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Intuitionistic Epistemic Logic (IEL)

Classical epistemic logic (Hintikka, 1962)

Extend classical logic with modality K

Add axioms for K capturing understanding of belief/knowledge

Reflection principle KA→ A: “Known propositions are true”

Intuitionistic epistemic logics (Artemov and Protopopescu, 2016)

Understand truth as intuitionistic provability (BHK-interpretation)

Co-reflection principle A→ KA: “From proofs we gain knowledge by verification”

Intuitionistic reflection KA→ ¬¬A: “Known propositions are potentially true”

IEL− := IPC + co-reflection IEL := IEL− + int. reflection
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Meta-Theory of IEL

Artemov and Protopopescu (2016)

Soundness and completeness with respect to suitable Kripke semantics

Derived results: disjunction property, admissibility of reflection, etc.

Su and Sano (2019)

Finite model property and semantic cut-elimination

Krupski (2020)

Syntactic cut-elimination and decidability
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Classical Meta-Theory of IEL

Fact

If T 
 A implies T ` A for arbitrary T , then double negation elimination holds.

Proof.

Given some proposition P and assuming ¬¬P, consider T := {A ∈ F | P}. It is enough to
show T ` ⊥, since then T must be non-empty and thus P holds. Apply completeness and
show T 
 ⊥, so assume a model M 
 T and derive a contradiction. Since we have ¬¬P, on
deriving a contradiction we may assume P. But then M 
 ⊥, contradiction.

Fact

If T 
 A implies T ` A for enumerable T , then Markov’s principle holds.

Proof.

Let f : N→ B with ¬¬(∃n. f n = true) be given. Using the enumerable set
T := {An ∧ ¬An | f n = true} derive ∃n. f n = true with an argument as above.
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Constructive Meta-Theory of IEL

Can IEL be meaningfully described in a constructive system?

Work in the constructive type theory CIC (Coquand and Huet, 1988; Paulin-Mohring, 1993):

Expressive system implementing higher-order intuitionistic logic

Clean analysis without obscuring choice principles (Richman, 2001; Forster, 2022)

Obtain (variants of) main results without appeal to additional axioms

Fact (CIC models IEL)

The truncation operation ||X || squashing a computational type X of CIC into the propositional
universe P satisfies co-reflection X → ||X || and intuitionistic reflection ||X || → ¬¬X.
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Mechanised Meta-Theory of IEL1

Can IEL be feasibly mechanised in a proof assistant?

Work with the Coq proof assistant:

Implements CIC, used as tool to verify our proofs and track assumptions

Executable algorithms via constructive completeness, cut-elimination, and decidability

Synthetic computability as a shortcut (Richman, 1983; Bauer, 2006; Forster et al., 2019)

Development systematically hyperlinked with the paper

1https://www.ps.uni-saarland.de/extras/iel/
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Results Overview

Cut Elimination

Decidability ND

Decidability SC

Finitary Lindenbaum

Constructive Completeness

Finite Model Property Semantic Cut-Elimination
Admissibility
of Reflection

Reformulation

Constructivisation
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Deduction Systems for IEL

Model deduction systems as inductive predicates of type L (F)→ F → P.

Natural Deduction (ND)
Extends natural deduction for IPC by 3 rules
(co-reflection, distribution and int. reflection)

Γ ` A

Γ ` KA
(KR)

Γ ` K (A ⊃ B)

Γ ` KA ⊃ KB
(KD)

Γ ` KA

Γ ` ¬¬A
(KF )

Sequent Calculus (SC)
Extend G3I by 2 rules (Krupski, 2020); we use
GKI as base (better for mechanisation)

Γ ∪ {A | KA ∈ Γ} ⇒ B

Γ⇒ KB
(KI)

Γ⇒ K⊥
Γ⇒ A

(KF)

In contrast to ND, SC is analytic, i.e. (almost) has the subformula property.

C. Hagemeier, D. Kirst. Constructive and Mechanised Meta-Theory of IEL January 12th, 2022 8



Cut-Elimination

Theorem (Cut-Elimination)

If Γ⇒ A and Γ,A⇒ B then Γ⇒ B.

Proof.

Typical double induction on rank and size of a cut (cf. Troelstra/Schwichtenberg(2000)).

Corollary (Agreement)

Γ ` A if and only if Γ⇒ A.

Proof.

Both directions are proven by induction on the given derivations; only direction from ND to SC
needs Cut-Elimination.
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Decidability

Lemma

One can construct a function f : F → B such that f A = true if and only if ⇒A.

Synthetic notion of decidability (no Turing-machines; f computable by construction)

Utilise subformula property of sequent calculus for IEL

Compute derivable sequents as a fixed point of stepwise derivation

Theorem (Decidability)

SC and ND are decidable.

Proof.

By the previous lemma and the agreement of ND and SC.
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Lindenbaum Construction
Let U be finite and subformula-closed.

Definition (Primeness)

A set of formulas Γ is U-prime A ∨ B ∈ Γ implies that A ∈ Γ or B ∈ Γ for all A,B ∈ U .

Lemma

For any context Γ ⊆ U and formula A⊥, we can compute ∆ extending Γ which is U-prime,
closed under derivability in U , and preserves non-derivability of A⊥.

Proof.

Iterate through the formulas Ai of U to obtain contexts Γi . In step i , add Ai , if
non-derivability of A⊥ is preserved by the addition (using decidability):

Γi+1 :=

{
Γi ,Ai if Γi ,Ai 0 A⊥

Γi otherwise
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Decidable Universal Model
Given U , build a canonical Kripke model MU = (WU ,VU ,≤,≤K):

WU contains U-prime, consistent U-theories as worlds
VU (Γ, i) := pi ∈ Γ
Γ ≤ ∆ := Γ ⊆ ∆
Γ ≤K ∆ := Γ ∪ {A | KA ∈ Γ} ⊆ ∆ (same as in Su and Sano (2019b))

Lemma (Truth Lemma)

For A ∈ U and Γ ∈ WU , we have A ∈ Γ ⇐⇒ Γ 
 A.

Proof.

Induction on A. Using decidability of membership and the Lindenbaum Lemma.

Theorem (Finitary Completeness)

If 
 A then ` A, or equivalently, if Γ 
 A then Γ ` A for finite Γ.

Proof.

Assume 
 A and 0 A (by decidability of `). Using the Lindenbaum Lemma there is a world Γ
in the canonical model over the subformula universe of A s.t. A /∈ Γ. Contradiction to 
 A.
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Finite Model Property

Definition (FMP)

IEL has FMP, if ` A whenever M 
 A for all (essentially) finite M.

Theorem

IEL has the finite model property.

Proof.

Given the bound against U , the canonical model is (essentially) finite.
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Semantic Cut-Elimination2

Lemma (Completeness SC)

If Γ 
 A then Γ⇒ A.

Proof.

Canonical model construction with respect to SC using saturated theories.

Theorem (SCE)

If Γ ` A then Γ⇒ A.

Proof.

By composition of Soundness and Completeness.

2Following Su and Sano (2019a)
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Coq Mechanisation3

Roughly 3k lines of code, structured in
accordance with the paper

Uses helpful features of Coq: e.g. can
prove most results simultaneously for IEL
and IEL− using a type class flag

Method for mechanising syntactic results
(i.e. decidability and cut-elimination)
generalises to other logics, we instantiated
to classical modal logic K

Component Spec Proof

preliminaries 121 93
natural deduction + lindenbaum 183 418

models 43 23
completeness 75 325

semantic cut-elimination 49 214
cut-elimination + decidability IEL 193 399

classical completeness / infinite theories 90 261
cut-elimination + decidability K 116 362∑

737 2194

Figure: Overview of the mechanisation components

3https://www.ps.uni-saarland.de/extras/iel/
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Conclusion

Background: IEL is a convincing rendering of knowledge in intuitionistic framework

Contribution: IEL has a well-behaved meta-theory in intuitionistic framework

Method: Proof assistant helps ensuring correctness and exhibits algorithms

Future Work: Investigate if similar method applies to other logics (i.e. GL)

Thank You!
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Cut Elimination
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Decidability
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SC

pi ∈ Γ

Γ⇒ pi

⊥ ∈ Γ

Γ⇒ S

F , Γ⇒ G

Γ⇒ F ⊃ G

F ⊃ G ∈ Γ Γ⇒ F

Γ⇒ G

F ∧ G ∈ Γ F ,G , Γ⇒ H

Γ⇒ H

Γ⇒ F Γ⇒ G

Γ⇒ F ∧ G

F ∨ G ∈ Γ F , Γ⇒ H G , Γ⇒ H

Γ⇒ H

Γ⇒ Fi

Γ⇒ F1 ∨ F2

Γ ∪ ΓK ⇒ F

Γ⇒ KF
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ND

A ∈ Γ

Γ ` A
A

Γ ` ⊥
Γ ` A

E

Γ,A ` B

Γ ` A ⊃ B
II

Γ ` A Γ ` A ⊃ B

Γ ` B
IE

Γ ` A

Γ ` A ∨ B
DIL

Γ ` B

Γ ` A ∨ B
DIR

Γ,A ` C Γ,B ` C Γ ` A ∨ B

Γ ` C
DE

Γ ` A Γ ` B

Γ ` A ∧ B
CI

Γ ` A ∧ B

Γ ` A
CEL

Γ ` A ∧ B

Γ ` B
CER

Γ ` A

Γ ` KA
KR

Γ ` K (A ⊃ B)

Γ ` KA ⊃ KB
KD

Γ ` KA

Γ ` ¬¬A
KF
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