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Constructive Type Theory

Computational foundation centred around typing judgements x : X

Features included in the Calculus of Inductive Constructions (CIC):

Inductive types: B, N, lists X ∗, vectors X n, ...

Standard type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Propositional universe P with logical connectives: →, ∧, ∨, ∀, ∃

Features not included in CIC:

Choice principles turning total relations R : X → Y → P into functions f : X → Y

Classical axioms that allow case distinctions of the form P ∨ ¬P
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The Arithmetical Hierarchy and Classical Axioms

Represent the arithmetical hierarchy on predicates p : Nk → P inductively:

f : Nk → B
Σ0(λx⃗ . f x⃗ = true)

f : Nk → B
Π0(λx⃗ . f x⃗ = true)

Πn p

Σn+1(λx⃗ .∃y . p (y :: x⃗))

Σn p

Πn+1(λx⃗ . ∀y . p (y :: x⃗))

With LEM := ∀P : P. P ∨ ¬P and DNE := ∀P : P. ¬¬P → P we have (Akama et al. (2004)):

Σn-LEM

Πn-LEM Σn−1-LEM Σn-DNE

Πn−1-LEM Πn-DNE Σn−1-DNE,

Πn−1-DNE
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Synthetic Computability1

Exploit that in constructive foundations, every definable function is computable:

P : X → P is decidable := ∃d : X → B. ∀x .P x ↔ d x = true

P : X → P is semi-decidable := ∃s : X → N → B. ∀x .P x ↔ (∃n. s x n = true)

Pros:

Avoid manipulating Turing machines or equivalent model of computation

Elegant formalisation (e.g. in CIC), feasible mechanisation (e.g. in Coq)

Cons:

Finding a correct synthetic rendering of Turing reductions not so straightforward

Some attempts: Bauer (2021); Forster (2021); Forster and Kirst (2022); Mück (2022)

1Richman (1983); Bauer (2006); Forster, Kirst and Smolka (2019)
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Synthetic Oracle Computability

Definition (Forster, Kirst and Mück (2023))

An oracle computation is a functional F : (Q→A→P)→I→O→P captured by a computation
tree τ : I→A∗⇀Q + O and its induced interrogation relation τ i ;R ⊢ qs ;as as follows:

σ ; R ⊢ [ ] ; [ ]

σ ; R ⊢ qs ; as σas ↓ ask q Rqa

σ ; R ⊢ qs ++ [q] ; as ++ [a]

F R i o ↔ ∃qs as. τ i ;R ⊢ qs ;as ∧ τ x as ↓ out o

P ⪯T Q := there is an oracle computation F : (N→B→P)→N→B→P with F Q = P

SQ(P) := there is an oracle computation F : (N→B→P)→N→1→P with dom(F Q) = P
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Continuity of Oracle Computations
Our employed notion of sequential continuity is strictly stronger than modulus-continuity:

Lemma (Forster, Kirst and Mück (2023))

1 Every oracle computation F is modulus-continuous:

F R i o → ∃qs ⊆ dom(R). ∀R ′. (∀q ∈ qs. ∀a. Rqa ↔ R ′qa) → F R ′ i o

2 Not every modulus-continuous functional is an oracle computation.

Proof.

1 From a terminating run F R i o we obtain an interrogation τ i ;R ⊢ qs ;as and can easily
show that qs is a modulus of continuity.

2 The modulus-continuous functional F R i o := ∃q.R q true is not an oracle computation
as for any computation tree τ we can define a suitably blocking oracle.
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Enumerating Oracle Computations

We need an enumeration of oracle computations for diagonalisations / Turing jump...

To ensure consistency, we start from a standard axiom (Kreisel (1965); Forster (2021)):

EPF := ∃θ:N→(N⇀N).∀f :N⇀N.∃e:N.∀xv . θe x ↓ v ↔ f x ↓ v

Theorem (Forster et al. (2024))

There is an enumerator of functionals Φ:N→(N→B→P)→N→B→P such that

1 Φe is an oracle computation for all e : N
2 Given an oracle computation F there is e : N such that ∀Rxb.ΦR

e (x) ↓ b ↔ F R x b

3 The Turing jump P ′ x := ΦP
x (x) ↓ true of P is strictly harder than P

4 The halting problem H := ∅′ is undecidable
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Post’s Problem
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Post’s Problem

Is there a semi-decidable yet undecidable set S with H ̸⪯T S?

Left as an open problem by Post (1944)

Positive solution by Friedberg (1957) and Muchnik (1956)

Low simple set construction by Lerman and Soare (1980)

Synthetic proof mechanised in Coq by Zeng et al. (2024), relying on Σ2-LEM

Analytic proof given by Nemoto (2024), relying only on Σ1-LEM / LPO

Combination yields a synthetic and mechanised proof using LPO
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Low Simple Sets and Limit Computability

Definition (Lerman and Soare (1980) and Post (1944))

P : X → P is low if P ′ ⪯T H and simple if it is semi-decidable and for We being the e-th
enumerable set we have We ∩ P ̸= ∅ whenever We is infinite.

⇒ Every low simple set is a solution to Post’s problem!

Definition (Shoenfield (1959) and Gold (1965))

P : X → P is limit-computable if there exists a function f : X → N → B with

Px ↔ ∃n.∀m > n. f (x ,m) = true ∧ ¬Px ↔ ∃n.∀m > n. f (x ,m) = false.

⇒ Limit-computability provides easy way to prove lowness...
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Limit Lemma

Lemma (1)

If SQ(P) and SQ(P) then P ⪯T Q.

Lemma (2)

Assuming Σn-LEM, if P is Σn+1 and Q is Σn, then SQ(P).

Lemma (Limit Lemma)

Assuming LPO, if P is limit computable, then P ⪯T H.

Proof.

If P is limit computable, then immediately by definition both P and P are Σ2. Moreover, since
the halting problem H is Σ1, Lemma 2 together with LPO yields both SH(P) and SH(P).
From there we conclude P ⪯T H with Lemma 1.
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The Priority Method

Fix step function γ : N∗ → N → N → P, approximate S inductively:

0⇝ [ ]

n⇝ L γLn x

n + 1⇝ x :: L

n⇝ L ∀x . ¬ γLn x

n + 1⇝ L

Depending on properties of γ we obtain for S x := ∃n, L. n⇝ L ∧ x ∈ L that:

γ is computable ⇒ S is semi-decidable

S satisfies Pe := We is infinite → We ∩ S ̸= ∅ ⇒ S is simple

S satisfies Ne := (∃∞n. ΦS
e (e)[n] ↓) → ΦS

e (e) ↓ ⇒ S ′ is limit computable (using LPO)
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Wall Functions

Definition

The use function UP
e (x) approximates the continuity information of the oracle computation

ΦP
e (x) in a step-indexed way.

Define suitable γ again relative to a wall function ω of same type:

ωL
n(e) ≥ 2 · e ⇒ S satisfies the requirements Pe

ωL
n(e) ≥ maxe′≤e U

L
e′(e

′)[n] ⇒ S satisfies the requirements Ne (using LPO)

Theorem

Assuming LPO, a low simple set exists.

Proof.

Choose the wall function ω := max(2 · e,maxe′≤e U
L
e′(e

′)[n]).
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Conclusion
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Coq Mechanisation
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Ongoing Work

Reverse analysis:

LPO needed for limit lemma?

LPO needed to show that S ′ is limit computable?

LPO needed to construct a low simple set?

Generalisation:

Friedberg-Muchnik theorem

Low basis theorem

Connections to true second-order arithmetic
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