
Applied Synthetic Computability Theory

Gödel’s Incompleteness and Post’s Problem

Dominik Kirst

Logic and Computation Team Seminar
LIPN, February 27th, 2025

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 1

https://www.inria.fr/en
https://www.irif.fr

There are non-computable functions!

Standard example: the characteristic function of the halting problem

χK (M) :=

{
1 if M terminates

0 if M diverges

Three properties ensure that this relation is a function:

Functionality: obvious

Totality: given M, since M either terminates or diverges by the law of excluded middle,
we have either χK (M) = 1 or χK (M) = 0, respectively

Unique choice: total functional relations are actually functions

So classical logic is needed to show that χK (M) really is a function!

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 2

There are non-computable functions!

Standard example: the characteristic function of the halting problem

χK (M) :=

{
1 if M terminates

0 if M diverges

Three properties ensure that this relation is a function:

Functionality: obvious

Totality: given M, since M either terminates or diverges by the law of excluded middle,
we have either χK (M) = 1 or χK (M) = 0, respectively

Unique choice: total functional relations are actually functions

So classical logic is needed to show that χK (M) really is a function!

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 2

There are non-computable functions!

Standard example: the characteristic function of the halting problem

χK (M) :=

{
1 if M terminates

0 if M diverges

Three properties ensure that this relation is a function:

Functionality: obvious

Totality: given M, since M either terminates or diverges by the law of excluded middle,
we have either χK (M) = 1 or χK (M) = 0, respectively

Unique choice: total functional relations are actually functions

So classical logic is needed to show that χK (M) really is a function!

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 2

There are non-computable functions!

Standard example: the characteristic function of the halting problem

χK (M) :=

{
1 if M terminates

0 if M diverges

Three properties ensure that this relation is a function:

Functionality: obvious

Totality: given M, since M either terminates or diverges by the law of excluded middle,
we have either χK (M) = 1 or χK (M) = 0, respectively

Unique choice: total functional relations are actually functions

So classical logic is needed to show that χK (M) really is a function!

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 2

There are non-computable functions!

Standard example: the characteristic function of the halting problem

χK (M) :=

{
1 if M terminates

0 if M diverges

Three properties ensure that this relation is a function:

Functionality: obvious

Totality: given M, since M either terminates or diverges by the law of excluded middle,
we have either χK (M) = 1 or χK (M) = 0, respectively

Unique choice: total functional relations are actually functions

So classical logic is needed to show that χK (M) really is a function!

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 2

There are non-computable functions!

Standard example: the characteristic function of the halting problem

χK (M) :=

{
1 if M terminates

0 if M diverges

Three properties ensure that this relation is a function:

Functionality: obvious

Totality: given M, since M either terminates or diverges by the law of excluded middle,
we have either χK (M) = 1 or χK (M) = 0, respectively

Unique choice: total functional relations are actually functions

So classical logic is needed to show that χK (M) really is a function!

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 2

There are non-computable functions!

Standard example: the characteristic function of the halting problem

χK (M) :=

{
1 if M terminates

0 if M diverges

Three properties ensure that this relation is a function:

Functionality: obvious

Totality: given M, since M either terminates or diverges by the law of excluded middle,
we have either χK (M) = 1 or χK (M) = 0, respectively

Unique choice: total functional relations are actually functions

So classical logic is needed to show that χK (M) really is a function!

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 2

There are no non-computable functions!

Non-computable functions are an artefact of classical logic!

In foundations without LEM like IZF, CZF, MLTT, HoTT, CIC:

Proving totality is the similar to constructing a computable function

Type-theoretic foundations actually identify the two

In foundations without LEM and UC like CIC:

Even if totality is given, it still does not induce a function

So we can even assume LEM and still don’t obtain new functions!

In any of those: no need for Turing machines, simply treat all functions as computable

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 3

There are no non-computable functions!

Non-computable functions are an artefact of classical logic!

In foundations without LEM like IZF, CZF, MLTT, HoTT, CIC:

Proving totality is the similar to constructing a computable function

Type-theoretic foundations actually identify the two

In foundations without LEM and UC like CIC:

Even if totality is given, it still does not induce a function

So we can even assume LEM and still don’t obtain new functions!

In any of those: no need for Turing machines, simply treat all functions as computable

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 3

There are no non-computable functions!

Non-computable functions are an artefact of classical logic!

In foundations without LEM like IZF, CZF, MLTT, HoTT, CIC:

Proving totality is the similar to constructing a computable function

Type-theoretic foundations actually identify the two

In foundations without LEM and UC like CIC:

Even if totality is given, it still does not induce a function

So we can even assume LEM and still don’t obtain new functions!

In any of those: no need for Turing machines, simply treat all functions as computable

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 3

There are no non-computable functions!

Non-computable functions are an artefact of classical logic!

In foundations without LEM like IZF, CZF, MLTT, HoTT, CIC:

Proving totality is the similar to constructing a computable function

Type-theoretic foundations actually identify the two

In foundations without LEM and UC like CIC:

Even if totality is given, it still does not induce a function

So we can even assume LEM and still don’t obtain new functions!

In any of those: no need for Turing machines, simply treat all functions as computable

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 3

There are no non-computable functions!

Non-computable functions are an artefact of classical logic!

In foundations without LEM like IZF, CZF, MLTT, HoTT, CIC:

Proving totality is the similar to constructing a computable function

Type-theoretic foundations actually identify the two

In foundations without LEM and UC like CIC:

Even if totality is given, it still does not induce a function

So we can even assume LEM and still don’t obtain new functions!

In any of those: no need for Turing machines, simply treat all functions as computable

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 3

Some Synthetic Definitions1

P ⊆ X is decidable if there exists d : X → B with x ∈ P ↔ d x = true

P ⊆ X is semi-decidable if there exists s : X × N → B with x ∈ P ↔ ∃n. s (x , n) = true

P ⊆ X is enumerable if there exists e : N → X ∪̇ {∗} with x ∈ P ↔ ∃n. e n = x

P ⊆ X reduces to Q ⊆ Y if there exists r : X → Y with x ∈ P ↔ r x ∈ Q

1cf. Richman (1983), Bauer (2006), Forster, Kirst, Smolka (2019)
Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 4

Some Synthetic Definitions1

P ⊆ X is decidable if there exists d : X → B with x ∈ P ↔ d x = true

P ⊆ X is semi-decidable if there exists s : X × N → B with x ∈ P ↔ ∃n. s (x , n) = true

P ⊆ X is enumerable if there exists e : N → X ∪̇ {∗} with x ∈ P ↔ ∃n. e n = x

P ⊆ X reduces to Q ⊆ Y if there exists r : X → Y with x ∈ P ↔ r x ∈ Q

1cf. Richman (1983), Bauer (2006), Forster, Kirst, Smolka (2019)
Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 4

Some Synthetic Definitions1

P ⊆ X is decidable if there exists d : X → B with x ∈ P ↔ d x = true

P ⊆ X is semi-decidable if there exists s : X × N → B with x ∈ P ↔ ∃n. s (x , n) = true

P ⊆ X is enumerable if there exists e : N → X ∪̇ {∗} with x ∈ P ↔ ∃n. e n = x

P ⊆ X reduces to Q ⊆ Y if there exists r : X → Y with x ∈ P ↔ r x ∈ Q

1cf. Richman (1983), Bauer (2006), Forster, Kirst, Smolka (2019)
Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 4

Some Synthetic Definitions1

P ⊆ X is decidable if there exists d : X → B with x ∈ P ↔ d x = true

P ⊆ X is semi-decidable if there exists s : X × N → B with x ∈ P ↔ ∃n. s (x , n) = true

P ⊆ X is enumerable if there exists e : N → X ∪̇ {∗} with x ∈ P ↔ ∃n. e n = x

P ⊆ X reduces to Q ⊆ Y if there exists r : X → Y with x ∈ P ↔ r x ∈ Q

1cf. Richman (1983), Bauer (2006), Forster, Kirst, Smolka (2019)
Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 4

Some Synthetic Proofs

1 Decidable sets are semi-decidable and co-semi-decidable

⇒ Given d : X → B pick s(x , n) := d x and s(x , n) := ¬d x , respectively

2 A set (of numbers) is semi-decidable if and only if it is enumerable

⇒ Given a semi-decider s : N× N → B pick the enumerator

e n :=

{
n2 n = ⟨n1, n2⟩ and s(n1, n2) = true

∗ otherwise

and given an enumerator e : N → N ∪ {∗} pick the semi-decider s(x , n) := e n
?
= x

3 If P ⊆ X reduces to Q ⊆ Y and Q is decidable, then so is P

⇒ Given d : Y → B and f : X → Y pick d ◦ f

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 5

Some Synthetic Proofs

1 Decidable sets are semi-decidable and co-semi-decidable

⇒ Given d : X → B pick s(x , n) := d x and s(x , n) := ¬d x , respectively

2 A set (of numbers) is semi-decidable if and only if it is enumerable

⇒ Given a semi-decider s : N× N → B pick the enumerator

e n :=

{
n2 n = ⟨n1, n2⟩ and s(n1, n2) = true

∗ otherwise

and given an enumerator e : N → N ∪ {∗} pick the semi-decider s(x , n) := e n
?
= x

3 If P ⊆ X reduces to Q ⊆ Y and Q is decidable, then so is P

⇒ Given d : Y → B and f : X → Y pick d ◦ f

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 5

Some Synthetic Proofs

1 Decidable sets are semi-decidable and co-semi-decidable

⇒ Given d : X → B pick s(x , n) := d x and s(x , n) := ¬d x , respectively

2 A set (of numbers) is semi-decidable if and only if it is enumerable

⇒ Given a semi-decider s : N× N → B pick the enumerator

e n :=

{
n2 n = ⟨n1, n2⟩ and s(n1, n2) = true

∗ otherwise

and given an enumerator e : N → N ∪ {∗} pick the semi-decider s(x , n) := e n
?
= x

3 If P ⊆ X reduces to Q ⊆ Y and Q is decidable, then so is P

⇒ Given d : Y → B and f : X → Y pick d ◦ f

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 5

Some Synthetic Proofs

1 Decidable sets are semi-decidable and co-semi-decidable

⇒ Given d : X → B pick s(x , n) := d x and s(x , n) := ¬d x , respectively

2 A set (of numbers) is semi-decidable if and only if it is enumerable

⇒ Given a semi-decider s : N× N → B pick the enumerator

e n :=

{
n2 n = ⟨n1, n2⟩ and s(n1, n2) = true

∗ otherwise

and given an enumerator e : N → N ∪ {∗} pick the semi-decider s(x , n) := e n
?
= x

3 If P ⊆ X reduces to Q ⊆ Y and Q is decidable, then so is P

⇒ Given d : Y → B and f : X → Y pick d ◦ f

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 5

Some Synthetic Proofs

1 Decidable sets are semi-decidable and co-semi-decidable

⇒ Given d : X → B pick s(x , n) := d x and s(x , n) := ¬d x , respectively

2 A set (of numbers) is semi-decidable if and only if it is enumerable

⇒ Given a semi-decider s : N× N → B pick the enumerator

e n :=

{
n2 n = ⟨n1, n2⟩ and s(n1, n2) = true

∗ otherwise

and given an enumerator e : N → N ∪ {∗} pick the semi-decider s(x , n) := e n
?
= x

3 If P ⊆ X reduces to Q ⊆ Y and Q is decidable, then so is P

⇒ Given d : Y → B and f : X → Y pick d ◦ f

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 5

Some Synthetic Proofs

1 Decidable sets are semi-decidable and co-semi-decidable

⇒ Given d : X → B pick s(x , n) := d x and s(x , n) := ¬d x , respectively

2 A set (of numbers) is semi-decidable if and only if it is enumerable

⇒ Given a semi-decider s : N× N → B pick the enumerator

e n :=

{
n2 n = ⟨n1, n2⟩ and s(n1, n2) = true

∗ otherwise

and given an enumerator e : N → N ∪ {∗} pick the semi-decider s(x , n) := e n
?
= x

3 If P ⊆ X reduces to Q ⊆ Y and Q is decidable, then so is P

⇒ Given d : Y → B and f : X → Y pick d ◦ f

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 5

Post’s Theorem

Lemma (Post)

If P ⊆ X and is bi-semi-decidable and definite (∀x . x ∈ P ∨ x ̸∈ P), then P is decidable.

Proof.

1 Let s semi-decide P and s ′ semi-decide P.

2 Define d by running both s and s ′, return true if s(x) ↓ true and false if s ′(x) ↓ true.

3 Since not both x ∈ P and x ̸∈ P, observe that d is well-defined.

4 Since either x ∈ P or x ̸∈ P by definiteness, observe that d is total.

5 Conclude that d decides P.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 6

Post’s Theorem

Lemma (Post)

If P ⊆ X and is bi-semi-decidable and definite (∀x . x ∈ P ∨ x ̸∈ P), then P is decidable.

Proof.

1 Let s semi-decide P and s ′ semi-decide P.

2 Define d by running both s and s ′, return true if s(x) ↓ true and false if s ′(x) ↓ true.

3 Since not both x ∈ P and x ̸∈ P, observe that d is well-defined.

4 Since either x ∈ P or x ̸∈ P by definiteness, observe that d is total.

5 Conclude that d decides P.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 6

Post’s Theorem

Lemma (Post)

If P ⊆ X and is bi-semi-decidable and definite (∀x . x ∈ P ∨ x ̸∈ P), then P is decidable.

Proof.

1 Let s semi-decide P and s ′ semi-decide P.

2 Define d by running both s and s ′, return true if s(x) ↓ true and false if s ′(x) ↓ true.

3 Since not both x ∈ P and x ̸∈ P, observe that d is well-defined.

4 Since either x ∈ P or x ̸∈ P by definiteness, observe that d is total.

5 Conclude that d decides P.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 6

Post’s Theorem

Lemma (Post)

If P ⊆ X and is bi-semi-decidable and definite (∀x . x ∈ P ∨ x ̸∈ P), then P is decidable.

Proof.

1 Let s semi-decide P and s ′ semi-decide P.

2 Define d by running both s and s ′, return true if s(x) ↓ true and false if s ′(x) ↓ true.

3 Since not both x ∈ P and x ̸∈ P, observe that d is well-defined.

4 Since either x ∈ P or x ̸∈ P by definiteness, observe that d is total.

5 Conclude that d decides P.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 6

Post’s Theorem

Lemma (Post)

If P ⊆ X and is bi-semi-decidable and definite (∀x . x ∈ P ∨ x ̸∈ P), then P is decidable.

Proof.

1 Let s semi-decide P and s ′ semi-decide P.

2 Define d by running both s and s ′, return true if s(x) ↓ true and false if s ′(x) ↓ true.

3 Since not both x ∈ P and x ̸∈ P, observe that d is well-defined.

4 Since either x ∈ P or x ̸∈ P by definiteness, observe that d is total.

5 Conclude that d decides P.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 6

Post’s Theorem

Lemma (Post)

If P ⊆ X and is bi-semi-decidable and definite (∀x . x ∈ P ∨ x ̸∈ P), then P is decidable.

Proof.

1 Let s semi-decide P and s ′ semi-decide P.

2 Define d by running both s and s ′, return true if s(x) ↓ true and false if s ′(x) ↓ true.

3 Since not both x ∈ P and x ̸∈ P, observe that d is well-defined.

4 Since either x ∈ P or x ̸∈ P by definiteness, observe that d is total.

5 Conclude that d decides P.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 6

Post’s Theorem

Lemma (Post)

If P ⊆ X and is bi-semi-decidable and definite (∀x . x ∈ P ∨ x ̸∈ P), then P is decidable.

Proof.

1 Let s semi-decide P and s ′ semi-decide P.

2 Define d by running both s and s ′, return true if s(x) ↓ true and false if s ′(x) ↓ true.

3 Since not both x ∈ P and x ̸∈ P, observe that d is well-defined.

4 Since either x ∈ P or x ̸∈ P by definiteness, observe that d is total.

5 Conclude that d decides P.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 6

Internalising Computability

So far everything we did is borderline meaningless as we kept our foundation neutral:

LEM + UC ⇒ every set is decidable

Therefore we can’t show any set undecidable without contradicting LEM + UC:

1 Assume that every function N → N is Turing-computable (CT)

2 Observe that most diagonalisations just rely on an enumeration of computable functions

3 Be careful not to assume an enumeration of the total function space N → N

4 Assume an enumeration of the partial function space N ⇀ N

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 7

Internalising Computability

So far everything we did is borderline meaningless as we kept our foundation neutral:

LEM + UC ⇒ every set is decidable

Therefore we can’t show any set undecidable without contradicting LEM + UC:

1 Assume that every function N → N is Turing-computable (CT)

2 Observe that most diagonalisations just rely on an enumeration of computable functions

3 Be careful not to assume an enumeration of the total function space N → N

4 Assume an enumeration of the partial function space N ⇀ N

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 7

Internalising Computability

So far everything we did is borderline meaningless as we kept our foundation neutral:

LEM + UC ⇒ every set is decidable

Therefore we can’t show any set undecidable without contradicting LEM + UC:

1 Assume that every function N → N is Turing-computable (CT)

2 Observe that most diagonalisations just rely on an enumeration of computable functions

3 Be careful not to assume an enumeration of the total function space N → N

4 Assume an enumeration of the partial function space N ⇀ N

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 7

Internalising Computability

So far everything we did is borderline meaningless as we kept our foundation neutral:

LEM + UC ⇒ every set is decidable

Therefore we can’t show any set undecidable without contradicting LEM + UC:

1 Assume that every function N → N is Turing-computable (CT)

2 Observe that most diagonalisations just rely on an enumeration of computable functions

3 Be careful not to assume an enumeration of the total function space N → N

4 Assume an enumeration of the partial function space N ⇀ N

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 7

Internalising Computability

So far everything we did is borderline meaningless as we kept our foundation neutral:

LEM + UC ⇒ every set is decidable

Therefore we can’t show any set undecidable without contradicting LEM + UC:

1 Assume that every function N → N is Turing-computable (CT)

2 Observe that most diagonalisations just rely on an enumeration of computable functions

3 Be careful not to assume an enumeration of the total function space N → N

4 Assume an enumeration of the partial function space N ⇀ N

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 7

Internalising Computability

So far everything we did is borderline meaningless as we kept our foundation neutral:

LEM + UC ⇒ every set is decidable

Therefore we can’t show any set undecidable without contradicting LEM + UC:

1 Assume that every function N → N is Turing-computable (CT)

2 Observe that most diagonalisations just rely on an enumeration of computable functions

3 Be careful not to assume an enumeration of the total function space N → N

4 Assume an enumeration of the partial function space N ⇀ N

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 7

EPF and the Halting Problem

Axiom (EPF, Richman (1983); Bauer (2006); Forster (2022))

There is a universal function Θ : N → (N ⇀ N) enumerating all partial functions:

∀f : N ⇀ N.∃c : N. ∀xb.Θc x ↓ b ↔ f x ↓ b

Lemma

The self-halting problem K := {c ∈ N | Θc c ↓} is semi-decidable but undecidable.

Proof.

Assume d : N → B decides K. Consider the function f : N ⇀ B with f c ↑ if d c = true and
f c ↓ true otherwise. Let c be the code of f given by EPF, we derive a contradiction:

d c = true ⇔ c ∈ K ⇔ Θc c ↓ ⇔ f c ↓ ⇔ f c ↓ true ⇔ d c = false

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 8

EPF and the Halting Problem

Axiom (EPF, Richman (1983); Bauer (2006); Forster (2022))

There is a universal function Θ : N → (N ⇀ N) enumerating all partial functions:

∀f : N ⇀ N.∃c : N. ∀xb.Θc x ↓ b ↔ f x ↓ b

Lemma

The self-halting problem K := {c ∈ N | Θc c ↓} is semi-decidable but undecidable.

Proof.

Assume d : N → B decides K. Consider the function f : N ⇀ B with f c ↑ if d c = true and
f c ↓ true otherwise. Let c be the code of f given by EPF, we derive a contradiction:

d c = true ⇔ c ∈ K ⇔ Θc c ↓ ⇔ f c ↓ ⇔ f c ↓ true ⇔ d c = false

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 8

EPF and the Halting Problem

Axiom (EPF, Richman (1983); Bauer (2006); Forster (2022))

There is a universal function Θ : N → (N ⇀ N) enumerating all partial functions:

∀f : N ⇀ N.∃c : N. ∀xb.Θc x ↓ b ↔ f x ↓ b

Lemma

The self-halting problem K := {c ∈ N | Θc c ↓} is semi-decidable but undecidable.

Proof.

Assume d : N → B decides K. Consider the function f : N ⇀ B with f c ↑ if d c = true and
f c ↓ true otherwise. Let c be the code of f given by EPF, we derive a contradiction:

d c = true ⇔ c ∈ K ⇔ Θc c ↓ ⇔ f c ↓ ⇔ f c ↓ true ⇔ d c = false

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 8

Application 1: Gödel’s Incompleteness
(jww. Marc Hermes and Benjamin Peters)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 9

Historical Motivation

“Every sufficiently strong formal system admits independent sentences.”

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 10

Historical Motivation

“Every sufficiently strong formal system admits independent sentences.”

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 10

Historical Motivation

“Every sufficiently strong formal system admits independent sentences.”

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 10

The First Incompleteness Theorem

Which formal systems S admit sentences φ with both S ̸⊢ φ and S ̸⊢ ¬φ?

Gödel: all sound, sufficiently expressive ones (Gödel, 1931)

Rosser: all consistent, sufficiently expressive ones (Rosser, 1936)

Turing(/Post): Gödel’s incompleteness follows from undecidability (Turing, 1937)

Kleene: Rosser’s incompleteness follows from recursive inseparability (Kleene, 1951)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 11

The First Incompleteness Theorem

Which formal systems S admit sentences φ with both S ̸⊢ φ and S ̸⊢ ¬φ?

Gödel: all sound, sufficiently expressive ones (Gödel, 1931)

Rosser: all consistent, sufficiently expressive ones (Rosser, 1936)

Turing(/Post): Gödel’s incompleteness follows from undecidability (Turing, 1937)

Kleene: Rosser’s incompleteness follows from recursive inseparability (Kleene, 1951)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 11

The First Incompleteness Theorem

Which formal systems S admit sentences φ with both S ̸⊢ φ and S ̸⊢ ¬φ?

Gödel: all sound, sufficiently expressive ones (Gödel, 1931)

Rosser: all consistent, sufficiently expressive ones (Rosser, 1936)

Turing(/Post): Gödel’s incompleteness follows from undecidability (Turing, 1937)

Kleene: Rosser’s incompleteness follows from recursive inseparability (Kleene, 1951)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 11

The First Incompleteness Theorem

Which formal systems S admit sentences φ with both S ̸⊢ φ and S ̸⊢ ¬φ?

Gödel: all sound, sufficiently expressive ones (Gödel, 1931)

Rosser: all consistent, sufficiently expressive ones (Rosser, 1936)

Turing(/Post): Gödel’s incompleteness follows from undecidability (Turing, 1937)

Kleene: Rosser’s incompleteness follows from recursive inseparability (Kleene, 1951)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 11

The First Incompleteness Theorem

Which formal systems S admit sentences φ with both S ̸⊢ φ and S ̸⊢ ¬φ?

Gödel: all sound, sufficiently expressive ones (Gödel, 1931)

Rosser: all consistent, sufficiently expressive ones (Rosser, 1936)

Turing(/Post): Gödel’s incompleteness follows from undecidability (Turing, 1937)

Kleene: Rosser’s incompleteness follows from recursive inseparability (Kleene, 1951)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 11

Matrix of Incompleteness Theorems

Disprove completeness Independent sentence

Soundness Turing Gödel

ω-consistency Gödel

Consistency Rosser/Kleene

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 12

Motivational Testimonies

Computational proofs of Rosser’s strength are not well-known but desirable:

“Recently I was struck to discover just such a proof laid out...”
Anatoly Vorobey on the FOM mailing list

“A few months ago, I found a short, simple, Turing-machine-based proof of Rosser’s
Theorem... So, will Gödel’s Theorem always and forevermore be taught as a centerpiece
of computability theory, and will the Gödel numbers get their much-deserved retirement?”
Scott Aaronson on his blog

“Here I shall present very simple computability-based proofs of Gödel/Rosser’s
incompleteness theorem, which require only basic knowledge about programs. I feel that
these proofs are little known despite giving a very general form of the incompleteness
theorems, and also easy to make rigorous without even depending on much background
knowledge in logic.”
User21820 on StackExchange

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 13

Motivational Testimonies

Computational proofs of Rosser’s strength are not well-known but desirable:

“Recently I was struck to discover just such a proof laid out...”
Anatoly Vorobey on the FOM mailing list

“A few months ago, I found a short, simple, Turing-machine-based proof of Rosser’s
Theorem... So, will Gödel’s Theorem always and forevermore be taught as a centerpiece
of computability theory, and will the Gödel numbers get their much-deserved retirement?”
Scott Aaronson on his blog

“Here I shall present very simple computability-based proofs of Gödel/Rosser’s
incompleteness theorem, which require only basic knowledge about programs. I feel that
these proofs are little known despite giving a very general form of the incompleteness
theorems, and also easy to make rigorous without even depending on much background
knowledge in logic.”
User21820 on StackExchange

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 13

Motivational Testimonies

Computational proofs of Rosser’s strength are not well-known but desirable:

“Recently I was struck to discover just such a proof laid out...”
Anatoly Vorobey on the FOM mailing list

“A few months ago, I found a short, simple, Turing-machine-based proof of Rosser’s
Theorem... So, will Gödel’s Theorem always and forevermore be taught as a centerpiece
of computability theory, and will the Gödel numbers get their much-deserved retirement?”
Scott Aaronson on his blog

“Here I shall present very simple computability-based proofs of Gödel/Rosser’s
incompleteness theorem, which require only basic knowledge about programs. I feel that
these proofs are little known despite giving a very general form of the incompleteness
theorems, and also easy to make rigorous without even depending on much background
knowledge in logic.”
User21820 on StackExchange

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 13

Motivational Testimonies

Computational proofs of Rosser’s strength are not well-known but desirable:

“Recently I was struck to discover just such a proof laid out...”
Anatoly Vorobey on the FOM mailing list

“A few months ago, I found a short, simple, Turing-machine-based proof of Rosser’s
Theorem... So, will Gödel’s Theorem always and forevermore be taught as a centerpiece
of computability theory, and will the Gödel numbers get their much-deserved retirement?”
Scott Aaronson on his blog

“Here I shall present very simple computability-based proofs of Gödel/Rosser’s
incompleteness theorem, which require only basic knowledge about programs. I feel that
these proofs are little known despite giving a very general form of the incompleteness
theorems, and also easy to make rigorous without even depending on much background
knowledge in logic.”
User21820 on StackExchange

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 13

Motivational Testimonies

Computational proofs of Rosser’s strength are not well-known but desirable:

“Recently I was struck to discover just such a proof laid out...”
Anatoly Vorobey on the FOM mailing list

“A few months ago, I found a short, simple, Turing-machine-based proof of Rosser’s
Theorem... So, will Gödel’s Theorem always and forevermore be taught as a centerpiece
of computability theory, and will the Gödel numbers get their much-deserved retirement?”
Scott Aaronson on his blog

“Here I shall present very simple computability-based proofs of Gödel/Rosser’s
incompleteness theorem, which require only basic knowledge about programs. I feel that
these proofs are little known despite giving a very general form of the incompleteness
theorems, and also easy to make rigorous without even depending on much background
knowledge in logic.”
User21820 on StackExchange

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 13

Motivational Testimonies (ctd.)

https://en.wikipedia.org/wiki/Halting_problem

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 14

https://en.wikipedia.org/wiki/Halting_problem

Abstract Formal Systems

Definition

A formal system S = (S,⊢,¬) consists of:
S is a set we consider the collection of formal sentences

⊢ is a semi-decidable subset we consider the provable sentences

¬ : S → S is a computable function we consider negation, satisfying consistency:

∀φ ∈ S. ¬(⊢ φ ∧ ⊢ ¬φ)

S is complete if for every φ ∈ S either ⊢ φ or ⊢ ¬φ.

Lemma (Refutation)

In a complete formal system we have ̸⊢ φ iff ⊢ ¬φ.

Proof.

That ̸⊢ φ implies ⊢ ¬φ is by completeness, the other direction by consistency.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 15

Abstract Formal Systems

Definition

A formal system S = (S,⊢,¬) consists of:
S is a set we consider the collection of formal sentences

⊢ is a semi-decidable subset we consider the provable sentences

¬ : S → S is a computable function we consider negation, satisfying consistency:

∀φ ∈ S. ¬(⊢ φ ∧ ⊢ ¬φ)

S is complete if for every φ ∈ S either ⊢ φ or ⊢ ¬φ.

Lemma (Refutation)

In a complete formal system we have ̸⊢ φ iff ⊢ ¬φ.

Proof.

That ̸⊢ φ implies ⊢ ¬φ is by completeness, the other direction by consistency.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 15

Abstract Formal Systems

Definition

A formal system S = (S,⊢,¬) consists of:
S is a set we consider the collection of formal sentences

⊢ is a semi-decidable subset we consider the provable sentences

¬ : S → S is a computable function we consider negation, satisfying consistency:

∀φ ∈ S. ¬(⊢ φ ∧ ⊢ ¬φ)

S is complete if for every φ ∈ S either ⊢ φ or ⊢ ¬φ.

Lemma (Refutation)

In a complete formal system we have ̸⊢ φ iff ⊢ ¬φ.

Proof.

That ̸⊢ φ implies ⊢ ¬φ is by completeness, the other direction by consistency.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 15

Abstract Formal Systems

Definition

A formal system S = (S,⊢,¬) consists of:
S is a set we consider the collection of formal sentences

⊢ is a semi-decidable subset we consider the provable sentences

¬ : S → S is a computable function we consider negation, satisfying consistency:

∀φ ∈ S. ¬(⊢ φ ∧ ⊢ ¬φ)

S is complete if for every φ ∈ S either ⊢ φ or ⊢ ¬φ.

Lemma (Refutation)

In a complete formal system we have ̸⊢ φ iff ⊢ ¬φ.

Proof.

That ̸⊢ φ implies ⊢ ¬φ is by completeness, the other direction by consistency.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 15

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Gödel à la Turing

Theorem

Let P be some undecidable set, for instance the halting problem K. If P reduces to the
provable sentences ⊢ of a formal system S = (S,⊢,¬), then S cannot be complete.

Proof.

1 Assume that P is undecidable and that S were complete.

2 Obtain that that ̸⊢ φ iff ⊢ ¬φ by (Refutation).

3 Observe that the complement of ⊢ is semi-decidable.

4 Derive that ⊢ is decidable by (Post).

5 Conclude that P must be decidable by (Reduction).

6 Contradiction.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 16

Matrix of Incompleteness Theorems

Disprove completeness Independent sentence

Soundness Turing () Gödel

ω-consistency Gödel

Consistency Rosser/Kleene

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 17

Halting Problem (Refined)

Lemma

For every partial decider d : N ⇀ B for K = {c ∈ N | Θc c ↓} with

∀x . x ∈ K ↔ d x ↓ true

one can construct a concrete value c such that d c diverges.

Proof.

We first define a partial function f : N ⇀ B diagonalising against d by:

f x :=

{
true if d x ↓ false

↑ otherwise

Now using EPF we obtain a code c for f and deduce that d c ↑ by:

d c ↓ true ⇔ c ∈ K ⇔ Θc c ↓ ⇔ f c ↓ ⇔ f c ↓ true ⇔ d c ↓ false

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 18

Halting Problem (Refined)

Lemma

For every partial decider d : N ⇀ B for K = {c ∈ N | Θc c ↓} with

∀x . x ∈ K ↔ d x ↓ true

one can construct a concrete value c such that d c diverges.

Proof.

We first define a partial function f : N ⇀ B diagonalising against d by:

f x :=

{
true if d x ↓ false

↑ otherwise

Now using EPF we obtain a code c for f and deduce that d c ↑ by:

d c ↓ true ⇔ c ∈ K ⇔ Θc c ↓ ⇔ f c ↓ ⇔ f c ↓ true ⇔ d c ↓ false

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 18

Post’s Theorem (Refined)

Theorem

Given disjoint semi-decidable sets P,Q ⊆ X, there is a partial decider d : X ⇀ B with:

∀x . (x ∈ P ↔ d x ↓ true) ∧ (x ∈ Q ↔ d x ↓ false)

Proof.

Given s1 semi-deciding P and s2 semi-deciding Q, define d by:

d x n :=


true if s1 x n

false if s2 x n

↑ otherwise

Then use disjointness to verify well-definedness and specification.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 19

Post’s Theorem (Refined)

Theorem

Given disjoint semi-decidable sets P,Q ⊆ X, there is a partial decider d : X ⇀ B with:

∀x . (x ∈ P ↔ d x ↓ true) ∧ (x ∈ Q ↔ d x ↓ false)

Proof.

Given s1 semi-deciding P and s2 semi-deciding Q, define d by:

d x n :=


true if s1 x n

false if s2 x n

↑ otherwise

Then use disjointness to verify well-definedness and specification.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 19

Partial Deciders of Formal Systems

Since formal systems have two canonical disjoint semi-decidable sets:

Lemma

For every formal system S = (S,¬,⊢) there is a partial function dS : S ⇀ B with:

∀φ. (⊢ φ ↔ dS φ ↓ true) ∧ (⊢ ¬φ ↔ dS φ ↓ false)

Moreover, because of consistency we have dS φ ↑ exactly if φ is an independent sentence.

If S is complete, then dS induces a decider for representable problems

Even without completeness, dS is a partial decider for representable problems...

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 20

Partial Deciders of Formal Systems

Since formal systems have two canonical disjoint semi-decidable sets:

Lemma

For every formal system S = (S,¬,⊢) there is a partial function dS : S ⇀ B with:

∀φ. (⊢ φ ↔ dS φ ↓ true) ∧ (⊢ ¬φ ↔ dS φ ↓ false)

Moreover, because of consistency we have dS φ ↑ exactly if φ is an independent sentence.

If S is complete, then dS induces a decider for representable problems

Even without completeness, dS is a partial decider for representable problems...

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 20

Partial Deciders of Formal Systems

Since formal systems have two canonical disjoint semi-decidable sets:

Lemma

For every formal system S = (S,¬,⊢) there is a partial function dS : S ⇀ B with:

∀φ. (⊢ φ ↔ dS φ ↓ true) ∧ (⊢ ¬φ ↔ dS φ ↓ false)

Moreover, because of consistency we have dS φ ↑ exactly if φ is an independent sentence.

If S is complete, then dS induces a decider for representable problems

Even without completeness, dS is a partial decider for representable problems...

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 20

Gödel à la Turing (Refined)

Theorem

Every formal system S admitting a reduction from K has an independent sentence.

Proof.

If r : N → S reduces K to S, then dS ◦ r is a candidate decider for K. Thus there is some code
c with dS (r c) ↑, so r c is must be independent.

Implicitly, the formal system is assumed to be sound due to the reducibility property:

⊢ r(x) → x ∈ K

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 21

Gödel à la Turing (Refined)

Theorem

Every formal system S admitting a reduction from K has an independent sentence.

Proof.

If r : N → S reduces K to S, then dS ◦ r is a candidate decider for K. Thus there is some code
c with dS (r c) ↑, so r c is must be independent.

Implicitly, the formal system is assumed to be sound due to the reducibility property:

⊢ r(x) → x ∈ K

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 21

Gödel à la Turing (Refined)

Theorem

Every formal system S admitting a reduction from K has an independent sentence.

Proof.

If r : N → S reduces K to S, then dS ◦ r is a candidate decider for K. Thus there is some code
c with dS (r c) ↑, so r c is must be independent.

Implicitly, the formal system is assumed to be sound due to the reducibility property:

⊢ r(x) → x ∈ K

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 21

Matrix of Incompleteness Theorems

Disprove completeness Independent sentence

Soundness Turing () Gödel ()

ω-consistency Gödel

Consistency Rosser/Kleene

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 22

Recursive Inseparability

To avoid soundness, we would like that c ∈ K implies ⊢ ¬r c ...

K is not semi-decidable, so can’t be recognised in a formal system

So we would like a semi-decidable subset of K

Doesn’t work for K directly but there are other examples

Recursive Inseparability: disjoint sets P,Q that are not separable by d : X → B

∀x . (x ∈ P → d x = true) ∧ (x ∈ Q → d x = false)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 23

Recursive Inseparability

To avoid soundness, we would like that c ∈ K implies ⊢ ¬r c ...

K is not semi-decidable, so can’t be recognised in a formal system

So we would like a semi-decidable subset of K

Doesn’t work for K directly but there are other examples

Recursive Inseparability: disjoint sets P,Q that are not separable by d : X → B

∀x . (x ∈ P → d x = true) ∧ (x ∈ Q → d x = false)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 23

Recursive Inseparability

To avoid soundness, we would like that c ∈ K implies ⊢ ¬r c ...

K is not semi-decidable, so can’t be recognised in a formal system

So we would like a semi-decidable subset of K

Doesn’t work for K directly but there are other examples

Recursive Inseparability: disjoint sets P,Q that are not separable by d : X → B

∀x . (x ∈ P → d x = true) ∧ (x ∈ Q → d x = false)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 23

Recursive Inseparability

To avoid soundness, we would like that c ∈ K implies ⊢ ¬r c ...

K is not semi-decidable, so can’t be recognised in a formal system

So we would like a semi-decidable subset of K

Doesn’t work for K directly but there are other examples

Recursive Inseparability: disjoint sets P,Q that are not separable by d : X → B

∀x . (x ∈ P → d x = true) ∧ (x ∈ Q → d x = false)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 23

Recursive Inseparability

To avoid soundness, we would like that c ∈ K implies ⊢ ¬r c ...

K is not semi-decidable, so can’t be recognised in a formal system

So we would like a semi-decidable subset of K

Doesn’t work for K directly but there are other examples

Recursive Inseparability: disjoint sets P,Q that are not separable by d : X → B

∀x . (x ∈ P → d x = true) ∧ (x ∈ Q → d x = false)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 23

Canonical Inseparable Sets

Lemma

The sets K1 := {c ∈ N | Θc c ↓ true} and K0 := {c ∈ N | Θc c ↓ false} are semi-decidable but
recursively inseparable, in fact for every partial separation d : N ⇀ B with

x ∈ K1 → d x ↓ true and x ∈ K0 → d x ↓ false

one can construct a concrete value c such that d c diverges.

Proof.

We first define a partial function f : N ⇀ B diagonalising against s by:

f x :=


true if d x ↓ false

false if d x ↓ true

↑ otherwise

Now using EPF we obtain a code c for f and deduce that d c ↑ by similar equivalences.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 24

Canonical Inseparable Sets

Lemma

The sets K1 := {c ∈ N | Θc c ↓ true} and K0 := {c ∈ N | Θc c ↓ false} are semi-decidable but
recursively inseparable, in fact for every partial separation d : N ⇀ B with

x ∈ K1 → d x ↓ true and x ∈ K0 → d x ↓ false

one can construct a concrete value c such that d c diverges.

Proof.

We first define a partial function f : N ⇀ B diagonalising against s by:

f x :=


true if d x ↓ false

false if d x ↓ true

↑ otherwise

Now using EPF we obtain a code c for f and deduce that d c ↑ by similar equivalences.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 24

Gödel à la Kleene

We say that a formal system S separates sets P,Q ⊆ X if there is a function r : X → S with

∀x . (x ∈ P → ⊢ r x) ∧ (x ∈ Q → ⊢ ¬r x).

Theorem

Every formal system S separating K1 and K0 has an independent sentence.

Proof.

If r : N → S separates K1 and K0, then dS ◦ r is a partial separation of K1 and K0. Thus there
is some code c with dS (r c) ↑, so r c is must be independent.

Corollary

If S separates K1 and K0, then every extension S ′ ⊇ S has an independent sentence.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 25

Gödel à la Kleene

We say that a formal system S separates sets P,Q ⊆ X if there is a function r : X → S with

∀x . (x ∈ P → ⊢ r x) ∧ (x ∈ Q → ⊢ ¬r x).

Theorem

Every formal system S separating K1 and K0 has an independent sentence.

Proof.

If r : N → S separates K1 and K0, then dS ◦ r is a partial separation of K1 and K0. Thus there
is some code c with dS (r c) ↑, so r c is must be independent.

Corollary

If S separates K1 and K0, then every extension S ′ ⊇ S has an independent sentence.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 25

Gödel à la Kleene

We say that a formal system S separates sets P,Q ⊆ X if there is a function r : X → S with

∀x . (x ∈ P → ⊢ r x) ∧ (x ∈ Q → ⊢ ¬r x).

Theorem

Every formal system S separating K1 and K0 has an independent sentence.

Proof.

If r : N → S separates K1 and K0, then dS ◦ r is a partial separation of K1 and K0. Thus there
is some code c with dS (r c) ↑, so r c is must be independent.

Corollary

If S separates K1 and K0, then every extension S ′ ⊇ S has an independent sentence.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 25

Gödel à la Kleene

We say that a formal system S separates sets P,Q ⊆ X if there is a function r : X → S with

∀x . (x ∈ P → ⊢ r x) ∧ (x ∈ Q → ⊢ ¬r x).

Theorem

Every formal system S separating K1 and K0 has an independent sentence.

Proof.

If r : N → S separates K1 and K0, then dS ◦ r is a partial separation of K1 and K0. Thus there
is some code c with dS (r c) ↑, so r c is must be independent.

Corollary

If S separates K1 and K0, then every extension S ′ ⊇ S has an independent sentence.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 25

Matrix of Incompleteness Theorems

Disprove completeness Independent sentence

Soundness Turing () Gödel ()

ω-consistency Gödel

Consistency Rosser/Kleene ()

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 26

Essential Incompleteness of Robinson’s Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ)

For every f : N ⇀ B there is a Σ1-formula φ with: f x ↓ b ↔ Q ⊢ ∀b′. φ(x , b′) ↔ b′ = b

CTQ implies that Q and every consistent extension of it has an independent sentence:

CTQ implies EPF

CTQ implies that Q separates the problems K1 and K0

Thus Q is essentially incomplete by instantiation of the abstract proof

CTQ also implies the diagonal lemma and therefore the Gödel/Rosser stragety

Sanity check: CTQ is equivalent to CT

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 27

Essential Incompleteness of Robinson’s Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ)

For every f : N ⇀ B there is a Σ1-formula φ with: f x ↓ b ↔ Q ⊢ ∀b′. φ(x , b′) ↔ b′ = b

CTQ implies that Q and every consistent extension of it has an independent sentence:

CTQ implies EPF

CTQ implies that Q separates the problems K1 and K0

Thus Q is essentially incomplete by instantiation of the abstract proof

CTQ also implies the diagonal lemma and therefore the Gödel/Rosser stragety

Sanity check: CTQ is equivalent to CT

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 27

Essential Incompleteness of Robinson’s Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ)

For every f : N ⇀ B there is a Σ1-formula φ with: f x ↓ b ↔ Q ⊢ ∀b′. φ(x , b′) ↔ b′ = b

CTQ implies that Q and every consistent extension of it has an independent sentence:

CTQ implies EPF

CTQ implies that Q separates the problems K1 and K0

Thus Q is essentially incomplete by instantiation of the abstract proof

CTQ also implies the diagonal lemma and therefore the Gödel/Rosser stragety

Sanity check: CTQ is equivalent to CT

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 27

Essential Incompleteness of Robinson’s Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ)

For every f : N ⇀ B there is a Σ1-formula φ with: f x ↓ b ↔ Q ⊢ ∀b′. φ(x , b′) ↔ b′ = b

CTQ implies that Q and every consistent extension of it has an independent sentence:

CTQ implies EPF

CTQ implies that Q separates the problems K1 and K0

Thus Q is essentially incomplete by instantiation of the abstract proof

CTQ also implies the diagonal lemma and therefore the Gödel/Rosser stragety

Sanity check: CTQ is equivalent to CT

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 27

Essential Incompleteness of Robinson’s Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ)

For every f : N ⇀ B there is a Σ1-formula φ with: f x ↓ b ↔ Q ⊢ ∀b′. φ(x , b′) ↔ b′ = b

CTQ implies that Q and every consistent extension of it has an independent sentence:

CTQ implies EPF

CTQ implies that Q separates the problems K1 and K0

Thus Q is essentially incomplete by instantiation of the abstract proof

CTQ also implies the diagonal lemma and therefore the Gödel/Rosser stragety

Sanity check: CTQ is equivalent to CT

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 27

Essential Incompleteness of Robinson’s Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ)

For every f : N ⇀ B there is a Σ1-formula φ with: f x ↓ b ↔ Q ⊢ ∀b′. φ(x , b′) ↔ b′ = b

CTQ implies that Q and every consistent extension of it has an independent sentence:

CTQ implies EPF

CTQ implies that Q separates the problems K1 and K0

Thus Q is essentially incomplete by instantiation of the abstract proof

CTQ also implies the diagonal lemma and therefore the Gödel/Rosser stragety

Sanity check: CTQ is equivalent to CT

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 27

Essential Incompleteness of Robinson’s Q

To instantiate these abstract proofs to Q, we need a stronger assumption than EPF:

Axiom (CTQ)

For every f : N ⇀ B there is a Σ1-formula φ with: f x ↓ b ↔ Q ⊢ ∀b′. φ(x , b′) ↔ b′ = b

CTQ implies that Q and every consistent extension of it has an independent sentence:

CTQ implies EPF

CTQ implies that Q separates the problems K1 and K0

Thus Q is essentially incomplete by instantiation of the abstract proof

CTQ also implies the diagonal lemma and therefore the Gödel/Rosser stragety

Sanity check: CTQ is equivalent to CT

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 27

Ongoing Work

Get more out of CTQ:

Tarski’s undefinability theorem

Gödel’s second incompleteness theorem

Löb’s theorem

Circumvent CT:

Work against abstract notion of computable functions

Instantiate trivially with CT for the constructively minded

Instantiate with Turing-computability for the classically minded

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 28

Ongoing Work

Get more out of CTQ:

Tarski’s undefinability theorem

Gödel’s second incompleteness theorem

Löb’s theorem

Circumvent CT:

Work against abstract notion of computable functions

Instantiate trivially with CT for the constructively minded

Instantiate with Turing-computability for the classically minded

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 28

Ongoing Work

Get more out of CTQ:

Tarski’s undefinability theorem

Gödel’s second incompleteness theorem

Löb’s theorem

Circumvent CT:

Work against abstract notion of computable functions

Instantiate trivially with CT for the constructively minded

Instantiate with Turing-computability for the classically minded

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 28

Application 2: Post’s Problem
(jww. Yannick Forster, Niklas Mück, Takako Nemoto, Haoyi Zeng)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 29

Post’s Problem

Is there a semi-decidable yet undecidable set S with H ̸⪯T S?

Left as an open problem by Post (1944)

Positive solution by Friedberg (1957) and Muchnik (1956)

Low simple set construction by Lerman and Soare (1980)

Synthetic proof mechanised in Coq by Zeng et al. (2024a), relying on Σ2-LEM

Analytic proof given by Nemoto (2024), relying only on Σ1-LEM aka LPO

Combination yields a synthetic and mechanised proof using LPO (Zeng et al., 2024b)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 30

Post’s Problem

Is there a semi-decidable yet undecidable set S with H ̸⪯T S?

Left as an open problem by Post (1944)

Positive solution by Friedberg (1957) and Muchnik (1956)

Low simple set construction by Lerman and Soare (1980)

Synthetic proof mechanised in Coq by Zeng et al. (2024a), relying on Σ2-LEM

Analytic proof given by Nemoto (2024), relying only on Σ1-LEM aka LPO

Combination yields a synthetic and mechanised proof using LPO (Zeng et al., 2024b)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 30

Post’s Problem

Is there a semi-decidable yet undecidable set S with H ̸⪯T S?

Left as an open problem by Post (1944)

Positive solution by Friedberg (1957) and Muchnik (1956)

Low simple set construction by Lerman and Soare (1980)

Synthetic proof mechanised in Coq by Zeng et al. (2024a), relying on Σ2-LEM

Analytic proof given by Nemoto (2024), relying only on Σ1-LEM aka LPO

Combination yields a synthetic and mechanised proof using LPO (Zeng et al., 2024b)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 30

Synthetic Oracle Computability

Definition (Forster, Kirst and Mück (2023))

An oracle computation is a functional F : (Q→A→P)→I→O→P captured by a computation
tree τ : I→A∗⇀Q + O and its induced interrogation relation τ i ;R ⊢ qs ;as as follows:

σ ; R ⊢ [] ; []

σ ; R ⊢ qs ; as σas ▷ ask q Rqa

σ ; R ⊢ qs ++ [q] ; as ++ [a]

F R i o ↔ ∃qs as. τ i ;R ⊢ qs ;as ∧ τ i as ▷ out o

P ⪯T Q := there is an oracle computation F : (N→B→P)→N→B→P with F Q = P

SQ(P) := there is an oracle computation F : (N→B→P)→N→1→P with dom(F Q) = P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 31

Synthetic Oracle Computability

Definition (Forster, Kirst and Mück (2023))

An oracle computation is a functional F : (Q→A→P)→I→O→P captured by a computation
tree τ : I→A∗⇀Q + O and its induced interrogation relation τ i ;R ⊢ qs ;as as follows:

σ ; R ⊢ [] ; []

σ ; R ⊢ qs ; as σas ▷ ask q Rqa

σ ; R ⊢ qs ++ [q] ; as ++ [a]

F R i o ↔ ∃qs as. τ i ;R ⊢ qs ;as ∧ τ i as ▷ out o

P ⪯T Q := there is an oracle computation F : (N→B→P)→N→B→P with F Q = P

SQ(P) := there is an oracle computation F : (N→B→P)→N→1→P with dom(F Q) = P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 31

Synthetic Oracle Computability

Definition (Forster, Kirst and Mück (2023))

An oracle computation is a functional F : (Q→A→P)→I→O→P captured by a computation
tree τ : I→A∗⇀Q + O and its induced interrogation relation τ i ;R ⊢ qs ;as as follows:

σ ; R ⊢ [] ; []

σ ; R ⊢ qs ; as σas ▷ ask q Rqa

σ ; R ⊢ qs ++ [q] ; as ++ [a]

F R i o ↔ ∃qs as. τ i ;R ⊢ qs ;as ∧ τ i as ▷ out o

P ⪯T Q := there is an oracle computation F : (N→B→P)→N→B→P with F Q = P

SQ(P) := there is an oracle computation F : (N→B→P)→N→1→P with dom(F Q) = P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 31

Synthetic Oracle Computability

Definition (Forster, Kirst and Mück (2023))

An oracle computation is a functional F : (Q→A→P)→I→O→P captured by a computation
tree τ : I→A∗⇀Q + O and its induced interrogation relation τ i ;R ⊢ qs ;as as follows:

σ ; R ⊢ [] ; []

σ ; R ⊢ qs ; as σas ▷ ask q Rqa

σ ; R ⊢ qs ++ [q] ; as ++ [a]

F R i o ↔ ∃qs as. τ i ;R ⊢ qs ;as ∧ τ i as ▷ out o

P ⪯T Q := there is an oracle computation F : (N→B→P)→N→B→P with F Q = P

SQ(P) := there is an oracle computation F : (N→B→P)→N→1→P with dom(F Q) = P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 31

Continuity of Oracle Computations

Our employed notion of sequential continuity is strictly stronger than modulus-continuity:

Lemma (Forster, Kirst and Mück (2023))

1 Every oracle computation F is modulus-continuous:

F R i o → ∃qs ⊆ dom(R).∀R ′. (∀q ∈ qs.∀a. Rqa ↔ R ′qa) → F R ′ i o

2 Not every modulus-continuous functional is an oracle computation.

Proof.

1 From a terminating run F R i o we obtain an interrogation τ i ;R ⊢ qs ;as and can easily
show that qs is a modulus of continuity.

2 The modulus-continuous functional F R i o := ∃q.R q true is not an oracle computation
as for any computation tree τ we can define a suitably blocking oracle.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 32

Continuity of Oracle Computations
Our employed notion of sequential continuity is strictly stronger than modulus-continuity:

Lemma (Forster, Kirst and Mück (2023))

1 Every oracle computation F is modulus-continuous:

F R i o → ∃qs ⊆ dom(R). ∀R ′. (∀q ∈ qs. ∀a. Rqa ↔ R ′qa) → F R ′ i o

2 Not every modulus-continuous functional is an oracle computation.

Proof.

1 From a terminating run F R i o we obtain an interrogation τ i ;R ⊢ qs ;as and can easily
show that qs is a modulus of continuity.

2 The modulus-continuous functional F R i o := ∃q.R q true is not an oracle computation
as for any computation tree τ we can define a suitably blocking oracle.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 32

Continuity of Oracle Computations
Our employed notion of sequential continuity is strictly stronger than modulus-continuity:

Lemma (Forster, Kirst and Mück (2023))

1 Every oracle computation F is modulus-continuous:

F R i o → ∃qs ⊆ dom(R). ∀R ′. (∀q ∈ qs. ∀a. Rqa ↔ R ′qa) → F R ′ i o

2 Not every modulus-continuous functional is an oracle computation.

Proof.

1 From a terminating run F R i o we obtain an interrogation τ i ;R ⊢ qs ;as and can easily
show that qs is a modulus of continuity.

2 The modulus-continuous functional F R i o := ∃q.R q true is not an oracle computation
as for any computation tree τ we can define a suitably blocking oracle.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 32

Enumerating Oracle Computations

We need an enumeration of oracle computations for diagonalisations / Turing jump...

For consistency (with LEM), we want to stick to EPF as only assumption:

EPF in particular enumerates trees τ :N→B∗⇀N+ B
Due to the defining property of sequential continuity this is enough

Theorem (Forster, Kirst and Mück (2024))

There is an enumerator of functionals Φ:N→(N→B→P)→N→B→P such that

1 Φe is an oracle computation for all e : N
2 Given an oracle computation F there is e : N such that ∀Rxb.ΦR

e (x) ↓ b ↔ F R x b

3 The Turing jump P ′ x := ΦP
x (x) ↓ true of P is strictly harder than P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 33

Enumerating Oracle Computations

We need an enumeration of oracle computations for diagonalisations / Turing jump...

For consistency (with LEM), we want to stick to EPF as only assumption:

EPF in particular enumerates trees τ :N→B∗⇀N+ B
Due to the defining property of sequential continuity this is enough

Theorem (Forster, Kirst and Mück (2024))

There is an enumerator of functionals Φ:N→(N→B→P)→N→B→P such that

1 Φe is an oracle computation for all e : N
2 Given an oracle computation F there is e : N such that ∀Rxb.ΦR

e (x) ↓ b ↔ F R x b

3 The Turing jump P ′ x := ΦP
x (x) ↓ true of P is strictly harder than P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 33

Enumerating Oracle Computations

We need an enumeration of oracle computations for diagonalisations / Turing jump...

For consistency (with LEM), we want to stick to EPF as only assumption:

EPF in particular enumerates trees τ :N→B∗⇀N+ B

Due to the defining property of sequential continuity this is enough

Theorem (Forster, Kirst and Mück (2024))

There is an enumerator of functionals Φ:N→(N→B→P)→N→B→P such that

1 Φe is an oracle computation for all e : N
2 Given an oracle computation F there is e : N such that ∀Rxb.ΦR

e (x) ↓ b ↔ F R x b

3 The Turing jump P ′ x := ΦP
x (x) ↓ true of P is strictly harder than P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 33

Enumerating Oracle Computations

We need an enumeration of oracle computations for diagonalisations / Turing jump...

For consistency (with LEM), we want to stick to EPF as only assumption:

EPF in particular enumerates trees τ :N→B∗⇀N+ B
Due to the defining property of sequential continuity this is enough

Theorem (Forster, Kirst and Mück (2024))

There is an enumerator of functionals Φ:N→(N→B→P)→N→B→P such that

1 Φe is an oracle computation for all e : N
2 Given an oracle computation F there is e : N such that ∀Rxb.ΦR

e (x) ↓ b ↔ F R x b

3 The Turing jump P ′ x := ΦP
x (x) ↓ true of P is strictly harder than P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 33

Enumerating Oracle Computations

We need an enumeration of oracle computations for diagonalisations / Turing jump...

For consistency (with LEM), we want to stick to EPF as only assumption:

EPF in particular enumerates trees τ :N→B∗⇀N+ B
Due to the defining property of sequential continuity this is enough

Theorem (Forster, Kirst and Mück (2024))

There is an enumerator of functionals Φ:N→(N→B→P)→N→B→P such that

1 Φe is an oracle computation for all e : N
2 Given an oracle computation F there is e : N such that ∀Rxb.ΦR

e (x) ↓ b ↔ F R x b

3 The Turing jump P ′ x := ΦP
x (x) ↓ true of P is strictly harder than P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 33

Enumerating Oracle Computations

We need an enumeration of oracle computations for diagonalisations / Turing jump...

For consistency (with LEM), we want to stick to EPF as only assumption:

EPF in particular enumerates trees τ :N→B∗⇀N+ B
Due to the defining property of sequential continuity this is enough

Theorem (Forster, Kirst and Mück (2024))

There is an enumerator of functionals Φ:N→(N→B→P)→N→B→P such that

1 Φe is an oracle computation for all e : N
2 Given an oracle computation F there is e : N such that ∀Rxb.ΦR

e (x) ↓ b ↔ F R x b

3 The Turing jump P ′ x := ΦP
x (x) ↓ true of P is strictly harder than P

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 33

Low Simple Sets and Limit Computability

Definition (Lerman and Soare (1980) and Post (1944))

P : X → P is low if P ′ ⪯T H and simple if it is co-infinite, semi-decidable, and for We being
the e-th enumerable set we have We ∩ P ̸= ∅ whenever We is infinite.

⇒ Every low simple set is a solution to Post’s problem!

Definition (Shoenfield (1959) and Gold (1965))

P : X → P is limit-computable if there exists a function f : X → N → B with

x ∈ P ↔ ∃n.∀m > n. f (x ,m) = true ∧ x ̸∈ P ↔ ∃n.∀m > n. f (x ,m) = false.

⇒ Limit-computability provides easy way to prove lowness...

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 34

Low Simple Sets and Limit Computability

Definition (Lerman and Soare (1980) and Post (1944))

P : X → P is low if P ′ ⪯T H and simple if it is co-infinite, semi-decidable, and for We being
the e-th enumerable set we have We ∩ P ̸= ∅ whenever We is infinite.

⇒ Every low simple set is a solution to Post’s problem!

Definition (Shoenfield (1959) and Gold (1965))

P : X → P is limit-computable if there exists a function f : X → N → B with

x ∈ P ↔ ∃n.∀m > n. f (x ,m) = true ∧ x ̸∈ P ↔ ∃n.∀m > n. f (x ,m) = false.

⇒ Limit-computability provides easy way to prove lowness...

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 34

Low Simple Sets and Limit Computability

Definition (Lerman and Soare (1980) and Post (1944))

P : X → P is low if P ′ ⪯T H and simple if it is co-infinite, semi-decidable, and for We being
the e-th enumerable set we have We ∩ P ̸= ∅ whenever We is infinite.

⇒ Every low simple set is a solution to Post’s problem!

Definition (Shoenfield (1959) and Gold (1965))

P : X → P is limit-computable if there exists a function f : X → N → B with

x ∈ P ↔ ∃n.∀m > n. f (x ,m) = true ∧ x ̸∈ P ↔ ∃n.∀m > n. f (x ,m) = false.

⇒ Limit-computability provides easy way to prove lowness...

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 34

Low Simple Sets and Limit Computability

Definition (Lerman and Soare (1980) and Post (1944))

P : X → P is low if P ′ ⪯T H and simple if it is co-infinite, semi-decidable, and for We being
the e-th enumerable set we have We ∩ P ̸= ∅ whenever We is infinite.

⇒ Every low simple set is a solution to Post’s problem!

Definition (Shoenfield (1959) and Gold (1965))

P : X → P is limit-computable if there exists a function f : X → N → B with

x ∈ P ↔ ∃n.∀m > n. f (x ,m) = true ∧ x ̸∈ P ↔ ∃n.∀m > n. f (x ,m) = false.

⇒ Limit-computability provides easy way to prove lowness...

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 34

Low Simple Sets and Limit Computability

Definition (Lerman and Soare (1980) and Post (1944))

P : X → P is low if P ′ ⪯T H and simple if it is co-infinite, semi-decidable, and for We being
the e-th enumerable set we have We ∩ P ̸= ∅ whenever We is infinite.

⇒ Every low simple set is a solution to Post’s problem!

Definition (Shoenfield (1959) and Gold (1965))

P : X → P is limit-computable if there exists a function f : X → N → B with

x ∈ P ↔ ∃n.∀m > n. f (x ,m) = true ∧ x ̸∈ P ↔ ∃n.∀m > n. f (x ,m) = false.

⇒ Limit-computability provides easy way to prove lowness...

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 34

Limit Lemma

Lemma (1)

If SQ(P) and SQ(P) then P ⪯T Q.

Lemma (2)

Assuming Σn-LEM, if P is Σn+1 and Q is Σn, then SQ(P).

Lemma (Limit Lemma)

Assuming LPO, if P is limit computable, then P ⪯T H.

Proof.

If P is limit computable, then immediately by definition both P and P are Σ2. Moreover, since
the halting problem H is Σ1, Lemma 2 together with LPO yields both SH(P) and SH(P).
From there we conclude P ⪯T H with Lemma 1.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 35

Limit Lemma

Lemma (1)

If SQ(P) and SQ(P) then P ⪯T Q.

Lemma (2)

Assuming Σn-LEM, if P is Σn+1 and Q is Σn, then SQ(P).

Lemma (Limit Lemma)

Assuming LPO, if P is limit computable, then P ⪯T H.

Proof.

If P is limit computable, then immediately by definition both P and P are Σ2. Moreover, since
the halting problem H is Σ1, Lemma 2 together with LPO yields both SH(P) and SH(P).
From there we conclude P ⪯T H with Lemma 1.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 35

Limit Lemma

Lemma (1)

If SQ(P) and SQ(P) then P ⪯T Q.

Lemma (2)

Assuming Σn-LEM, if P is Σn+1 and Q is Σn, then SQ(P).

Lemma (Limit Lemma)

Assuming LPO, if P is limit computable, then P ⪯T H.

Proof.

If P is limit computable, then immediately by definition both P and P are Σ2. Moreover, since
the halting problem H is Σ1, Lemma 2 together with LPO yields both SH(P) and SH(P).
From there we conclude P ⪯T H with Lemma 1.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 35

Limit Lemma

Lemma (1)

If SQ(P) and SQ(P) then P ⪯T Q.

Lemma (2)

Assuming Σn-LEM, if P is Σn+1 and Q is Σn, then SQ(P).

Lemma (Limit Lemma)

Assuming LPO, if P is limit computable, then P ⪯T H.

Proof.

If P is limit computable, then immediately by definition both P and P are Σ2. Moreover, since
the halting problem H is Σ1, Lemma 2 together with LPO yields both SH(P) and SH(P).
From there we conclude P ⪯T H with Lemma 1.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 35

Limit Lemma

Lemma (1)

If SQ(P) and SQ(P) then P ⪯T Q.

Lemma (2)

Assuming Σn-LEM, if P is Σn+1 and Q is Σn, then SQ(P).

Lemma (Limit Lemma)

Assuming LPO, if P is limit computable, then P ⪯T H.

Proof.

If P is limit computable, then immediately by definition both P and P are Σ2. Moreover, since
the halting problem H is Σ1, Lemma 2 together with LPO yields both SH(P) and SH(P).
From there we conclude P ⪯T H with Lemma 1.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 35

The Priority Method

Fix step function γ : N∗ → N → N → P, approximate S inductively:

0⇝ []

n⇝ L γLn x

n + 1⇝ x :: L

n⇝ L ∀x . ¬ γLn x

n + 1⇝ L

Depending on properties of γ we obtain for S x := ∃n, L. n⇝ L ∧ x ∈ L that:

γ is computable ⇒ S is semi-decidable

S satisfies Pe := We is infinite → We ∩ S ̸= ∅ ⇒ S is simple

S satisfies Ne := (∃∞n. ΦS
e (e)[n] ↓) → ΦS

e (e) ↓ ⇒ S ′ is limit computable (using LPO)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 36

The Priority Method

Fix step function γ : N∗ → N → N → P, approximate S inductively:

0⇝ []

n⇝ L γLn x

n + 1⇝ x :: L

n⇝ L ∀x . ¬ γLn x

n + 1⇝ L

Depending on properties of γ we obtain for S x := ∃n, L. n⇝ L ∧ x ∈ L that:

γ is computable ⇒ S is semi-decidable

S satisfies Pe := We is infinite → We ∩ S ̸= ∅ ⇒ S is simple

S satisfies Ne := (∃∞n. ΦS
e (e)[n] ↓) → ΦS

e (e) ↓ ⇒ S ′ is limit computable (using LPO)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 36

The Priority Method

Fix step function γ : N∗ → N → N → P, approximate S inductively:

0⇝ []

n⇝ L γLn x

n + 1⇝ x :: L

n⇝ L ∀x . ¬ γLn x

n + 1⇝ L

Depending on properties of γ we obtain for S x := ∃n, L. n⇝ L ∧ x ∈ L that:

γ is computable ⇒ S is semi-decidable

S satisfies Pe := We is infinite → We ∩ S ̸= ∅ ⇒ S is simple

S satisfies Ne := (∃∞n. ΦS
e (e)[n] ↓) → ΦS

e (e) ↓ ⇒ S ′ is limit computable (using LPO)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 36

The Priority Method

Fix step function γ : N∗ → N → N → P, approximate S inductively:

0⇝ []

n⇝ L γLn x

n + 1⇝ x :: L

n⇝ L ∀x . ¬ γLn x

n + 1⇝ L

Depending on properties of γ we obtain for S x := ∃n, L. n⇝ L ∧ x ∈ L that:

γ is computable ⇒ S is semi-decidable

S satisfies Pe := We is infinite → We ∩ S ̸= ∅ ⇒ S is simple

S satisfies Ne := (∃∞n. ΦS
e (e)[n] ↓) → ΦS

e (e) ↓ ⇒ S ′ is limit computable (using LPO)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 36

The Priority Method

Fix step function γ : N∗ → N → N → P, approximate S inductively:

0⇝ []

n⇝ L γLn x

n + 1⇝ x :: L

n⇝ L ∀x . ¬ γLn x

n + 1⇝ L

Depending on properties of γ we obtain for S x := ∃n, L. n⇝ L ∧ x ∈ L that:

γ is computable ⇒ S is semi-decidable

S satisfies Pe := We is infinite → We ∩ S ̸= ∅ ⇒ S is simple

S satisfies Ne := (∃∞n. ΦS
e (e)[n] ↓) → ΦS

e (e) ↓ ⇒ S ′ is limit computable (using LPO)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 36

The Priority Method

Fix step function γ : N∗ → N → N → P, approximate S inductively:

0⇝ []

n⇝ L γLn x

n + 1⇝ x :: L

n⇝ L ∀x . ¬ γLn x

n + 1⇝ L

Depending on properties of γ we obtain for S x := ∃n, L. n⇝ L ∧ x ∈ L that:

γ is computable ⇒ S is semi-decidable

S satisfies Pe := We is infinite → We ∩ S ̸= ∅ ⇒ S is simple

S satisfies Ne := (∃∞n. ΦS
e (e)[n] ↓) → ΦS

e (e) ↓ ⇒ S ′ is limit computable (using LPO)

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 36

Wall Functions

Definition

The use function UP
e (x) approximates the continuity information of the oracle computation

ΦP
e (x) for (semi-)decidable oracles P in a step-indexed way.

Define suitable γ again relative to a wall function ω of same type:

ωL
n(e) ≥ 2 · e ⇒ S satisfies the requirements Pe

ωL
n(e) ≥ maxe′≤e U

L
e′(e

′)[n] ⇒ S satisfies the requirements Ne (using LPO)

Theorem

Assuming LPO, a low simple set exists.

Proof.

Choose the wall function ω := max(2 · e,maxe′≤e U
L
e′(e

′)[n]).

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 37

Wall Functions

Definition

The use function UP
e (x) approximates the continuity information of the oracle computation

ΦP
e (x) for (semi-)decidable oracles P in a step-indexed way.

Define suitable γ again relative to a wall function ω of same type:

ωL
n(e) ≥ 2 · e ⇒ S satisfies the requirements Pe

ωL
n(e) ≥ maxe′≤e U

L
e′(e

′)[n] ⇒ S satisfies the requirements Ne (using LPO)

Theorem

Assuming LPO, a low simple set exists.

Proof.

Choose the wall function ω := max(2 · e,maxe′≤e U
L
e′(e

′)[n]).

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 37

Wall Functions

Definition

The use function UP
e (x) approximates the continuity information of the oracle computation

ΦP
e (x) for (semi-)decidable oracles P in a step-indexed way.

Define suitable γ again relative to a wall function ω of same type:

ωL
n(e) ≥ 2 · e ⇒ S satisfies the requirements Pe

ωL
n(e) ≥ maxe′≤e U

L
e′(e

′)[n] ⇒ S satisfies the requirements Ne (using LPO)

Theorem

Assuming LPO, a low simple set exists.

Proof.

Choose the wall function ω := max(2 · e,maxe′≤e U
L
e′(e

′)[n]).

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 37

Wall Functions

Definition

The use function UP
e (x) approximates the continuity information of the oracle computation

ΦP
e (x) for (semi-)decidable oracles P in a step-indexed way.

Define suitable γ again relative to a wall function ω of same type:

ωL
n(e) ≥ 2 · e ⇒ S satisfies the requirements Pe

ωL
n(e) ≥ maxe′≤e U

L
e′(e

′)[n] ⇒ S satisfies the requirements Ne (using LPO)

Theorem

Assuming LPO, a low simple set exists.

Proof.

Choose the wall function ω := max(2 · e,maxe′≤e U
L
e′(e

′)[n]).

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 37

Wall Functions

Definition

The use function UP
e (x) approximates the continuity information of the oracle computation

ΦP
e (x) for (semi-)decidable oracles P in a step-indexed way.

Define suitable γ again relative to a wall function ω of same type:

ωL
n(e) ≥ 2 · e ⇒ S satisfies the requirements Pe

ωL
n(e) ≥ maxe′≤e U

L
e′(e

′)[n] ⇒ S satisfies the requirements Ne (using LPO)

Theorem

Assuming LPO, a low simple set exists.

Proof.

Choose the wall function ω := max(2 · e,maxe′≤e U
L
e′(e

′)[n]).

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 37

Ongoing Work

Reverse analysis:

LPO needed for limit lemma?

LPO needed to show that S ′ is limit computable?

LPO needed to construct a low simple set?

Generalisation:

Friedberg-Muchnik theorem

Low basis theorem

Connections to true second-order arithmetic

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 38

Ongoing Work

Reverse analysis:

LPO needed for limit lemma?

LPO needed to show that S ′ is limit computable?

LPO needed to construct a low simple set?

Generalisation:

Friedberg-Muchnik theorem

Low basis theorem

Connections to true second-order arithmetic

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 38

Ongoing Work

Reverse analysis:

LPO needed for limit lemma?

LPO needed to show that S ′ is limit computable?

LPO needed to construct a low simple set?

Generalisation:

Friedberg-Muchnik theorem

Low basis theorem

Connections to true second-order arithmetic

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 38

Conclusion

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 39

Synthetic Computability Propaganda

Reviewer 1: “Clearly, synthetic computability is trivializing
things that should have been trivial from the beginning.”

1 Guides towards the computational essence of proofs

2 Allows concise but precise formalisation

3 Makes mechanisation feasible

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 40

What else could we discuss?

Constructive status of completeness theorems
▶ Model existence is equivalent to WLEM
▶ Quasi-completeness is equivalent to WLEMS

Constructive status of Löwenheim-Skolem theorems
▶ Downwards part needs “DC-CC” and “LEM-MP”
▶ Upwards part is usually proved via compactness

Realisability models of constructive type theory and HOL
▶ Type theories with choice sequences to separate formulations of MP
▶ Effectful realisability interpretation of HOL to unify realisability variants

Completeness theorems for bi-intuitionistic logic
▶ Semantics in (constant-domain) Kripke models and (complete) bi-Heyting algebras

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 41

Bibliography I

Bauer, A. (2006). First steps in synthetic computability theory. Electronic Notes in Theoretical Computer
Science, 155:5–31.

Forster, Y. (2022). Parametric Church’s thesis: Synthetic computability without choice. In International
Symposium on Logical Foundations of Computer Science, pages 70–89. Springer.

Forster, Y., Kirst, D., and Mück, N. (2023). Oracle computability and turing reducibility in the calculus of
inductive constructions. In Asian Symposium on Programming Languages and Systems. Springer.

Forster, Y., Kirst, D., and Mück, N. (2024). The kleene-post and post’s theorem in the calculus of inductive
constructions. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).

Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in Coq, with an application to the
Entscheidungsproblem. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs.

Friedberg, R. M. (1957). Two recursively enumerable sets of incomparable degrees of unsovlability (solution of
Post’s problem), 1944. Proceedings of the National Academy of Sciences, 43(2):236–238.

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.
Monatshefte für mathematik und physik, 38(1):173–198.

Gold, E. M. (1965). Limiting recursion. The Journal of Symbolic Logic, 30(1):28–48.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 42

Bibliography II
Kleene, S. C. (1951). A symmetric form of Gödel’s theorem. Journal of Symbolic Logic, 16(2).

Lerman, M. and Soare, R. (1980). d-simple sets, small sets, and degree classes. Pacific Journal of Mathematics,
87(1):135–155.

Muchnik, A. A. (1956). On the unsolvability of the problem of reducibility in the theory of algorithms. In Dokl.
Akad. Nauk SSSR, volume 108, page 1.

Nemoto, T. (2024). Computability theory over intuitionistic logic. Logic Colloquium 2024, European Summer
Meeting of the Association for Symbolic Logic, Gothenburg, Sweden.

Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision problems. bulletin of the
American Mathematical Society, 50(5):284–316.

Richman, F. (1983). Church’s thesis without tears. The Journal of symbolic logic, 48(3):797–803.

Rosser, B. (1936). Extensions of some theorems of Gödel and Church. The journal of symbolic logic, 1(3):87–91.

Shoenfield, J. R. (1959). On degrees of unsolvability. Annals of mathematics, 69(3):644–653.

Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings
of the London mathematical society, 2(1):230–265.

Zeng, H., Forster, Y., and Kirst, D. (2024a). Post’s problem and the priority method in cic. In 30th
International Conference on Types for Proofs and Programs TYPES 2024–Abstracts, page 27.

Zeng, H., Forster, Y., Kirst, D., and Nemoto, T. (2024b). Post’s problem in constructive mathematics. In
Continuity, Computability, Constructivity – From Logic to Algorithms.

Dominik Kirst Applied Synthetic Computability Theory February 27th, 2025 43

	References

