and false. The set of propositions we are dealing with is Prop.

The two corresponding values in Prop are True and False. Prop is not an inductive

type like bool. There are a few typing rules for terms of type Prop such that we

2



1.2 Constructions in this Thesis

can construct infinitely many closed terms of type Prop. If we deal with a certain

x in Prop we have ¬x as a special notation for x → False. There are also infinitely

many closed terms of type bool but all of them can be reduced to true or false. If

we have a variable x of type bool we have different notations as follows:

if x then A else B ⇝ match x with true => A | false => B end

¬b x ⇝ if x then false else true

If the context is clear or it is not relevant for the discussion we will also write

¬ instead of ¬b. Obviously, we can map bool into Prop like already mentioned

above:

λ x : bool. if x then True else False

In Coq we can define a hidden coercion that exactly does this job. These coer-

cions make proofs more readable and could be replaced by the function itself at

any time. It turns out that there is no obvious corresponding way to map Prop

into bool. We are also able to prove b ∨¬b for any b : bool with a simple case

analysis because bool is a finite inductive type. We have two possibilities to deal

with sets over a special type X . We either consider predicates of type X → bool

or X → Prop. Because of the defined coercion it is clear how to map sets of type

X → bool into X → Prop, but there is no way to go the other direction.

1.2.2 Classical Assumptions

For the natural numbers, fraction and positive rational numbers we do not need

additional assumptions. For cuts, we need a special extensionality and excluded

middle. As it comes to the construction of the real numbers, we need a stronger

version of excluded middle to have case analyses within definitions.

Excluded Middle

A well known assumption is the following:

XM := ∀X : Prop. X ∨¬X Law of Excluded Middle

If we are able to prove this theorem in a certain logic, we call it classical.

Characterization of Equality

A popular assumption characterizing equality of functions is formulated as fol-

lows: Two functions are equal if they behave the same. That is, the two func-

tions yield the same value for each argument of their domain. This assumption

3



1 Introduction

is called Functional Extensionality.

FE := ∀X Y : Type ∀f g : X → Y .(∀x. f x = g x)→ f = g

We will also see another logical assumption called Propositional Extensionality

characterizing equality for propositions.

PE := ∀X Y : Prop. (X ↔ Y) → X = Y

We can prove neither FE nor PE in Coq. An assumption combining both FE and

PE is called Set Extensionality.

SE := ∀X : Type ∀p q : X → Prop.(∀x. p x ↔ q x)→ p = q

Set Extensionality is provable from FE and PE . For cuts we need a special exten-

sionality similar to SE , namely CE for Cut Extensionality.

Proof Irrelevance

The proposition that all proofs of an arbitrary proposition X are equal is called

proof irrelevance.

PI := ∀X : Prop ∀x y : X . x = y

We cannot prove PI in Coq. We consider the same proposition for a value B of

type bool instead of Prop. That is, B can be true or false. We assume we have two

proofs b1 and b2 of B. In Coq we have no proof of False and exactly one proof for

True, namely I . This fact allows us to say that b1 and b2 are equal. To be more

explicit we can prove in Coq

BPI := ∀B : bool ∀b1 b2 : B. b1 = b2

We can avoid dealing with PI until we come to Dedekind cuts. We know PE → PI .

We will also see that CE implies PE . That is, we only need CE and XM as assump-

tions for cuts.

1.2.3 Notations

In the next chapters we will consider different structures. To minimize and to

avoid confusions we will use different characters for variables ranging over the

elements of the considered structures.

Natural Numbers x, y, z . . . (small latin letters)

Positive Rational Numbers X ,Y ,Z . . . (capital latin letters)

Cuts Θ,Ξ,Φ . . . (capital greek letters)

Real Numbers ǫ, η, ζ,φ . . . (small greek letters)

4



1.3 Related Work

We will use calligraphic letters for constructors like O, S and P. We refer to

subsets of the considered structures as P , Q and R if they are represented by

predicates mapping into Prop and refer to them as p and q if the predicates

map into bool. Since we consider sets to be predicates we sometimes write P x

instead of x ∈ P . If the context is clear we omit explicit quantification such that

we consider all free variables as bound.

1.2.4 Proof Script

In the thesis we will refer to the detailed formalization of the different

structures. The proof script can be found on the website of the thesis at

http://www.ps.uni-saarland.de/~hornung/bachelor.php.

1.3 Related Work

There are already several formalizations of analysis in the literature: Chirimar

and Howe [4] developed analysis in the Nuprl system [6] representing real num-

bers by Cauchy sequences. There is also a construction in Lego by Jones [11].

Harrison [9] presents classical analysis in the context of the Isabelle-HOL-system

[8]. Ciaffaglione and Di Gianantonio [5] constructs the real numbers in Coq us-

ing infinite (lazy) streams. Furthermore Geuvers and Niqui [7] formalize the real

numbers in the Coq system using Cauchy completion. Hence the main differ-

ence between the other two constructions in the Coq system is that we will

use Dedekind cuts following Landau [13]. Lambert van Benthem Jutting [12],

a Dutch mathematician, translates Landau’s work to the Automath system in

1976. Brown again gives an automated translation from Automath to Coq [3].

1.4 Structure of this Thesis

In Chapter 2 we will construct the natural numbers N+ and present their basic

properties. Chapter 3 outlines the construction of fractions which give us a base

to construct the rational numbers Q+ in Chapter 4. In Chapter 5 we introduce

Dedekind cuts which allow us to construct the real numbers R in Chapter 6.

We will give both axiomatizations for every introduced structure and an outline

of the constructions and proofs of interesting properties. The parts where we

diverge from Landau and the necessary assumptions are summarized in Chapter

7.
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2 Natural Numbers

In this chapter we introduce the natural numbers N+ and their basic properties.

2.1 Peano Axioms

At the end of the 19th century the basic principles of the natural numbers

were determined. Two mathematicians involved in this development were

Dedekind and Peano with the formulation of the Peano axioms also known as

the Dedekind-Peano axioms [14]:

1 ∈ N+

∀x ∈ N+. x + 1 ∈ N+

∀x y ∈ N+. x = y ↔ x + 1 = y + 1

∀x ∈ N+. x + 1 ≠ 1

∀P ⊆ N+. 1 ∈ P → (∀x ∈ P. x + 1 ∈ P) → ∀x ∈ N+. x ∈ P

The first axiom says that 1 is a natural number. The second axiom says that for

every natural number x there is a number x + 1 in N+. We refer to this natural

number as the successor of x. The third axiom expresses that the successors

of two numbers are equal if and only if the two numbers are equal. The fourth

axiom says that there is no natural number having 1 as successor. The last

axiom is the so called induction axiom: If 1 is in an arbitrary set P (base case)

and x ∈ P implies x + 1 ∈ P for any x (induction case) we know that P contains

every natural number.

To construct the different number systems, Landau assumes the Peano axioms

above and defines the different operations like addition or multiplication. In Coq

we can define an inductive type corresponding to the natural numbers. To be

more explicit, in Coq we have

Inductive nat :=

| O : nat

| S : nat -> nat

We consider the elements of nat as the values we obtain from the constructors

O and S:

O, S O, S(S O), S(S(S O)), . . .

7



2 Natural Numbers

We call O the One or the Origin and say the constructor S yields the successor

of a natural number. Hence we consider 1 to be O and x + 1 to be S x.

Corresponding to the successor function we can define a predecessor function

yielding for a natural number different from O the predecessor. Because there is

no predecessor of O and we cannot define partial functions we map O to itself.

Definition pred (x:nat) := match x with O => O | S y => y end.

We do not include 0 as a natural numbers. We consider the natural numbers

starting from 1 because Landau does. Following Landau, we procrastinate the

problem of dealing with 0 until we come to the real numbers.

Because of the underlying Calculus of Constructions we do not need to assume

the Peano axioms. We can prove them rather easily. Since O is a natural number

in our construction and the successor function S yields a natural number the

first two Peano axioms do not have to be proven. Furthermore we just mention

the injectivity of the successor function regarding the fourth Peano axiom since

the other direction is trivial.

∀x. O ≠ S x (2.1)

∀x y. S x = S y → x = y (2.2)

∀P. P O → (∀x. P x → P (S x))→ ∀x. P x (2.3)

To be more explicit concerning the proofs we have in Coq:

Theorem S_neq_O (x:nat) : O <> S x.

intros x. discriminate.

Qed.

Theorem S_injective (x y: nat) : S x = S y -> x = y.

intros x y. apply (f_equal pred).

Qed.

Theorem ind_axiom (p:nat->Prop) : p O -> (forall x, p x -> p (S x)) -> forall x, p x.

intros p base step. fix IHx 1.

destruct x as [|x’].

exact base.

apply (step x’ (IHx x’)).

Qed.

The tactic discriminate applied to a subgoal of the form A <> B checks

whether the two values A and B are structural different from each other.

In this case we have two values yielded by different constructors O and

S. Hence the values are not equal. In Coq all constructors are injec-

tive and two terms are equal if they are structurally equal. The predefined

8



2.2 Order and Operations

lemma f _equal : ∀X Y : Type ∀x y ∈ X ∀f : X → Y . x = y → f x = f y where the

first four arguments are hidden allows us to prove x = y using the predecessor

function pred. The same subgoal would be provable with the tactic injection that

reduces the equality of two values yield by the same constructor to equality of

their subterms. The tactic fix gives us recursion. Since induction is nothing

but recursion we obtain induction. One can apply the fixed proposition to an

arbitrary subterm. In this case we do a case analysis on x using the Coq tactic

destruct . The case x = O is trivial since we have p O as an assumption. In the

case that x consists of a subterm, here x′, of the same type that is structural less

than the initial one, one can apply the fixed proposition with this subterm. This

corresponds to the application of the induction hypothesis.

2.2 Order and Operations

Based on the inductive definition of the natural numbers we are able to define

an order for them. We can even define ≤ to have type nat → nat → bool, i.e.

mapping into bool instead of Prop. We will also see that this fact will give us

more flexibility in defining other functions or predicates.

O ≤ y := true (2.4)

S x ≤ S y := x ≤ y (2.5)

S x ≤ O := false (2.6)

x < y := S x ≤ y (2.7)

The definition of ≤ is realized in Coq by a match on x and y where the two

cases x = O and y = O are directly defined to be true and false. In 2.5 we have a

recursive call and in 2.7 we have a special notation. It actually suffices to have

≤ as a reflexive, antisymmetric and transitive order of the natural numbers such

that we can define ≥ and the irreflexive orders < and > as special notations for

≤. It should be clear how to define ≥ and > from this. Because it suffices and

the number of proofs reduce to a minimum we exclusively consider ≤ and <. We

can easily prove by induction on x trichotomy for < on N+.

Lemma 2.2.1 (Trichotomy) For all natural numbers x and y we exactly have one

of the cases

x < y, x = y, y < x

In this section we diverged from Landau’s definitions the first time. His defi-

nitions of < and ≤ are as follows (to prevent confusion we call them <L and

≤L):

x <L y := ∃z. y = x + z (2.8)

9



2 Natural Numbers

x ≤L y := x <L y ∨ x = y (2.9)

It is easy to show the equivalence between our definitions and Landau’s. But for

now we do not have a definition for +. Hence diverging from Landau allows us

here to define the order mapping into bool in a quite easier way before addition.

We will sometimes use the equivalence to split x ≤ y in the two cases above.

We can also give definitions for addition and multiplication for the natural

numbers just using the underlying inductive structure.

x +O := S x (2.10)

x + S y := S (x + y) (2.11)

x · O := x (2.12)

x · S y := x · y + x (2.13)

We will now define subtraction. The first time Landau introduces subtraction is

in his chapter about fractions. However, we will discuss the definition of subtrac-

tion in this section for two reasons: Landau does not give an explicit definition of

the difference of two numbers. He merely calls the z from 2.8 the difference of y

and x. We cannot globally define values the way Landau does because we have to

give an explicit function. The second reason is the following: Since subtraction

should map into nat it only makes sense to define x − y for natural numbers

y < x.

S x −O := x (2.14)

S x − S y := x − y if y < x (2.15)

In Coq we do not have the opportunity to define partial functions. We have

already encountered this issue in the definition of the predecessor function pred.

We could define − like pred for every argument even if it makes no sense, i.e.

mapping x and y where x ≤ y to O. However, as it comes to subtraction for cuts,

we need the proof that the second operand is less than the first operand within

the definition of − for cuts. For this reason we already define − for natural

numbers with an additional argument, a proof of y < x. To be more explicit, in

Coq we have:

Fixpoint sub_nat (x y:nat) : y<x -> nat := match x,y with

| O , y => fun (l:y<O) => match l with end

| S x’ , O => fun _ => x’

| S x’ , S y’ => fun (l:S y’<S x’) => sub_nat x’ y’ l

end.

The case x = O is critical since y < O reduces to False. We do not have any proof

of False. For that a match on the proof of y < O does not give us any case and

we are done. The other two cases should be intuitively clear.

10
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2.3 Properties of the Natural Numbers

We now state some (provable) properties of the natural numbers. We defined

<, + and · and we will see that we can use these operations to define similar

operations on the other structures like the fractions.

∀x y. x + y = y + x Commutativity of +
(2.16)

∀x y z. (x + y)+ z = x + (y + z) Associativity of + (2.17)

∀x y. x · y = y · x Commutativity of · (2.18)

∀x y z. (x · y) · z = x · (y · z) Associativity of · (2.19)

∀x y z. x · (y + z) = x · y + x · z Distributivity of +, ·
(2.20)

∀x. 1 · x = x Identity of · (2.21)

∀x y z. x < y → y < z → x < z Transitivity of < (2.22)

∀x. ¬ x < x Irreflexivity of < (2.23)

∀x y. x < y ∨ x = y ∨ y < x Trichotomy of < (2.24)

∀x y z. x < y → x + z < y + z Monotonicity of + (2.25)

∀x y z. x < y → x · z < y · z Monotonicity of · (2.26)

∀x y z. x + z = y + z → x = y Injectivity of + (2.27)

∀x y. x < y → ∃z. x + z = y (2.28)

∀x y. x ≠ y + x (2.29)

∀P. 1 ∈ P → (∀x. x ∈ P → x + 1 ∈ P) →∀x. x ∈ P Induction axiom (2.30)

Since we defined N+ without 0 there is no identity for + as for ·.

2.4 Well-Ordering Principle

For the structure of the natural numbers and the order ≤ we can state an interest-

ing property of sets of natural numbers known as the Well-Ordering Principle.

Landau introduced this principle in his construction of the real numbers [13] in

Theorem 27.

Theorem 2.4.1 (Well-Ordering Principle) Every nonempty set of natural num-

bers P contains a smallest element m. In other words:

WP := ∀P ⊆ N+ . P ≠ 0 → ∃m ∈ P. ∀x ∈ P. m ≤ x

11



2 Natural Numbers

We will consider a non-constructive proof that uses sets of type nat → Prop and

a second more computational version that uses nat → bool. It will turn out that

the first version yields a stronger proposition equivalent to XM . Recall that every

time we use P for a set we mean P of type nat → Prop and every time we use p

we mean p has type nat → bool.

2.4.1 Non-constructive Proof

There are many standard proofs for this principle. We show here an abstract one

very close to Landau’s.

Theorem 2.4.2 XM → WP

Proof (Well-Ordering Principle) We assume XM . Given a nonempty set P we de-

fine the set M = { y | ∀x ∈ P. y ≤ x}. Obviously we have

O ∈ M (2.31)

since ∀x. O ≤ x (see Definition 2.4). However, M does not contain every natural

number: Since P is nonempty we have an x ∈ P . By induction on x, Definition 2.5

and Definition 2.6 we have∀x. S x ≤ x = false. For that we have ∀x ∈ P. S x ∉ M .

Now we know that there must be an m such that

m ∈ M ∧ Sm ∉M (2.32)

If not, M would contain every natural number (because of 2.31 and the induction

axiom 2.3). To follow the argumentation in the last sentence, we need XM . We

now prove that this m is our desired m. That is, we will prove

m ∈ P (2.33)

∀x ∈ P. m ≤ x (2.34)

If m ∈ M were not in P then S m would also be in M because of the construction

of M . Here we used again XM . That would contradict 2.32. Hence m ∈ P . 2.34

follows directly from m ∈ M (2.32). �

Theorem 2.4.3 WP → XM

Proof We assume the Well-Ordering Principle WP and consider an arbitrary X

of type Prop. We consider the set P = { x | O < x ∨ X}. Since O < S O we have

that P is nonempty. From WP we now know that there exists an m ∈ P with

∀x ∈ P. m ≤ x. We have to prove X ∨¬X . We do a case analysis for m. If m = O
than we know that X holds since m ∈ P and O < O = false (Definitions 2.6 and

2.7). We now consider the successor case m = S m′ and prove ¬X . Since ¬X

means X → False we can assume X . That is, every natural number is in P . Hence

O ∈ P . We now have a contradiction since ∀x ∈ P. m ≤ x applied to O reduces to

False because m has the form S m′ and S m′ < O = false (Definition 2.6). �

12
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2.4.2 Constructive Proof

The proofs of 2.32 and 2.33 are proofs by contradiction where the logical as-

sumptions CP and hence the equivalent XM are hidden. Because we want to

avoid the use of these assumptions we try to find a more concrete way to prove

the Well-Ordering Principle. Since we now consider p : nat → bool we can have a

conditional as already mentioned in Section 1.2. In Coq we have the opportunity

to define functions and it provides ways to compute values. Since the Calculus

of Constructions only allows terminating functions we cannot define a function

first as follows:

first p x := if p x then x else first p (S x)

We should be convinced that the application first p O would yield the value m

discussed in Section 2.4.1 assuming that p is nonempty. To guarantee termina-

tion, if one defines a function, the Calculus of Inductive Constructions imple-

mented in Coq always requires a decreasing argument. That is, if one considers

a recursive call of a function there has to be at least one determined argument

of an inductive type that is a structural subterm of the initial argument. To have

a definition of a terminating function we can define first depending on an upper

bound. Initializing this upper bound with an element in p guarantees that we

find the least element in p. To be more explicit we define

first p O := O (2.35)

first p (S x) := if p (first p x) then first p x else S x (2.36)

Lemma 2.4.4 ∀p∀x. p x → p(first p x)

Proof Case analysis for x. The case x = O is obvious since first p O = O because

of Definition 2.35. Now we consider the successor case. We assume p (S x). We

must prove p (first p (S x)).

first p (S x) = if p (first p x) then first p x else S x Def. 2.36

Case p (first p x) = true.

first p (S x) = first p x

Since p (first p x) holds we know p (first p (S x)) holds.

Case p (first p x) = false.

first p (S x) = S x

Since p (S x) holds we know p (first p (S x)) holds. �
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Lemma 2.4.5 ∀p∀x. first p x ≤ x

Proof Let p be given. We argue by induction over x. The base case is obvious

since first p O = O ≤ O by Definition 2.4. We assume first p x ≤ x as induction

hypothesis.

Case p (first p x) = true.

first p (S x) = if p (first p x) then first p x else S x Def. 2.36

= first p x

≤ x ≤ S x IH

Case p (first p x) = false.

first p (S x) = if p (first p x) then first p x else S x Def. 2.36

= S x ≤ S x �

Lemma 2.4.6 ∀p∀x. p (first p x)→ ∀y. x < y → first p x = first p y

Proof Let p, x and y be given and assume p (first p x). We argue by in-

duction over y. The base case y = O is trivial since x < y hence S x ≤ O
yields a contradiction because of the Definitions 2.7 and 2.6. We now have

x < y → first p x = first p y as induction hypothesis and consider the inductive

step for the successor case S y. We assume x < S y and have x ≤ y because of

Definition 2.7 and Definition 2.5.

Case x = y.

first p (S y) = if p (first p y) then first p y else S y Def. 2.36

= if p (first p x) then first p x else S x x = y

= first p x assumption

Case x < y.

first p (S y) = if p (first p y) then first p y else S y Def. 2.36

= if p (first p x) then first p x else S y IH

= first p x assumption �

Lemma 2.4.7 ∀p∀x y. p y → first p x ≤ y

Proof Let p, x and y be given and assume p y. We can split into two cases since

trichotomy holds. Case x ≤ y. We know first p x ≤ x ≤ y by Lemma 2.4.5. Case

y < x. From Lemma 2.4.4 and p y we have p (first p y). From that, Lemmas 2.4.6

and 2.4.5 we have first p x = first p y ≤ y. �
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Proof (Well-Ordering Principle) Let p be a nonempty set and x be given such

that p x holds. Let m be our first p x. Both m ∈ p and ∀y ∈ p. m ≤ y follow from

Lemmas 2.4.4 and 2.4.7. �

2.5 Complete Induction

As it comes to the real numbers we want to prove the irrationality of the square

root of two. There is a lot of work to do until we come to this. However, we

can prove x2 ≠ 2 · y2 for arbitrary natural numbers x and y that gives us later

the irrationality. Landau proves this property in his chapter about cuts using

the Well-Ordering Principle from Section 2.4. It turns out that we can prove this

proposition using complete induction without any additional assumptions.

Theorem 2.5.1 ∀P. (∀y. (∀z. z < y → z ∈ P) → y ∈ P)→ ∀x. x ∈ P

The proof can be found in the script. This theorem allows us to prove the fol-

lowing lemma.

Lemma 2.5.2 ∀y x. x2 ≠ 2 · y2

Proof We consider the set P = λy.∀x. x2 ≠ 2 · y2 and want apply Theorem 2.5.1.

To apply this, we have to prove

∀y. (∀z. z < y → z ∈ P) → y ∈ P

Let y be an arbitrary natural number and assume ∀z. z < y → z ∈ P as well as

x2 = 2 · y2 for an arbitrarily given x. We now want to have a contradiction. We

only sketch the rest of the proof. The interested reader can find the whole proof

in the script.

We can prove y < x and x − y < y. We define u = x − y and t = y − u. We now

can prove t2 = 2 · u2. This proof is a bit tedious. Since u < y we can apply our

assumption ∀z. z < y → ∀x. x2 ≠ 2 · z2 with z = u and x = t and get a contradic-

tion. �

2.6 Remarks

In this chapter we introduced the natural numbers and their basic theorems. We

gave a collection of properties for the natural numbers and constructed them

using an inductive type in Coq.

The first time we diverged from Landau’s construction is the definition of ≤
or rather <. While he prefered to give the equivalent definition

x <L y := ∃z.x + z = y

15
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we have instead used the underlying structure of the Calculus of Constructions

and used recursive definitions. For that we could already define the order for

the natural numbers before addition. Like we have seen in Section 2.4 there was

a way to prove the Well-Ordering Principle without the use of classical logic but

using nat → bool for sets of natural numbers. The other representation of sets

yields us a stronger proposition that is equivalent to XM and hence all classical

assumptions.
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3 Fractions

The next step towards the real numbers is to define fractions and prove theorems

for them. We define the fractions F as all pairs over the natural numbers. This is

exactly what Landau does.

F := N+ ×N+

In Coq this corresponds to an inductive definition.

Inductive frac :=

| over : nat -> nat -> frac

In the next chapters we will write
x1

x2

representing a fraction where x1, x2 ∈ N+. We call x1 the numerator and x2 the

denominator of the fraction
x1

x2
and refer to the fraction as x1 over x2.

3.1 Equivalence of Fractions

Since there are infinitely many fractions representing the same rational num-

ber we introduce a special equivalence relation ∼ for fractions that defines the

equivalence of fractions using equality of natural numbers.

x1

x2
∼ y1

y2
:= x1 · y2 = y2 · x2 (3.1)

If
x1

x2
∼ y1

y2
holds we say

x1

x2
is equivalent to

y1

y2
. Reflexivity, symmetry and tran-

sitivity follow directly from the fact that = for the natural numbers is an equiv-

alence relation. The equivalence between the fractions induces disjoint equiva-

lence classes. In many books one sees
[

x1

x2

]

=
{

y1

y2
| y1

y2
∼ x1

x2

}

. These classes could

be interpreted as the positive rational numbers. However, we will have a different

representation.
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3.2 Preorderings and Operations

Just as the defined equivalence of fraction reduces to equality of natural numbers

we can also define a preordering of fractions in a similar way. We have

x1

x2
≲ y1

y2
:= x1 · y2 ≤ y1 · x2 (3.2)

x1

x2
<

y1

y2
:= x1 · y2 < y1 · x2 (3.3)

In Chapter 2 we stated trichotomy for natural numbers. This is also provable

for fractions with the only difference that we consider ∼ instead of equality of

fractions. We now define addition and multiplication for fractions.

x1

x2
+ y1

y2
:= x1 · y2 + y1 · x2

x2 · y2
(3.4)

x1

x2
· y1

y2
:= x1 · y1

x2 · y2
(3.5)

In this section we also define subtraction for fractions. We remember that this

operation expects an additional argument for the natural numbers. We can anal-

ogously define subtraction for fractions.

x1

x2
− y1

y2
:= x1 · y2 − y1 · x2

x2 · y2
if

y1

y2
<

x1

x2
(3.6)

Recall that the proof for y1 · x2 < x1 · y2 is directly given since
y1

y2
<

x1

x2
. We see

now that all these definitions reduce to the definitions of the operations on the

natural numbers.

3.3 Inverse of Multiplication

In contrast to the natural numbers, we have for every fraction
x1

x2
a so called

inverse element
(

x1

x2

)−1
for multiplication. For fractions we can directly define

this value.
(

x1

x2

)−1

:= x2

x1
(3.7)

The only property we expect from the inverse is stated in the following lemma.

Lemma 3.3.1 (Inverse of Multiplication) ∀ x1

x2
.
(

x1

x2

)−1
· x1

x2
∼ 1

In our formalization 1 is a fraction corresponding to the natural number O, i.e.
O
O . Recall that O is not the zero 0. We will also write O instead of

O
O if the context

is clear.
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Proof We have

(
x1

x2

)−1

· x1

x2
∼ x2

x1
· x1

x2
= x2 · x1

x1 · x2
= x1 · x2

x1 · x2
∼ OO

The first equality is the definition of · for fractions. The second equality follows

from the commutativity of · for natural numbers (see 2.18). The last equivalence

is trivial (see Definition 3.1 and commutativity 2.18). �

3.4 Density

The relation < for fractions is a dense relation. That is, there is always a fraction

between two different fractions
x1

x2
and

y1

y2
if

x1

x2
<

y1

y2
.

Lemma 3.4.1 ∀ x1

x2

y1

y2
.

x1

x2
<

y1

y2
→ ∃ z1

z2
.

x1

x2
<

z1

z2
<

y1

y2
.

Proof We have that x1y2 < y1x2. From

x1(x2 + y2) = x1x2 + x1y2 < x1x2 + y1x2 = x2(x1 + y1) = (x1 + y1)

we have
x1

x2
<

x1 + y1

x2 + y2

and from

(x1 + y1)y2 = x1y2 + y1y2 < y1x2 + y1y2 = y1(x2 + y2)

we have
x1 + y1

x2 + y2
<

y1

y2

such that
x1+y1

x2+y2
does the job. �

While there is a smallest natural number O because of Definition 2.4 and no

greatest natural number because ∀x. x < S x, there is neither a smallest fraction

nor a greatest fraction. We just prove that there is no smallest fraction. The

prove that there is no greatest fraction is similar.

Lemma 3.4.2 ∀ x1

x2
∃ y1

y2
.

y1

y2
<

x1

x2
.

Proof Since x1x2 < x1x2 + x1x2 = x1(x2 + x2) the fraction
x1

x2+x2
does the job. �
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3.5 Remarks

In this chapter we constructed fractions as pairs of natural numbers. We defined

a special equivalence relation for them, namely ∼. With respect to this equiva-

lence relation we have infinitely many different fractions being equivalent to each

other. Furthermore we stated an interesting property expressing the density of

<. Recall that there is no natural number between an arbitrary x and S x even

though x < S x. Hence < for natural numbers is not dense. In the structures we

consider in the next chapters, density of < is always required.
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In this chapter we consider the positive rational numbers Q+. Every time we say

rational numbers we mean positive rational numbers.

4.1 Properties of the Positive Rational Numbers

Our second step to construct the real numbers is the construction of a structure

for the rational numbers satisfying a certain set of properties. In addition to

the properties of the natural numbers we have an inverse for multiplication and

density of <. We want to construct a type prat that represents the positive

rational numbers, give definitions for

1 : prat

< : prat → prat → bool

+ : prat → prat → prat

· : prat → prat → prat

()−1 : prat → prat

and want to prove the following important properties.

∀X Y . X + Y = Y + X Commutativity of + (4.1)

∀X Y Z. (X + Y)+ Z = X + (Y + Z) Associativity of + (4.2)

∀X Y . X · Y = Y · X Commutativity of · (4.3)

∀X Y Z. (X · Y) · Z = X · (Y · Z) Associativity of · (4.4)

∀X . 1 · X = X Identity of · (4.5)

∀X . X−1 · X = 1 Inverse of · (4.6)

∀X Y Z. X · (Y + Z) = X · Y + X · Z Distributivity of + and · (4.7)

∀X Y . X < Y ∨ X = Y ∨ Y < X Trichotomy for < (4.8)

∀X Y Z. X < Y → Y < Z → X < Z Transitivity of < (4.9)

∀X . ¬ X < X Irreflexivity of < (4.10)

∀X Y Z. X < Y → X + Z < Y + Z Monotonicity of < and + (4.11)

∀X Y Z. X < Y → X · Z < Y · Z Monotonicity of < and · (4.12)
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∀X Y . X < Y → ∃Z. X < Z ∧ Z < Y Density of < (4.13)

∀X ∃Y . Y < X (4.14)

∀X ∃Y . X < Y (4.15)

Furthermore we want an additional property fulfilled that we call the minimality

of the rational numbers. Given a subset of the rational numbers it says that if

this set includes 1 and is closed under addition, multiplication and the inverses

we have all rational numbers in this set. That is, every rational number can be

constructed with the given operations and there are no undesired numbers.

∀P. P 1→
(∀X Y . P X → P Y → P (X + Y)) →
(∀X Y . P X → P Y → P (X · Y)) →
(∀X . P X → P (X−1)) →
∀X . P X

This property is some kind of induction principle for the rational numbers.

The properties 4.14 and 4.15 expresses the fact thatQ+ has no endpoints. Recall

that density of < for rational numbers in 4.13 as well as 4.14 do not hold for the

natural numbers. Furthermore we do not have a multiplicative inverse for natural

numbers.

4.2 Representation of the Rational Numbers

The problem already mentioned in the last chapter that there are many different

fractions representing the same value with respect to the corresponding equiv-

alence relation suggests the idea of a quotient type. In this case this is a type

where each value represents a set of all fractions equivalent to a certain rep-

resentative such that we can define the set of all positive rational numbers as

follows.

Q+ := F/ ∼

The resulting problem is obvious. To decide whether two rational numbers are

the same or represent the same set of fractions we have to compare two infinite

sets. Representing these sets as functions with type frac → Prop or frac → bool

that would reduce to equality of functions. That is, this is the first time we would

need the additional assumption FE . We can represent a value of this quotient

type by a unique representative. This motivates to avoid the use of FE or other

additional assumptions. We will represent a set of all equivalent fractions by
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this unique representative. Equality of these sets of fractions would reduce to

equality of fractions. Landau himself introduces the rational numbers in the

chapter of the fractions, he explicitly represents them as sets of fraction. Hence,

due to our desire to avoid additional assumptions, we diverge from Landau once

again.

The most common candidate for this representative is the reduced fraction.

It is equivalent to each other fraction in the set and is explicitly determined.

There are different ways to compute the reduced fraction using the Euclidean al-

gorithm or prime representation of natural numbers. We would like to minimize

additional work and try to use structures already defined. In Chapter 2.4 we saw

first yielding the minimum of a nonempty set represented by a predicate map-

ping into bool. This minimum is indeed unique. We will see that we can use this

concept for fractions. For reasons of readability we write x1 · y2 = y1 · x2 instead

of
x1

x2
∼ y1

y2
.

Let x = x1

x2
be implicitly given. Intuitively we consider the set of all candidates

for the numerator of the reduced fraction that is equivalent to a given fraction.

Nx := { y1 | ∃y2. x1 · y2 = y1 · x2 }
rednumx := min Nx

Dx := { y2 | x1 · y2 = rednumx · x2}
reddenx := min Dx

To apply first to compute the minimum we need both sets Nx and Dx repre-

sented by a set of type nat → bool. For reasons of termination first needs an

upper bound for at least one element in the set. Hence we also need two upper

bounds.

For reasons of termination it is impossible in general to represent a proposi-

tion including an existential quantifier over nat by a term of type bool since the

witnessing value could be arbitrary large. In Nx the candidate for y2 is unique

and could be computed as (y2 · x2) div x1. However, defining div and proving

its properties is more complicated than the method using the function first. To

compute y2 for a given y1 we do the following. We consider the set of all y2 such

that x1 · y2 = y1 · x2 holds. Since

y2 ≤ x1 · y2 = y1 · x2

we can choose the upper bound for the application of first to be y1 · x2 such that

we find y2 in every case. To be more precise, in Coq we define

equivx := λy1 y2. x1 · y2 = y1 · x2

getdenx := λy1. first (equivx y1) (y1 · x2)
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nx := λy1. x1 · (getdenx y1) = y1 · x2

where nx represents Nx with the difference that nx maps into bool. The cascaded

function equivx yields exactly the same as ∼. Given y1, getdenx computes the

denominator y2 such that x1 · y2 = y1 · x2. If there is no fitting y2 (if y1 is no

candidate for the numerator) it does not matter what the function yields. We

already illustrated above that we will find the candidate if there is one since

y2 ≤ y1 · x2. The set nx should be equivalent to Nx introduced at the beginning of

this section. Deciding whether a given y1 is in this set means verifying that the

denominator yielded by getdenx satisfies the equivalence.

Since x1 is in Nx we can choose x1 to be the upper bound for the application of

first to get the numerator. Notice that Dx can easily be represented by a predicate

mapping into bool and that the upper bound for the minimum is analogously

chosen like above.

Finally, in Coq we have

rednumx := first nx x1

reddenx := getdenx rednumx

redx := rednumx / reddenx

The denominator is now computed like above as the corresponding denominator

reddenx to the numerator rednumx of the reduced fraction. We are now able to

prove the following proposition.

Lemma 4.2.1 ∀y1. Nx y1 ↔ nx y1

We use this fact in the following proofs. Furthermore we give up subscripts and

write red
x1

x2
instead of redx . We now state and prove the two main properties of

the function red : frac → frac.

Lemma 4.2.2 ∀x1 x2.
x1

x2
∼ red

x1

x2

Proof Let x1 and x2 be given. Since

x1

x2
∼ x1

x2

we know Nx x1 and hence we have nx x1. By Lemma 2.4.4 we have nx (first nx x1)

and we are done. The unconvinced reader is free to fill in the definitions of red,

rednumx , reddenx , nx and equivx to assure oneself. �

Lemma 4.2.3 ∀x1 x2 y1 y2.
x1

x2
∼ y1

y2
→ red

x1

x2
= red

y1

y2
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Proof Because x = x1

x2
was the implicitly given argument in the definition of red

we now write y = y1

y2
as index for the corresponding functions in red

y1

y2
. From

Lemma 4.2.2 and from the transitivity and symmetry of ∼ we have

red
x1

x2
∼ red

y1

y2

If we know two fractions are equivalent and want to prove their equality, it suf-

fices to prove the equality of the numerators. That is, we just have to prove

first nx x1 = first ny y1

Because x and y are equivalent the functions nx and ny behave the same. It is

intuitively clear that first also behaves the same if the two given functions behave

the same. This fact can be shown by induction on the second argument of first .

(We assume this as proven; the interested reader can find this in the proof script)

We now have to prove

first nx x1 = first nx y1

The case x1 = y1 should be trivial. Without loss of generality we can assume

x1 < y1 (see also 2.2.1). We can now apply Lemma 2.4.6 since nx x1. �

We call a fraction
x1

x2
reduced if

x1

x2
= red

x1

x2
. Since we can decide easily the equal-

ity of two fractions that induces a predicate fred : frac → bool.

There are different ways to define predicate types that are all equivalent in Coq.

We decide to have a record type including a fraction and a proof that it is re-

duced:

Record prat : Type :=

Prat { rep : frac

redp : fred rep }

A record type gives us projection functions rep and redp in addition. Given a

value X of type prat we call rep X its representative and redp X its correspond-

ing proof. It should be clear how to implement this structure with a primitive

inductive definition.

We can prove that the fraction yielded by red is always reduced.

Lemma 4.2.4 ∀x1 x2. fred (red
x1

x2
)

Proof Applying Lemma 4.2.3 to Lemma 4.2.2 gives us

red
x1

x2
= red

(

red
x1

x2

)

and we are done. �

For that we will also write red
x1

x2
representing the rational number we get from

a certain fraction
x1

x2
without mentioning the corresponding proof.

Now that we have each rational number represented by a fraction and a proof

that this is reduced we have to say something about equality of rational numbers.
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4 Positive Rational Numbers

4.3 Equality of Rational Numbers

To prove the equality of two rational numbers we have to prove the equality of

both the representatives and the corresponding proofs. The first thing is easily

decidable. If the representatives are equal, then the equality of the corresponding

proofs is trivial: Since we can prove BPI as discussed in Section 1.2.2 we have the

equality of the two proofs. We can now state and prove the following lemma.

Lemma 4.3.1 ∀X Y . rep X = rep Y ↔ X = Y

Because of this fact we will often merely consider the representatives instead of

the rational number including its corresponding proof.

4.4 Order and Operations

Since equality of rational numbers reduces to equality of fractions we can define

the orders ≤ and < for rational numbers using the preordering for fractions.

X ≤ Y := rep X ≲ rep Y (4.16)

X < Y := rep X < rep Y (4.17)

We can state and prove trichotomy for < on Q+.

Lemma 4.4.1 (Trichotomy) For all rational numbers X and Y we exactly have

one of the cases

X < Y , X = Y , Y < X

In the following we define addition and multiplication of rational numbers.

X + Y := red (rep X + rep Y) (4.18)

X · Y := red (rep X · rep Y) (4.19)

For the sake of completeness we also define subtraction for rational numbers.

X − Y := red (rep X − rep Y) if Y < X (4.20)

The proof of rep Y < rep X follows directly from Y < X .

4.5 Natural Numbers as Rational Numbers

We intuitively know about the fact that the natural numbers can be considered

as a subset of the rational numbers. We can also explicitly give a fraction
x1

x2

that corresponds to an arbitrary natural number x. We can embed the natural
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4.6 Inverse of Multiplication

numbers into the rational number by giving an injective function mapping a

natural number to a unique rational number

nat_to_prat : nat → prat

satisfying certain properties summarized below for all natural numbers x and y.

Recall that the operators +, · and < are overloaded.

nat_to_prat(x + y) = nat_to_prat x + nat_to_prat y

nat_to_prat(x · y) = nat_to_prat x · nat_to_prat y

nat_to_prat(x < y) ↔ nat_to_prat x < nat_to_prat y

That is, nat_to_prat respects the operations +, · and the relation <. We can

define this function as follows:

nat_to_prat : nat → prat

nat_to_prat x := red
x

O
It turns out that this definition fulfills the properties mentioned above. That is,

we can say that every natural number can be considered as a rational number. In

Coq we define nat_to_prat as a coercion. We will also omit the name nat_to_prat

if the context is clear. The fraction
x
O is already reduced. However, it turns

out that it is easier to work with the definition if it includes red. Furthermore,

including red gives us a more general result since the representative could be

any other fraction in the set of the rational number as long as it is unique. Recall

that red
x
O represents the resulting rational number including its corresponding

proof.

Landau goes the other direction. He explicitly redefines the natural numbers to

be a subset of the rational numbers. To be more explicit, he defines a rational

number to be a natural number if there is a fraction of the form
x
O in the set of

all equivalent fraction corresponding to this rational number.

4.6 Inverse of Multiplication

Similar to the fractions we have for every rational number X a so called inverse

element X−1 for multiplication. We can also directly define this value.

X−1 := red (rep X )−1 (4.21)

Recall that ()−1 is overloaded. In contrast to fractions we can state the lemma

about the correctness of this operation with an equality = instead of an equiva-

lence ∼.
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4 Positive Rational Numbers

Lemma 4.6.1 (Inverse of Multiplication) ∀X . X−1 · X = 1

In our formalization 1 is a rational number corresponding to the natural number

O. We do not explicitly write nat_to_prat from Section 4.5.

Proof Let X be given and
x1

x2
= rep X . We have

red

(
x1

x2

)−1

· x1

x2
∼
(

x1

x2

)−1

· x1

x2
∼ O
O (4.22)

The first equivalence follows from a lemma about fractions, Lemma 4.2.2 and

the symmetry of ∼. The second equivalence follows from Lemma 3.3.1. Now we

have

X−1 · X = red
(

rep X−1 · rep X
)

= red

(

red

(
x1

x2

)−1

· x1

x2

)

= red

(O
O

)

= O

The third equality follows from 4.22 and Lemma 4.2.3. The fourth equality fol-

lows from the definition of nat_to_prat in Section 4.5. �

Using the definition of ()−1 we can define an additional operations for two ratio-

nal numbers X and Y called the quotient of X and Y .

X

Y
:= X · Y−1 (4.23)

Here we use the notation of a fraction representing the quotient of two rational

numbers. We can state the property of the quotient in the following lemma.

Lemma 4.6.2 (Correctness of Quotient) ∀X Y . X = X
Y
· Y

Proof By the definition of the quotient, associativity of ·, Lemma 4.6.1 and the

identity of · we have

X

Y
· Y = (X · Y−1) · Y = X · (Y−1 · Y) = X · O = X �

4.7 Special Properties of Rational Numbers

Density of < for rational numbers directly follow from density of < for fractions.

Lemma 4.7.1 ∀X Y . X < Y → ∃Z. X < Z ∧ Z < Y

Proof Follows from Lemma 3.4.1. �

Lemma 4.7.2 ∀X ∃Y . Y < X .
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Proof Follows from Lemma 3.4.2. �

We now consider another property of the rational numbers that gives us later

the existence of a so called irrational number.

Lemma 4.7.3 (
√

2 does not exist) ∀X . X · X ≠ S O

Proof Let X be given, X = x1

x2
be its representative and assume X · X = S O. We

want to have a contradiction. The equality of the rational numbers X · X and S O
gives us the equality of their representatives. That is, using the definition of ·
for rational numbers and fractions,

red

(
x1 · x1

x2 · x2

)

= red
S O
O

This equality gives us the equivalence of the arguments of red because of Lemma

4.2.2 and the transitivity of ∼. That means, by the definition of ∼ and the identity

of · for natural numbers

x1 · x1 = S O · (x2 · x2)

what gives us a contradiction by Lemma 2.5. �

4.8 Minimality

As mentioned at the beginning of this chapter we do not want to have additional

numbers that cannot be constructed from 1 and the operations +, · and ()−1. In

this section we will prove that this property is fulfilled. Landau does not mention

the minimality of the rational numbers. We formulate this lemma with a set P of

rational numbers: If P is closed under all operations and P contains 1, then this

set contains every rational number.

Lemma 4.8.1 (Minimality of prat)

∀P. P O →
(∀X Y . P X → P Y → P (X + Y)) →
(∀X Y . P X → P Y → P (X · Y)) →
(∀X . P X → P (X−1)) →
∀X . P X

Proof By induction on x we can prove ∀x. P x. The base case is trivial since

O is in P . We now consider the successor case S x. Since x and O are in P by
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4 Positive Rational Numbers

assumption we have S x = x +O in P .

Every rational number is represented by a reduced fraction
x1

x2
. We know

x1

x2
= x1

O · O
x2
= x1 · x−1

2

Since x1 and x2 are in P and hence x−1
2 is in P we have

x1

x2
in P . �

4.9 Remarks

In this chapter we introduced the rational numbers. To avoid the use of the

additional assumption FE we defined a unique reduced fraction representing the

set of all equivalent fractions to this representative. Most of the properties of the

rational numbers can be proven with the properties of the fraction introduced

in Chapter 3. Until now we could avoid classical assumptions like XM for the

reason that we can explicitly compute the operations +, ·, ()−1 and the relation

< between two rational numbers. In the next chapter we construct a structure

that allows us to construct the real numbers in Coq. From now on we have to

assume classical laws.
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5 Dedekind Cuts

Until now we were able to construct the natural numbers and the rational num-

bers without assuming any additional assumption. We will see that we will not

be able to construct the real numbers without additional assumptions. In this

chapter we consider certain subsets of the rational numbers allowing us to give

a definition for the real numbers. These subsets are called Dedekind cuts. As

already mentioned at the beginning of this thesis there are many other ways to

go from the rational numbers to the real numbers. There were already computer

scientists constructing the real numbers in Coq using streams (Ciaffaglione and

Di Gianantonio [5]) or Cauchy completion (Geuvers and Niqui [7]). All of these

mentioned methods have advantages and disadvantages. We will not say too

much about the differences and constructions of Caiffaglione and Di Giananto-

nio or Geuvers and Niqui regarding the construction based on Dedekind cuts.

However, the constructions of Ciaffaglione and Di Gianantonie or Geuvers and

Niqui, respectively, have as goal to give a structure for computable reals. We will

state and prove theorems about the classical real numbers. We cannot explicitly

compute them.

To have an intuition of a Dedekind cut Θ, one can interpret it as

Θ = (0, s)∩Q

for any s ∈ R+.

A Dedekind cut is a subset Θ ⊂ Q+ of the rational numbers with the following

properties

∃X . X ∈ Θ (5.1)

∃X . X ∉ Θ (5.2)

∀X Y . Y ∈ Θ → X < Y → X ∈ Θ (5.3)

∀X . X ∈ Θ → ∃Y . Y ∈ Θ∧ X < Y (5.4)

That is, Θ is nonempty (5.1) and does not contain every rational number (5.2).

If we consider a certain Y ∈ Θ then every rational number less then this Y is

in Θ (5.3). Furthermore Θ does not contain a greatest element (5.4). That is, in

addition, for every rational number X ∈ Θ there is a rational number Y ∈ Θ with

X < Y . Given an arbitrary Θ we call a rational number X ∈ Θ a lower number of
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5 Dedekind Cuts

Θ and a rational number X ∉ Θ an upper number of Θ. We define these cuts in

Coq as a type consisting of a predicate pcut : prat → Prop representing the set

and the proofs of the four cut properties mentioned above. Landau introduced

cuts the same way but using an alternative version for 5.3. His definition of the

third cut property looks as follows.

∀X Y . X ∈ Θ → Y ∉ Θ → X < Y (5.5)

We can prove that this property follows from the property 5.3. To prove the

equivalence, that is, to prove the other direction we would have to assume ex-

cluded middle. For this reason we rather take 5.3 as definition and 5.5 as a

(provable) lemma.

5.1 Order and Operations

Intuitively we can interpret the relation ≤ as ⊆. Recall that ⊆ is not linear. How-

ever, because of the properties of cuts, ⊆ induces a linear order for cuts. Follow-

ing Landau, we define < before ≤. Intuitively Θ < Ξ means that Θ is a subset of

Ξ but not the same set. Due to the properties of cuts it suffices to have an X that

is in Ξ but not in Θ.

Θ < Ξ := ∃X . X ∈ Ξ∧ X ∉ Θ (5.6)

Θ ≤ Ξ := Θ < Ξ∨Θ = Ξ (5.7)

We come now to addition, multiplication and subtraction for cuts. We consider

Θ+ Ξ as the set of all sums X + Y such that X ∈ Θ and Y ∈ Ξ. Furthermore we

consider Θ · Ξ as the set of all products X · Y such that X ∈ Θ and Y ∈ Ξ. Finally

we have Θ− Ξ the set of all differences X − Y such that X ∈ Θ and Y ∉ Ξ but

Y < X .

Θ+ Ξ := λZ. ∃X ∈ Θ ∃Y ∈ Ξ. Z = X + Y (5.8)

Θ · Ξ := λZ. ∃X ∈ Θ ∃Y ∈ Ξ. Z = X · Y (5.9)

Θ− Ξ := λZ. ∃X ∈ Θ ∃Y ∉ Ξ. Z = X − Y if Ξ < Θ (5.10)

There is no obvious way to avoid the existential quantifiers in these definitions.

Hence we do not have the choice to represent cuts with predicates mapping into

bool. To define the operations above we also have to prove the four properties

of cuts. These proofs are straightforward. Notice that Θ− Ξ can only be a cut

if Ξ < Θ since in the other cases there is no upper number Y of Ξ and a lower

number X of Θ with Y < X . Furthermore we did not explicitly mention the proof

for the difference of X and Y in Definition 5.10.
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Lemma 5.1.1 (Correctness of Subtraction) ∀Θ Ξ. Ξ < Θ → (Θ− Ξ)+ Ξ = Θ

The proof of the correctness is not obvious and needs additional assumptions

discussed in Section 5.2.1.

5.2 Additional Assumptions

5.2.1 Excluded Middle

Until now we could avoid assuming excluded middle. In this section we argue

the necessity of excluded middle.

The first time we really need the assumption XM is trichotomy for < on cuts.

Lemma 5.2.1 (Trichotomy) For all cuts Θ and Ξ we exactly have one of the cases

Θ < Ξ, Θ = Ξ, Ξ < Θ

Proof Given Θ and Ξ we distinguish two cases: ∃X . X ∈ Ξ∧ X ∉ Θ and

¬∃X . X ∈ Ξ∧ X ∉ Θ. The first case gives us Θ < Ξ. Then we consider again two

cases: ∃X . X ∈ Θ∧ X ∉ Ξ and ¬∃X . X ∈ Θ∧ X ∉ Ξ. The first case gives us Ξ < Θ.

Now, we can prove Θ = Ξ. To apply CE we have to prove

∀X . X ∈ Θ ↔ X ∈ Ξ

We consider an arbitrary X . We only prove one direction because the other one

is analogous. We assume X ∈ Θ and want to prove X ∈ Ξ. Using XM again

we have to prove that X ∉ Ξ gives us a contradiction. With our assumption

¬∃X . X ∈ Θ∧ X ∉ Ξ we have a contradiction since ∃X . X ∈ Θ∧ X ∉ Ξ, namely X

itself. �

The necessity of XM , that is, trichotomy implies XM is proven in the script. At

this point we only sketch the proof. We assume trichotomy for cuts and want to

prove A∨¬A for an arbitrary proposition A ∈ Prop. Given A we construct cuts

as follows.

Θ := { X | X < S O ∨ (X < S (S O)∧A) }
Ξ := { X | X < S O ∨ (X < S (S O)∧¬A) }

The fact that these sets constitute cuts is trivial. If Θ = Ξ we will have a con-

tradiction. In the other cases we can prove A or ¬A, respectively. Due to the

decidability of < for rational numbers we can split into different cases X < S O
equals true or false. In Coq this relates to a conditional like mentioned in Section

1.2.

To prove the correctness of subtraction and other theorems for cuts we need the

following lemma.
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5 Dedekind Cuts

Lemma 5.2.2 ∀X ∀Θ ∃Y Z. Y ∉ Θ∧ Z ∈ Θ∧ X = Y − Z

That is, given an arbitrary rational number X and an arbitrary cut Θ we can write

X as the difference of an upper number of Θ and a lower number of Θ.

Since in the proof of this lemma we strictly follow Landau, we only sketch the

proof. The detailed proof can be found in the script or in Landau’s book. Due to

the properties of cuts we have a lower number X1 of Θ. One can prove without

excluded middle that there is a natural number n such that X1 + n · X is not in Θ.

For example consider any upper number U = u1

u2
of Θ and the representative

x1

x2
of

X and take n to be x2 · u1. At this point Landau uses the (classical) Well-Ordering

Principle and takes the least n such that X1 + n · X is not in Θ. We can now define

Y and Z with X1, X and n. That is, we set Y = X1 + n · X and Z = X1 + (n− 1) · X .

Since we cannot subtract 1 from 1 we have to distinguish the cases n = 1 and

1 < n.

5.2.2 Cut Extensionality

If we take a closer look at the representation of cuts in Coq we can state two

problems: The predicate Θ maps into Prop instead of bool. When it comes to the

definitions of the operations for cuts we will see that we have to define Θ map-

ping into Prop instead of bool due to existential quantifiers. The other problem

is that the four properties for a cut have type Prop. Hence we cannot apply BPI

to show the equality of the proofs of two different cuts as we did with rational

numbers and their corresponding proofs.

First we remember that FE characterizes equality of functions and PE character-

izes equality of propositions. In this special situation we consider functions of

type prat → Prop. We would like to have the following property characterizing

equality of cuts.

CE := ∀Θ Ξ. (∀X . X ∈ Θ ↔ X ∈ Ξ)→ Θ = Ξ (5.11)

We call this characterization or assumption Cut Extensionality. The attentive

reader may have noticed the difference between FE and CE . While it makes no

sense to have an equivalence for arbitrary values yielded by functions we now

range over propositions and characterize the equality by the equivalence ↔. For

that CE looks like a combination of FE and PE . We need this for a lot of proofs

and we cannot circumvent it. To be sure that we do not assume something con-

tradictory we note that FE → PE → CE . The interested reader can read this proof

in the script. The additional assumption PI to prove the equality of the proofs is

provable from PE . That is, PE → PI . This proof is defined in the standard library

of Coq. Because we also can prove PE from CE we do not need to assume PI .
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5.3 Rational Numbers as Cuts

We also want to have the rational numbers as a subset of all cuts. Mapping

a natural number to a rational number was obvious. We want to map a given

rational number X to a set where the least upper bound is X (see also Section

5.5). To be more explicit we have

prat_to_cut : prat → cut

prat_to_cut X := λY . Y < X

This set is obviously a cut: It is not empty (5.1) since for every rational number

there is a smaller one (Lemma 4.7.2). The set does not contain every rational

number (5.2) since X is not in the set. The third property 5.3 follows from tran-

sitivity of <. The fourth property 5.4 follows from the fact that there is always

a rational number between two other rational numbers (Lemma 4.7.1). We can

easily prove

prat_to_cut(Θ+ Ξ) = prat_to_cut Θ+ prat_to_cut Ξ

prat_to_cut(Θ− Ξ) = prat_to_cut Θ− prat_to_cut Ξ if Ξ < Θ

prat_to_cut(Θ · Ξ) = prat_to_cut Θ · prat_to_cut Ξ

prat_to_cut

(
Θ

Ξ

)

= prat_to_cut Θ

prat_to_cut Ξ

prat_to_cut(Θ < Ξ) ↔ prat_to_cut Θ < prat_to_cut Ξ

That is, the function prat_to_cut respects the operations +, −, ·, taking the

quotient and the relation <. We call X the corresponding rational number to

prat_to_cut X . Furthermore we do not explicitly write prat_to_cut as one can see

in the following lemma expressing a further interesting property of prat_to_cut.

Lemma 5.3.1 ∀Θ ∀X . X < Θ ↔ X ∈ Θ

Proof Let Θ and X be given. First we show X < Θ → X ∈ Θ and assume X < Θ.

That is, there is a Z such that Z ∉ X but Z ∈ Θ. From trichotomy for rational

numbers we have X ≤ Z because Z ∉ X . Now from Property 5.3 we know X ∈ Θ
since Z ∈ Θ. We now prove X ∈ Θ → X < Θ. We assume X ∈ Θ. For Property 5.4

there is a rational number Y ∈ Θ with X < Y . Obviously Y ∉ X and hence we have

X < Θ. �
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5.4 Inverse of Multiplication

For an arbitrary cut Θ we also want to define an inverse element Θ−1 for ·. This

definition is not obvious.

Θ
−1 := λX . ∃Y ∉ Θ. Y < X−1 (5.12)

The interested reader can verify in the script that this set constitutes a cut. The

definition is not exactly the same as in Landau’s book. In his book he considers

all rational numbers of the form
1
X where X is not the least upper number of Θ.

We consider the inverse itself and not the quotient. We do so for two reasons:

We have the equality
1
X = X−1 and in Coq the formalization of the quotient is

much longer than the one of the inverse. Furthermore we consider every rational

number X whose inverse is an upper number of Θ but not the least one. This

formulation is equivalent to Landau’s since (X−1)−1 = X .

Lemma 5.4.1 (Inverse of Multiplication) ∀Θ. Θ−1 ·Θ = 1

In our formalization 1 corresponds to O considered as a cut.

The proof uses many basic transformations and can be read in Landau’s book or

in the proof script.

Based on the definition of ()−1 we can define the quotient of Θ and Ξ for arbitrary

given Θ and Ξ.

Θ

Ξ
:= Θ · Ξ−1 (5.13)

The common property of the quotient is summarized in the following lemma.

Lemma 5.4.2 (Correctness of Quotient) ∀Θ Ξ. Θ = Θ

Ξ
· Ξ

The proof is similar to the one of Lemma 4.6.2 using Lemma 5.4.1 and associa-

tivity of ·.

5.5 Least Upper Number

A cut has the special property that it is a nonempty set which has an upper

number and the cut itself is downward closed. Recall that an upper number X

of a certain cut Θ is a rational number where X ∉ Θ. Given an arbitrary subset

of the rational numbers P , a rational number X is called an upper bound of

P if ∀Y ∈ P. Y ≤ X . Due to the properties of cuts, every upper number is an

upper bound and vice versa. Now we want to know if every arbitrary cut Θ has a
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least upper number or a least upper bound. This is a rational number with the

following property.

lun Θ X := X ∉ Θ∧∀Y ∉ Θ. X ≤ Y (5.14)

We can state an interesting lemma expressing an equivalent formulation for the

introduced property above.

Lemma 5.5.1 ∀Θ ∀X . lun Θ X ↔ (∀Y . Y ∈ Θ ↔ Y < X )

This equivalence is not difficult to prove but a bit tedious in Coq. The inter-

ested reader can find the proof in the script. The definition is the more common

version of the least upper number but the equivalent formulation allows us to

prove the properties of the least upper bound in a very easy way. In Section

5.3 we could embed the rational numbers into cuts. We can state the following

lemma.

Lemma 5.5.2 ∀X . lun X X

That is, every rational number X is the least upper bound of itself considered as

a cut.

Proof Let X be given. By Lemma 5.5.1 we have to show ∀Y . Y ∈ X ↔ Y < X . Let

Y be given. The rational number X considered as a cut means λY . Y < X . For

that we have to prove Y < X ↔ Y < X which is obviously trivial. �

Now we know that every rational number considered as a cut has a least upper

bound. Furthermore we know this bound. The question now is whether cuts

having a least upper bound always correspond to a rational number.

Lemma 5.5.3 ∀Θ ∀X . lun Θ X → Θ = X

That is, every cut Θ with the least upper bound X corresponds to the rational

number X .

Proof Let Θ and X be given and assume lun Θ X . From Lemma 5.5.1 we have

∀Y . Y ∈ Θ ↔ Y < X . We can now apply CE and we are done. �

5.6 Square Root

We come now to an operation for cuts that gives us a unique solution Ξ for the

equation Ξ · Ξ = Θ for an arbitrary Θ. In contrast to the rational numbers such

a cut always exists. We call this cut the square root of Θ and also write
√
Θ

representing this cut. We define it as follows.

√

Θ := λX . X · X ∈ Θ (5.15)
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Proving that this set constitutes a cut is not difficult. To prove the property of

the square root we have to state several helping lemmas.

Lemma 5.6.1 ∀Θ Ξ.∀X . Θ · Ξ < X → ∃Y Z. X = Y · Z ∧Θ ≤ Y ∧ Ξ ≤ Z

This lemma expresses the following. Given two arbitrary cuts Θ and Ξ and a

rational number X where the product of Θ and Ξ is less than X considered as a

cut, there are always rational numbers Y und Z with the following property. The

product of Y and Z equals X and both Θ is less than or equal to Y and Ξ is less

than or equal to Z. The square root has the following property.

Lemma 5.6.2 ∀Θ.
√
Θ ·

√
Θ = Θ

The proofs of these lemmas can be read in Landau’s book or in the script since

we are strictly following Landau.

5.7 Rational and Irrational Cuts

In Section 5.3 we embedded the rational numbers into cuts and in Section 5.5 we

showed that every cut having a least upper bound relates to a rational number

and vice versa. We call such cuts rational. We are not convinced until now of the

existence of a cut that is not rational. That is, is there a cut not having a least

upper bound? We would call such a cut irrational. In this section we show the

existence of such a cut.

Theorem 5.7.1 ∃Θ ∀X . X ≠ Θ

That is, there is an irrational cut. That is, there is an irrational positive real

number.

Proof By Lemma 5.6.2 we know that Θ ·Θ = S O has a solution for Θ, namely√
S O. This cut is irrational. If it were rational we would have a contradiction by

Lemma 4.7.3. �

5.8 Remarks

In this chapter we constructed Dedekind cuts, a structure that represents the

last step before we can construct the real numbers. We could not avoid the use

of excluded middle since trichotomy for cuts is equivalent to excluded middle.

We defined an additional assumption, namely CE that characterizes equality for

cuts. This assumption is reasonable since we can prove FE → PE → CE . Because

we deal with sets or rather predicates of type prat → Prop we could not avoid

an assumption similar to extensionality. Furthermore in Coq we represent cuts
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with a type including proofs of type Prop we need proof irrelevance to prove

equality of proofs. Since PI follows from propositional extensionality PE and

PE gives us a characterization for equality of propositions it suffices to have

PE as assumption for CE . Unfortunately these assumption do not suffice in our

construction to define the real numbers with all their properties. We will see that

we need something stronger than XM that allows us to decide a proposition in a

computational function.
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In this chapter we consider the real numbers R. At this point we introduce

negative numbers and zero.

6.1 Properties of the Real Numbers

The set of the real numbers R is a complete ordered field. A popular formulation

of completeness is the supremum property. That is, every bounded subset of

the real numbers has a least upper bound. This property is what differentiates

the real numbers from the rational numbers. The ordered field properties are

summarized below.

0 ≠ 1 (6.1)

∀ǫ η. ǫ+ η = η+ ǫ Commutativity of + (6.2)

∀ǫ η ζ. (ǫ + η)+ ζ = ǫ+ (η+ ζ) Associativity of + (6.3)

∀ǫ. 0 + ǫ = ǫ Identity of + (6.4)

∀ǫ ∃ǫ′. ǫ′ + ǫ = 0 Inverse of + (6.5)

∀ǫ η. ǫ · η = η · ǫ Commutativity of · (6.6)

∀ǫ η ζ. (ǫ · η) · ζ = ǫ · (η · ζ) Associativity of · (6.7)

∀ǫ. 1 · ǫ = ǫ Identity of · (6.8)

∀ǫ. ǫ ≠ 0 → ∃ǫ′. ǫ′ · ǫ = 1 Inverse of · (6.9)

∀ǫ η ζ. ǫ · (η+ ζ) = ǫ · η+ ǫ · ζ Distributivity of + and · (6.10)

∀ǫ η ζ. ǫ ≤ η → η ≤ ζ → ǫ < ζ Transitivity of ≤ (6.11)

∀ǫ η. ǫ ≤ η∧ η ≤ ǫ → ǫ = η Antisymmetry of ≤ (6.12)

∀ǫ η. ǫ ≤ η∨ η ≤ ǫ Linearity of ≤ (6.13)

∀ǫ η ζ. ǫ ≤ η → ǫ+ ζ ≤ η+ ζ Monotonicity of ≤ and + (6.14)

∀ǫ η. 0 ≤ ǫ → 0 ≤ η → 0 ≤ ǫ · η (6.15)

An axiomatization of the real numbers including the properties above is given

by Dieudonné in [10]. Dieudonné’s axiomatization does not include the supre-

mum property of the real numbers. It contains the equivalent axiom of nested

intervals. That is, he wants the following property to be satisfied:
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We consider an (infinite) sequence of closed intervals [an,bn] where an ≤ an+1

and bn+1 ≤ bn (and of course an ≤ bn) for all n ∈ N+. In Coq we consider se-

quences of real numbers to be functions of type nat → real. We have that the

set
⋂

n∈N+
[an,bn]

is nonempty. That is, ∃ζ ∀n. an ≤ ζ ∧ ζ ≤ bn.

In addition, Dieudonné also mentions the Archimedean property for the real

numbers: Given two real numbers ǫ and η with 0 ≤ ǫ∧ 0 ≠ ǫ and 0 ≤ η, there

exists a natural number n such that η ≤ n · ǫ.

AP := ∀ǫ η. 0 ≤ ǫ ∧ 0 ≠ ǫ → 0 ≤ η → ∃n ∈ N+. η ≤ n · ǫ

We now come to an alternative axiomatization of the real numbers by Harrison

[9] including < instead of ≤ and the supremum property. He want definitions for

0 : real

1 : real

< : real → real → Prop

+ : real → real → real

− : real → real Inverse of +
· : real → real → real

()−1 : real → real Inverse of ·

and want the following properties to be satisfied.

0 ≠ 1 (6.16)

∀ǫ η. ǫ+ η = η+ ǫ Commutativity of + (6.17)

∀ǫ η ζ. (ǫ + η)+ ζ = ǫ+ (η+ ζ) Associativity of + (6.18)

∀ǫ. 0 + ǫ = ǫ Identity of + (6.19)

∀ǫ. − ǫ+ ǫ = 0 Inverse of + (6.20)

∀ǫ η. ǫ · η = η · ǫ Commutativity of · (6.21)

∀ǫ η ζ. (ǫ · η) · ζ = ǫ · (η · ζ) Associativity of · (6.22)

∀ǫ. 1 · ǫ = ǫ Identity of · (6.23)

∀ǫ. ǫ ≠ 0 → ǫ−1 · ǫ = 1 Inverse of · (6.24)

∀ǫ η ζ. ǫ · (η+ ζ) = ǫ · η+ ǫ · ζ Distributivity of + and · (6.25)

∀ǫ η. ǫ < η∨ ǫ = η∨ η < ǫ Trichotomy of < (6.26)

∀ǫ. ¬ ǫ < ǫ Irreflexivity of < (6.27)
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∀ǫ η ζ. η < ζ → ǫ + η < ǫ + ζ Monotonicity of < and + (6.28)

∀ǫ η. 0 < ǫ → 0 < η → 0 < ǫ · η (6.29)

At first Harrison considers ()−1 to be defined for every real number except 0.

Recall that we cannot define partial functions in Coq and for that we would need

an additional argument (like for subtraction of cuts). Harrison also discusses

this issue concerning HOL’s functions and the problem of defining subtypes. For

that he explicitly gives a multiplicative inverse of 0, namely 0. That is, finally he

defines ()−1 to be total on R.

At this point Harrison discusses the existence of the supremum for a nonempty

subset R of the real numbers that is bounded from above. Given R and ǫ, the

predicate ub holds if every real number in R is less than or equal to ǫ, i.e. ǫ is

an upper bound of R. The supremum property says that every subset of the real

numbers that is bounded from above has a least upper bound.

ub R ǫ := ∀η ∈ R. η < ǫ∨ η = ǫ

∀R ⊆ R. R ≠ 0 → (∃ǫ. ub R ǫ)→ ∃ζ. ub R ζ ∧∀η. ub R η → ζ < η∨ ζ = η

6.2 Constructing the Real Numbers

We consider the cuts introduced in Chapter 5 to be the positive real numbers.

For every positive rational number ǫ we introduce a negative real number, namely

−ǫ. Furthermore we define a special real number Z representing the zero. To be

more explicit, in Coq we have

Inductive real : Type :=

| Z : real

| P : cut -> real

| N : cut -> real.

The constructors P and N yield either a positive real numbers or a negative real

number to a given cut.

6.3 Order and Operations

It turns out that defining the relation < is relatively easy since we can directly

reduce < for reals to < for cuts in special cases. We define

N Θ <N Ξ := Ξ < Θ (6.30)

N Θ < P Ξ := True (6.31)
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N Θ < Z := True (6.32)

Z <N Ξ := False (6.33)

Z < Z := False (6.34)

Z < P Ξ := True (6.35)

P Θ <N Ξ := False (6.36)

P Θ < Z := False (6.37)

P Θ < P Ξ := Θ < Ξ (6.38)

and can easily prove trichotomy for < on R with trichotomy for < on cuts and a

case analysis or a destruct tactic on ǫ and η using the inductive definition.

Lemma 6.3.1 (Trichotomy) For all real numbers ǫ and η we exactly have one of

the cases

ǫ < η, ǫ = η, η < ǫ

Furthermore we define ≤ as follows.

ǫ ≤ η := ǫ < η∨ ǫ = η (6.39)

As it comes to addition and subtraction for real numbers we have more work to

do. We will discuss these operations in Section 6.5.

Defining multiplication is again straightforward since we can have a case analy-

sis on ǫ and η.

Z · η := Z (6.40)

ǫ · Z := Z if η ≠ Z (6.41)

P Θ · P Ξ := P (Θ · Ξ) (6.42)

N Θ ·N Ξ := P (Θ · Ξ) (6.43)

N Θ · P Ξ := N (Θ · Ξ) (6.44)

P Θ ·N Ξ := N (Θ · Ξ) (6.45)

6.4 Strong Trichotomy

We define a stronger version of trichotomy for cuts and refer to it as strong

trichotomy.

STR := ∀Θ Ξ Φ. { Θ < Ξ } + { Θ = Ξ } + { Ξ < Θ } (6.46)

One can interpret + above as ∨ with the difference that STR has type Type in-

stead of Prop. This fact allows us a case analysis within definitions. Using the

assumption of strong excluded middle of type Type

SXM := ∀X : Prop. { X } + {∼ X } (6.47)
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we can prove STR. Instead of assuming SXM and proving STR we just assume STR

in the rest of our construction. The necessity of STR as additional assumption is

discussed in Section 6.5. Furthermore we have STR → SXM .

6.5 Addition and Subtraction

We now argue the necessity of STR as additional assumption. We want addition

to have the following three properties

∀Θ Ξ. Θ < Ξ → P Θ+N Ξ =N (Ξ−Θ)
∀Θ Ξ. Θ = Ξ → P Θ+N Ξ = Z
∀Θ Ξ. Ξ < Θ → P Θ+N Ξ = P (Θ− Ξ)

We assume we have addition with these properties. From this we can easily

define STR by a case analysis on P Θ+N Ξ and trichotomy for cuts. That is,

STR is a necessary assumption for addition of real numbers. The details can

be found in the script. Note that strong trichotomy (for cuts) gives us a strong

trichotomy principle for real numbers.

After having assumed STR defining addition and subtraction for real numbers

becomes easy. First we define addition.

ǫ+ Z := ǫ (6.48)

Z + η := η if η ≠ Z (6.49)

N Θ+N Ξ := N (Θ+ Ξ) (6.50)

P Θ+P Ξ := P (Θ+ Ξ) (6.51)

P Θ+N Ξ := Z if Θ = Ξ (6.52)

P Θ+N Ξ := N (Ξ−Θ) if Θ < Ξ (6.53)

P Θ+N Ξ := P (Θ− Ξ) if Θ > Ξ (6.54)

N Θ+P Ξ := P Ξ+N Θ (6.55)

Because we now have negative numbers we can define for every real number ǫ

the inverse element −ǫ of + as follows.

−Z := Z (6.56)

−P Θ := N Θ (6.57)

−N Θ := P Θ (6.58)

We will see that we reduce subtraction for real numbers to addition of two real

numbers using this inverse element. The operator − becomes overloaded and
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stands for either subtraction or taking the inverse element for addition. The

context will always be clear and there should not be any confusion since the

subtraction operator is binary and the operator taking the inverse is unary.

Lemma 6.5.1 (Inverse of Addition) ∀ǫ. − ǫ + ǫ = 0

In our formalization 0 is a real number corresponding to Z. The proof of this

lemma is straightforward by definition of −, a case analysis for ǫ and the defini-

tion of +. We are now able to define subtraction in a quite easy way.

ǫ− η := ǫ + (−η) (6.59)

The correctness of subtraction is proven below.

Lemma 6.5.2 (Correctness of Subtraction) ∀ǫ η. ǫ = (ǫ − η)+ η

Proof Given arbitrary real numbers ǫ and η, we have

(ǫ − η)+ η = (ǫ + (−η)) + η = ǫ+ (−η+ η) = ǫ +Z = ǫ

The first equality follows from the definition of subtraction, the second equality

from associativity (which we did not prove explicitly in this section), the third

equality follows from Lemma 6.5.1 and the last equality follows from the defini-

tion of + (6.48). �

6.6 Inverse of Multiplication

Defining the inverse element ǫ−1 for · for an arbitrary real number ǫ brings up

the problem of dividing through zero 0 or Z, respectively. We could procrastinate

dealing with 0 until now. Similar to the definition of subtraction for natural

numbers or rational numbers we require an additional argument, a proof that

the second operand is not 0. We define the inverse for multiplication as below.

(P Θ)−1 := P Θ−1 (6.60)

(N Θ)−1 := N Θ
−1 (6.61)

We constructed the real numbers in a way we can directly decide whether a given

real number is Z or not. We call this function neq_zero and also write ≠b 0

instead.

Z ≠b 0 := false (6.62)

ǫ ≠b 0 := true if ǫ ≠ Z (6.63)

Defining this predicate mapping into bool allows us to use the same method like

mentioned in Section 2.2. To be more explicit, in Coq we have the following.
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Definition inv_mul_real (x:real) : neq_zero x -> real := match x with

| Z => fun (l : neq_zero Z) => match l with end

| P a => fun _ => P (inv_cut a)

| N a => fun _ => N (inv_cut a)

end.

At this point we also state the main property of the inverse for real numbers.

Lemma 6.6.1 (Inverse of Multiplication) ∀ǫ. ǫ ≠b 0 → ǫ−1 · ǫ = 1

The number 1 corresponds to the cut O. Here a case analysis on ǫ, the definition

of · and Lemma 5.4.1 gives us the proof.

For Harrison’s axiomatization we need ()−1 to be defined for every real number.

Hence we add the defining equation

Z−1 := Z (6.64)

and adapt the Coq definition to have type real → real as follows.

Definition inv_mul_real’ (x:real) : real := match x with

| Z => Z

| P a => P (inv_cut a)

| N a => N (inv_cut a)

end.

Defining the quotient for ǫ and η is analogous to the previous chapters. Here we

will again use ()−1 with the additional argument that the operand is not zero.

ǫ

η
:= ǫ · η−1 if η ≠b 0 (6.65)

Lemma 6.6.2 (Correctness of Quotient) ∀ǫ η. η ≠b 0 → ǫ
η
· η = ǫ

Again, the proof is is trivial using associativity of ·, Lemma 6.6.1 and the identity

for ·.

6.7 From Cuts to Real Numbers

At the beginning of this chapter in Section 6.2 we already mentioned that we

consider the cuts to be the positive real numbers and we gave them a special

constructor P yielding this positive real number. We also declare this function

or constructor P as a coercion.

cut_to_real : cut → real

cut_to_real := P

Since every operation for two positive real numbers reduce to the corresponding

operation for cuts it is not necessary to explicitly prove that cut_to_real respects

the operations +, −, ·, taking the quotient and the relation ≤ or <, respectively.
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6.8 Completeness

As we already mentioned there are different formulations of the completeness

property of the real numbers. We introduced the supremum property and the

axiom of nested intervals. Landau gives a theorem we discuss in the next section.

To argue about sets P and Q of real numbers we introduce the following nota-

tions.

P < Q := ∀ǫ η. ǫ ∈ P → η ∈ Q → ǫ < η (6.66)

P ≠ 0 := ∃ǫ. ǫ ∈ P (6.67)

P ∪Q = R := ∀ǫ. ǫ ∈ P ∨ ǫ ∈ Q (6.68)

6.8.1 Dedekind’s Fundamental Theorem

We now introduce a special property for the real numbers that is called

Dedekind’s Fundamental Theorem. It says the following.

Theorem 6.8.1 (Dedekind’s Fundamental Theorem) We consider any nontrivial

partition of the real numbers, that is, two connected nonempty subsets P and Q

of the real numbers with P ∪Q = R and P < Q . There is a unique real number ζ

such that every real number φ less than ζ is in P and every real number φ where

ζ is less than φ is in Q . Notice that P and Q are disjoint due to P < Q .

DF := ∀P Q . P ≠ 0 → Q ≠ 0 → P ∪Q = R→ P < Q

→ ∃ζ ∀φ. (φ < ζ → φ ∈ P)∧ (ζ < φ → φ ∈ Q)

Note that DF does not include the uniqueness of the candidate ζ. However, we

could easily state and prove it.

6.8.2 Tarski’s Fundamental Theorem

A similar property of the real numbers called the Law of Continuity is formu-

lated below given by Tarski [16]. Due to the analogy to Dedekind’s Fundamental

Theorem we refer to it as Tarski’s Fundamental Theorem.

Theorem 6.8.2 (Tarski’s Fundamental Theorem) We consider two subsets P

and Q of the real numbers with the property P < Q . There is a real number

ζ with the following property. If we consider arbitrary real numbers ǫ ∈ P and

η ∈ Q both different from ζ, we have ζ between ǫ and η.

TF := ∀P Q . P < Q

→ ∃ζ ∀ǫ η. ǫ ∈ P → η ∈ Q → ǫ ≠ ζ → η ≠ ζ → ǫ < ζ ∧ ζ < η

The main differences to DF are that P and Q do not have to include every real

number and there is no restriction about the emptiness of P and Q .
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6.8.3 Proofs of Fundamental Theorems

To prove Dedekind’s Fundamental Theorem in Coq we diverge a bit from Landau.

We state a more general theorem that allows us to prove both Dedekind’s and

Tarski’s Fundamental Theorem.

Lemma 6.8.3 We consider two nonempty subsets P and Q of the real numbers

with the property P < Q . There is a real number ζ such that every real number

less than ζ is not in Q and every real number φ where ζ is less than φ is not

in P .

∀P Q . P ≠ 0 → Q ≠ 0 → P < Q

→ ∃ζ ∀φ. (φ < ζ → φ ∉ Q)∧ (ζ < φ→ φ ∉ P)

The proof of this lemma is similar to Landau’s proof of Dedekind’s Fundamental

Theorem. Using XM we distinguish the cases whether P contains a positive or Q

contains a negative real number. If both are not the case the candidate for ζ is Z.

We only consider the case that P contains a positive real number. We construct

the following set Ξ.

Ξ := λX . ∃ǫ ∈ P. X < ǫ

It is not difficult to prove that this set constitutes a cut. We choose ζ to be the

corresponding real number to Ξ.

Landau defines Ξ in a different way. He considers every rational number X in P

which is not the least one if one exists. Hence he has the restriction X ∈ P . If

P ∪Q = R this definition is equivalent to Landau’s. Otherwise, Landau’s set is

not necessarily a cut.

We have to prove (φ < ζ → φ ∉ Q)∧ (ζ < φ→ φ ∉ P). We only consider

φ < ζ → φ ∉ Q since the proof of the other side is similar. We assume φ < ζ

and φ ∈ Q . From certain lemmas and a case analysis we know that there is ratio-

nal number X with φ < X < ζ. Since X < ζ = Ξ we have X ∈ Ξ. By the definition

of Ξ we have a real number ǫ ∈ P with X < ǫ. Now we have φ < ǫ from transitiv-

ity of <. Because of P < Q , ǫ ∈ P and φ ∈ Q we have ǫ < φ in contradiction to

φ < ǫ. The detailed proof can be found in the script.

Proof (Dedekind’s Fundamental Theorem) Let P and Q be given. We assume

the premisses from DF . In contrast to the general lemma we additionally as-

sume P ∪Q = R. We consider the ζ from Lemma 6.8.3. We have to prove

(φ < ζ → φ ∈ P)∧ (ζ < φ→ φ ∈ Q). We only prove the left sideφ < ζ → φ ∈ P

since the proof of the other side is similar. We assume φ < ζ. From the proper-

ties of ζ in Lemma 6.8.3 we have φ ∉ Q . By our assumption P ∪Q = R we are

done since φ ∈ Q yield a contradiction. �
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Proof (Tarski’s Fundamental Theorem) To prove TF we need a case analysis on

whether P or Q are empty. That is, we need XM to distinguish these cases. If one

of them is empty every rational number ζ does the job since ǫ ∈ P or η ∈ Q as

premiss gives us a contradiction. Hence we consider P and Q to be nonempty and

we can use the ζ from Lemma 6.8.3. We assume the premisses in the lemma and

want to prove ǫ < ζ ∧ ζ < η. We only prove ǫ < ζ since the proof of the other

side is similar. Using trichotomy for ǫ and ζ we consider three cases where ǫ < ζ

is exactly what we want. In the case ǫ = ζ we have a contradiction to ǫ ≠ ζ and

in the case ζ < ǫ we have ǫ ∉ P from the properties of ζ in Lemma 6.8.3 and

have a contradiction to ǫ ∈ P . �

6.8.4 Other Completeness Formulations

In this section we discuss how we can get the other formulations of the com-

pleteness property assuming Dedekind’s Fundamental Theorem. The interested

reader can find the detailed proofs in the script.

Supremum

To prove the supremum property, given a nonempty set R that is bounded from

above, we give definitions for P and Q . The candidate we get from the Funda-

mental Theorem is the desired supremum. We define

P := λǫ. ∃η ∈ R. ǫ < η

Q := λǫ. ¬ ∃η ∈ R. ǫ < η

Axiom of Nested Intervals

To prove the axiom of nested intervals, given a sequence [an,bn] of real number,

we define

R := λǫ. ∃n. ǫ < an

This set is nonempty and has an upper bound, for example b0. Hence from the

supremum property we have a least upper bound. This bound will also be in the

set
⋂

n∈N
[an,bn]

6.8.5 Archimedean Property

We already mentioned the Archimedean property of the real numbers. This prop-

erty does not express the completeness property of the real numbers. However,
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it is provable from the completeness property.

To prove it, we define N+ to be a subset of the real numbers by a predicate of

type real → Prop.

N+ := λǫ. ∃n. ǫ = 1+ · · · + 1
︸ ︷︷ ︸

n times

To prove the Archimedean property we first prove that N+ is unbounded.

Lemma 6.8.4 (N+ is unbounded) ∀ǫ ∃η ∈ N+. ǫ < η

Proof We assume N+ is bounded. From the supremum property we have a least

upper bound ζ. We know that there is a natural number n with ζ − 1 < n (if not,

ζ − 1 would be an upper bound of N+ that is less than the least upper bound).

Because N+ is inductively defined we know n+ 1 is in N+. We have ζ < n+ 1 in

contradiction to ζ being an upper bound of N+. �

Proof (Archimedean property) Let two real numbers ǫ and η with 0 ≤ ǫ ∧ 0 ≠ ǫ

and 0 ≤ η be given. Since N+ is not bounded we can find a natural numbers n

with
η

ǫ
≤ n

such that η ≤ n · ǫ. �

6.9 Remarks

In this chapter we constructed the real numbers based on Dedekind cuts. Defin-

ing < and multiplication · did not require additional assumptions. For the op-

erations addition + and hence subtraction we needed a stronger version of tri-

chotomy for cuts, namely STR, to have a case analysis within the definition. Fur-

thermore we introduced negative numbers and a zero. Hence we had to pay at-

tention defining the inverse of multiplication regarding dividing through zero.

Finally we considered the fundamental theorem expressing a very important

property of the real numbers. In the end we could construct the real numbers

from the assumptions CE and STR since XM can be proven from STR.
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7.1 Differences to Landau

The first time we diverged from Landau’s construction was that we did not as-

sume the Peano axioms. Due to the underlying Calculus of Constructions we

could easily prove the axioms. We also diverged from Landau’s definition con-

cerning the relation ≤. While Landau defined the relation <, ≤, > and ≤ inde-

pendently we defined them as special notations of ≤. Furthermore we defined ≤
recursively instead of using addition. Hence many proofs became different from

Landau’s. We also defined the function first giving us a constructive version of

the Well-Ordering Principle that allowed us to avoid excluded middle as assump-

tion.

Another time we fundamentally diverged from Landau was the definition of the

rational numbers. While Landau explicitly defined the rational numbers to be

sets of equivalent fraction we represent such a set by a unique representative,

namely the reduced fraction. We could reuse the function first to compute the

reduced fraction without additional algorithms like the Euclidean algorithm.

A further time we diverge from Landau is the definition of the properties of cuts.

We have chosen an equivalent version of the third property of cuts.

Concerning the real numbers and the fundamental theorem we stated a more

general theorem that allowed us to prove both Dedekind’s and Tarski’s Funda-

mental Theorem.

7.2 Assumptions

7.2.1 Excluded Middle

In Coq and the Calculus of Inductive Constructions we could define the natural

numbers without assuming excluded middle The only time we needed it were in

the Well-Ordering Principle WP . We were able to prove XM ↔ WP . Since our col-

lection of the properties of the natural numbers does not include WP , we could

avoid excluded middle.

As it came to (positive) rational numbers there was no need of excluded middle

because we could decide the relation ≤ for rational numbers as for natural num-
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bers. That is, we could define ≤ mapping into bool instead of Prop.

Nevertheless it was not possible to avoid assuming excluded middle in the con-

struction of the real numbers. Working with Dedekind cuts required classical

logic. We could prove the equivalence between XM and trichotomy for cuts. That

is, there is no construction of cuts that gives us trichotomy only from intuition-

istic laws without assuming classical laws in advance. Since we used Dedekind

cuts to construct the real numbers their structure is also classical.

7.2.2 Other Assumptions

In the construction of the different number systems we also needed additional

assumptions besides excluded middle. For the natural numbers we did not need

any additional assumption. Since we represent rational numbers by a unique rep-

resentative, i.e. a reduced fraction instead of sets of equivalent fractions we did

not need an extensionality characterizing equality for sets, predicates or func-

tions, respectively.

There was no obvious way to represent Dedekind cuts in another way than sets

or predicates of type prat → Prop. In addition to classical assumptions we had

to assume some extensionality characterizing the equality of cuts, namely CE .

The assumption CE was provable from Functional Extensionality FE and Propo-

sitional Extensionality PE , i.e. FE → PE → CE . The necessary assumption PI to

prove the equality of the proofs of the cut properties can be proven from PE .

That is, PE → PI . Furthermore, we could prove CE → PE . Hence the reasonable

assumption CE gives us Proof Irrelevance. Defining the real numbers and ad-

dition for them required a further assumption. We defined strong trichotomy

STR corresponding to trichotomy for cuts and < of type Type. With this as-

sumption we could easily define addition for real numbers. If we assume having

addition for real numbers with certain properties we can prove STR. That is,

strong trichotomy for cuts and < is a necessary assumption. We could also prove

SXM ↔ STR where SXM corresponds to XM of type Type, a stronger version of

excluded middle.
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