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Constructive Reverse Mathematics

Classical reverse mathematics studies classically detectable equivalences:

Which theorems are equivalent to the axiom of choice or similar principles?

Which theorems are equivalent to which comprehension principles?

Many more, see Friedman (1976) and Simpson (2009)

Constructive reverse mathematics studies constructively detectable equivalences:

Which theorems are equivalent to excluded middle (LEM) or weaker principles?

Which theorems are equivalent to which specific formulation of the axiom of choice?

Many more, see Ishihara (2006) and Diener (2018)

Characterises the computational content of analysed theorems
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Some Typical Principles

Fragments of the excluded middle:

LEM := ∀P : P.P ∨ ¬P
LPO := ∀f : N→B. (∃n. f n = true) ∨ (∀n. f n = false)

MP := ∀f : N→B.¬¬(∃n. f n = true) → (∃n. f n = true)

Fragments of the axioms of choice:

AC := ∀AB.∀R : A→B→P. tot(R) → ∃f : A→B.∀x .R x (f x)

DC := ∀A. inhab(A) → ∀R : A→A→P. tot(R) → ∃f : N→A.∀n.R (f n) (f (n + 1))

CC := ∀A.∀R : N→A→P. tot(R) → ∃f : N→A.∀n.R n (f n)

To unveil fine distinctions, we use CIC as a modest base system
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Some Typical Connections

LEM: Every non-empty set of numbers has a minimum

LPO: Every sequence in a compact set has a convergent subsequence

MP: Every bi-enumerable set of numbers is decidable

AC: Every set can be well-ordered

DC: Every partial order without infinite descending chains is well-founded

CC: Every sequentially continuous real-valued function is continuous

Often very subtle, we use Coq to systematically track dependencies
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Example 1: Completeness
(jww. Yannick Forster, Christian Hagemeier, Hugo Herbelin, Ian Shillito, Dominik Wehr)

Dominik Kirst Mechanised Constructive Reverse Mathematics November 4th, 2024 5



Analysing Completeness Theorems in Constructive Meta-Theory

Does T ⊨ φ imply T ⊢ φ constructively?

Confusing situation in the literature on first-order logic:

Completeness equivalent to Boolean Prime Ideal Theorem (Henkin, 1954)

Completeness requires Markov’s Principle (Kreisel, 1962)

Completeness equivalent to Weak Kőnig’s Lemma (Simpson, 2009)

Completeness equivalent to Weak Fan Theorem (Krivtsov, 2015)

Completeness holds fully constructively (Krivine, 1996)
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Working Towards an Explanation

There are multiple dimensions at play:

Syntax fragment (e.g., propositional, minimal, negative, full)

Complexity of the context (e.g., finite, decidable, enumerable, arbitrary)

Cardinality of the signature (e.g., countable, uncountable)

Representation of the semantics (e.g., Boolean, decidable, propositional)

Ongoing systematic investigation:

Started by Herbelin and Ilik (2016) and Forster, Kirst, and Wehr (2021)

New observations by Hagemeier and Kirst (2022) and Kirst (2022)

Comprehensive overview of current landscape by Herbelin (2022)

Today: syntactic disjunction, arbitrary contexts, countable signature, prop. semantics
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Classical Outline for Intuitionistic Propositional Logic

Employing prime theories (φ ∨ ψ ∈ T → φ ∈ T ∨ φ ∈ T ):

Lindenbaum Extension: if T ̸⊢ φ then there is prime T ′ with T ′ ̸⊢ φ

Universal Model U : consistent prime theories related by inclusion

Truth Lemma for T in U : φ ∈ T ⇐⇒ T ⊩ φ

Model Existence: if T ̸⊢ φ then there is M with M ⊩ T and M ⊮ φ

Quasi Completeness: if T ⊩ φ then ¬¬(T ⊢ φ)

Completeness: if T ⊩ φ then T ⊢ φ
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Constructive Completeness Proof?

For T quasi-prime (φ ∨ ψ ∈ T → ¬¬(φ ∈ T ∨ φ ∈ T )) and stable (¬¬(φ ∈ T ) → φ ∈ T ):

Lindenbaum Extension: if T ̸⊢ φ then there is stable quasi-prime T ′ with T ′ ̸⊢ φ

Universal Model: consistent stable quasi-prime theories related by inclusion

Truth Lemma: fails for disjunction

Model Existence: fails

Quasi Completeness: fails

Completeness: needs MP/LEM depending on theory complexity and syntax fragment
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The Issue with Disjunction

Truth Lemma case for disjunctions φ ∨ ψ:

φ ∨ ψ ∈ T ?⇐⇒ T ⊩ φ ∨ ψ
def⇐⇒ T ⊩ φ ∨ T ⊩ ψ
IH⇐⇒ φ ∈ T ∨ ψ ∈ T

So we really need prime theories to interpret disjunctions

Primeness from Lindenbaum Extension is constructive no-go
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Quasi Completeness via WLEM

Weak law of excluded middle WLEM := ∀P : P.¬P ∨ ¬¬P

Lemma

Assuming WLEM, every stable quasi-prime theory is prime.

Proof.

Assume φ ∨ ψ ∈ T . Using WLEM, decide whether ¬(φ ∈ T ) or ¬¬(φ ∈ T ). In the latter
case, conclude φ ∈ T directly by stability. In the former case, derive ψ ∈ T using stability,
since assuming ¬(ψ ∈ T ) on top of ¬(φ ∈ T ) contradicts quasi-primeness for φ ∨ ψ ∈ T .

Classical proof outline works again up to Quasi Completeness!
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Backwards Analysis

Is that the best we can get?

Fact

Model Existence implies WLEM.

Proof.

Given P, use model existence on T := {x0 ∨ ¬x0} ∪ {x0 | P} ∪ {¬x0 | ¬P}. We have T ̸⊢ ⊥
so if M ⊩ T , then either M ⊩ x0 or M ⊩ ¬x0, so either ¬¬P or ¬P, respectively.

Fact

Quasi Completeness implies the following principle: ∀p : N → P.¬¬(∀n.¬p n ∨ ¬¬p n)

Proof.

Using similar tricks for T := {xn ∨ ¬xn} ∪ {xn | p n} ∪ {¬xn | ¬p n}.

Obvious consequence both from WLEM and DNS, maybe enough for Quasi Completeness?
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Countable Weak Excluded-Middle Shift1

WLEMSN := ∀p : N → P. (∀n.¬¬(¬p n ∨ ¬¬p n)) →¬¬(∀n.¬p n ∨ ¬¬p n)

⇔ ∀pq : N → P. (∀n.¬¬(¬p n ∨ ¬q n)) → ¬¬(∀n.¬p n ∨ ¬q n)

Lemma

Assuming WLEMSN, every stable quasi-prime theory is not not prime.

Proof.

Assume T not prime and derive a contradiction. Given the negative goal, from WLEMSN we
obtain ∀φ.¬(φ ∈ T ) ∨ ¬¬(φ ∈ T ). This yields exactly the instances of WLEM needed to
derive that T is prime, contradiction.

Already this lemma turns out to be enough for Quasi Completeness!

1Mentioned in systematic study by Umezawa (1959) but absent from the literature otherwise
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Quasi Completeness via WLEMSN

Refined proof outline using WLEMSN:

Lindenbaum Extension: if T ̸⊢ φ then there is stable not not prime T ′ with T ′ ̸⊢ φ

Universal Model U : consistent stable prime theories related by inclusion

Truth Lemma for T in U : φ ∈ T ⇐⇒ T ⊩ φ

Quasi Model Existence: if T ̸⊢ φ then there not not is M with M ⊩ T and M ⊮ φ

Quasi Completeness: if T ⊩ φ then ¬¬(T ⊢ φ)

Completeness: needs MP/LEM depending on theory complexity and syntax fragment
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Consequences and Ongoing Work

Consequences:

WLEM and Model Existence are equivalent

WLEMSN, Quasi Model Existence, and Quasi Completeness are equivalent

Completeness for enumerable T follows from WLEMSN + MP

Generalisation:

Classical propositional logic

Classical first-order logic, maybe intuitionistic first-order logic

Classical and intuitionistic modal logics

Bi-intuitionistic logic (depending on exclusion semantics)
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Example 2: Löwenheim-Skolem Theorems
(jww. Haoyi Zeng)
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The Downwards Löwenheim-Skolem Theorem2

Definition (Elementary Submodels)

Given first-order models M and N , we call h : M→N an elementary embedding if

∀ρ : N → M.∀φ.M ⊨ρ φ↔ N ⊨h◦ρ φ.

If such an elementary embedding h exists, we call M an elementary submodel of N .

Theorem (DLS)

Every model has a countable elementary submodel.

What is the constructive status of the DLS theorem?

2Löwenheim (1915); Skolem (1920)
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Classical Reverse Mathematics of DLS3

DCA := ∀R : A→A→P. tot(R) → ∃f : N→A.∀n.R (f n) (f (n + 1))

CCA := ∀R : N→A→P. tot(R) → ∃f : N→A.∀n.R n (f n)

Theorem

The DLS theorem is equivalent to DC.

Sketch.

To prove DLS from DC, arrange the iterative construction such that a single application
of DC yields a path through all possible extensions that induces the resulting submodel.

Starting with a total relation R : A→A→P, consider (A,R) a model. Applying DLS,
obtain an elementary submodel (N,R ′) so in particular R ′ is still total. Apply CCN to
obtain a choice function for R ′ that is reflected back to A as a path through R.

3Boolos et al. (2002); Esṕındola (2012); Karagila (2014)
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Constructive Reverse Mathematics of DLS?

Over a base theory like the Calculus of Inductive Constructions of the Coq Proof Assistant:

1 Does the DLS theorem still follow from DC alone or is there some contribution of LEM?

2 Does the DLS theorem still imply DC or is there some contribution of CC?
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DLS using Henkin Environments

Definition (Henkin Environment)

Given a model M, we call ρ : N→M a Henkin environment if for all φ:

∃n.M ⊨ρ φ[ρ n] → M ⊨ρ ∀̇φ
∃n.M ⊨ρ ∃̇φ → M ⊨ρ φ[ρ n]

Lemma

Every model with a Henkin environment has a countable elementary submodel.

Proof.

Given a model M and a Henkin environment ρ, we obtain a countable elementary submodel
as the syntactic model N constructed over the domain T of terms by setting

f N t⃗ := f t⃗ and PN t⃗ := PM (ρ̂ t⃗ ).
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The Drinker Paradox

In every bar, one can identify a person such that,
if they drink, then the whole bar drinks

DPA := ∀P : A→P. ∃x .P x → ∀y .P y

EPA := ∀P : A→P.∃x . (∃y .P y) → P x

Fact (contrasting Warren and Diener (2018))

DP and EP are equivalent to LEM.

Proof.

To derive LEM from DP, given p : P use DP for A := {b : B | b = false ∨ (p ∨ ¬p)} and
P : A→P defined by P (true, ) := ¬p and P (false, ) := ⊤.
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DLS assuming DC and LEM

Theorem

Assuming DC and LEM, the DLS theorem holds.

Proof.

Construct a Henkin environment in three steps:

1 Given some environment ρ, we know by DP and EP that, relative to ρ, Henkin witnesses
for all formulas exist.

2 Applying CC we can simultaneously choose from these witnesses at once and therefore
extend to some environment ρ′.

3 This describes a total relation on environments, through which DC yields a path that can
be merged into a single environment, and that then must be Henkin.
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Reverse Analysis

Theorem

Assuming CCN, the DLS theorem implies DC.

Proof.

Following the outline from the beginning, using the assumption of CCN to obtain a choice
function in the countable elementary submodel.

So over CCN and LEM, the DLS theorem is equivalent to DC.
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DLS using Blurred Henkin Environments

Definition (Henkin Environment)

Given a model M, we call ρ : N→M a blurred Henkin environment if or all φ:

(∀n.M ⊨ρ φ[ρ n]) → M ⊨ρ ∀̇φ
M ⊨ρ ∃̇φ → (∃n.M ⊨ρ φ[ρ n])

Lemma

Every model with a blurred Henkin environment has a countable elementary submodel.

Proof.

Given a model M and a blurred Henkin environment ρ, we obtain a countable elementary
submodel as the same syntactic model N constructed over the domain T from before.
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The Blurred Drinker Paradox (BDP)

In every bar, there is an at most countable group such that,
if all of them drink, the the whole bar drinks

BDPA := ∀P : A→P.∃f : N→A. (∀n.P (f n)) → ∀x .P x

BEPA := ∀P : A→P.∃f : N→A. (∃x .P x) → ∃n.P (f n)

Fact

LEM decomposes into BDP + DPN and even BDP +MP, similarly for BEP.

Proof.

The first decomposition is trivial. The latter follows since BDP implies Kripke’s schema (KS)
which is known to imply LEM in connection to MP.
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Classification of BDP
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DLS assuming DC and BDP

Theorem

Assuming DC and BDP/BEP, the DLS theorem holds.

Proof.

Construct a blurred Henkin environment in three steps:

1 Given some environment ρ, we know by BDP/BEP that, relative to ρ, blurred Henkin
witnesses for all formulas exist.

2 Applying CC we can simultaneously choose from these witnesses at once and therefore
extend to some environment ρ′.

3 This describes a total relation on environments through which DC yields a path, that can
be merged into a single environment, and that then must be blurred Henkin.
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Reverse Analysis

Theorem

The DLS theorem implies BDP and BEP.

Proof.

Using the same pattern as in the previous analysis, basically DLS reduces BDP to the trivially
provable BDPN, respectively BEP to the trivially provable BEPN.

So over CCN, the DLS theorem decomposes into DC+BDP+BEP.
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Blurred Choice Axioms

BCCA := ∀R : N→A→P. tot(R) → ∃f : N→A.∀n.∃m.R n (f m)

DDCA := ∀R : A→A→P. dir(R) → ∃f : N→A. dir(R ◦ f )

Lemma

CC decomposes into BCC + CCN and DC decomposes into DDC + CC.

BDC2
A := ∀R : A2→A→P. tot(R) → ∃f : N→A. tot(R ◦ f )

Lemma

BDC2 decomposes into BCC + DDC.
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Classification of Blurred Choice Axioms
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DLS assuming BDC and BDP

Theorem

Assuming BDC2 and BDP/BEP, the DLS theorem holds.

Proof.

Construct a blurred Henkin environment in three steps:

1 Given some environment ρ, we know by BDP/BEP that, relative to ρ, blurred Henkin
witnesses for all formulas exist.

2 Applying BCC we can simultaneously choose from these witnesses at once and therefore
extend to some environment ρ′.

3 This describes a directed relation on environments, through which DDC yields a path that
can be merged into a single environment, and that then must be blurred Henkin.
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Reverse Analysis

Theorem

The DLS theorem implies BDC2 and therefore also BCC and DDC.

Proof.

Using the same pattern as in the previous analyses.

So the DLS theorem decomposes into BDC2 + BDP + BEP.
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Overview
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Ongoing Work

What happens with uncountable cardinalities?
▶ Weaker forms of blurred drinker paradoxes, stronger forms of blurred choice principles

Are the blurred principles weaker than the original?
▶ We expect BDP ̸→ LEM, BCC ̸→ CC, and DDC ̸→ BCC

What is the constructive status of the upwards Löwenheim-Skolem theorem?
▶ Usual proof strategy uses compactness which is as non-constructive as completeness
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Example 3: Post’s Problem
(jww. Yannick Forster, Niklas Mück, Takako Nemoto, Haoyi Zeng)
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Synthetic Computability4

Exploit that in constructive foundations, every definable function is computable:

P : X → P is decidable := ∃d : X → B. ∀x .P x ↔ d x = true

P : X → P is semi-decidable := ∃s : X → N → B. ∀x .P x ↔ (∃n. s x n = true)

Pros:

Avoid manipulating Turing machines or equivalent model of computation

Elegant formalisation (e.g. in CIC), feasible mechanisation (e.g. in Coq)

Cons:

Finding a correct synthetic rendering of Turing reductions not so straightforward

Some attempts: Bauer (2021); Forster (2021); Forster and Kirst (2022); Mück (2022)

4Richman (1983); Bauer (2006); Forster, Kirst and Smolka (2019)
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Synthetic Oracle Computability

Definition (Forster, Kirst and Mück (2023))

An oracle computation is a functional F : (Q→A→P)→I→O→P captured by a computation
tree τ : I→A∗⇀Q + O and its induced interrogation relation τ i ;R ⊢ qs ;as as follows:

σ ; R ⊢ [ ] ; [ ]

σ ; R ⊢ qs ; as σas ▷ ask q Rqa

σ ; R ⊢ qs ++ [q] ; as ++ [a]

F R i o ↔ ∃qs as. τ i ;R ⊢ qs ;as ∧ τ i as ▷ out o

P ⪯T Q := there is an oracle computation F : (N→B→P)→N→B→P with F Q = P

SQ(P) := there is an oracle computation F : (N→B→P)→N→1→P with dom(F Q) = P
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Enumerating Oracle Computations

We need an enumeration of oracle computations for diagonalisations / Turing jump...

For consistency (with LEM), we start from a standard axiom (Kreisel (1965); Forster (2021)):

EPF := ∃θ:N→(N⇀N).∀f :N⇀N.∃e:N.∀xv . θe x ↓ v ↔ f x ↓ v

Theorem (Forster, Kirst and Mück (2024))

There is an enumerator of functionals Φ:N→(N→B→P)→N→B→P such that

1 Φe is an oracle computation for all e : N
2 Given an oracle computation F there is e : N such that ∀Rxb.ΦR

e (x) ↓ b ↔ F R x b

3 The Turing jump P ′ x := ΦP
x (x) ↓ true of P is strictly harder than P

4 The halting problem H := ∅′ is undecidable
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Post’s Problem

Is there a semi-decidable yet undecidable set S with H ̸⪯T S?

Left as an open problem by Post (1944)

Positive solution by Friedberg (1957) and Muchnik (1956)

Low simple set construction by Lerman and Soare (1980)

Synthetic proof mechanised in Coq by Zeng et al. (2024), relying on Σ2-LEM

Analytic proof given by Nemoto (2024), relying only on Σ1-LEM / LPO

Combination yields a synthetic and mechanised proof using LPO
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Low Simple Sets and Limit Computability

Definition (Lerman and Soare (1980) and Post (1944))

P : X → P is low if P ′ ⪯T H and simple if it is co-infinite, semi-decidable, and for We being
the e-th enumerable set we have We ∩ P ̸= ∅ whenever We is infinite.

⇒ Every low simple set is a solution to Post’s problem!

Definition (Shoenfield (1959) and Gold (1965))

P : X → P is limit-computable if there exists a function f : X → N → B with

Px ↔ ∃n.∀m > n. f (x ,m) = true ∧ ¬Px ↔ ∃n.∀m > n. f (x ,m) = false.

⇒ Limit-computability provides easy way to prove lowness...
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Limit Lemma

Lemma (1)

If SQ(P) and SQ(P) then P ⪯T Q.

Lemma (2)

Assuming Σn-LEM, if P is Σn+1 and Q is Σn, then SQ(P).

Lemma (Limit Lemma)

Assuming LPO, if P is limit computable, then P ⪯T H.

Proof.

If P is limit computable, then immediately by definition both P and P are Σ2. Moreover, since
the halting problem H is Σ1, Lemma 2 together with LPO yields both SH(P) and SH(P).
From there we conclude P ⪯T H with Lemma 1.
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The Priority Method

Fix step function γ : N∗ → N → N → P, approximate S inductively:

0⇝ [ ]

n⇝ L γLn x

n + 1⇝ x :: L

n⇝ L ∀x . ¬ γLn x

n + 1⇝ L

Depending on properties of γ we obtain for S x := ∃n, L. n⇝ L ∧ x ∈ L that:

γ is computable ⇒ S is semi-decidable

S satisfies Pe := We is infinite → We ∩ S ̸= ∅ ⇒ S is simple

S satisfies Ne := (∃∞n. ΦS
e (e)[n] ↓) → ΦS

e (e) ↓ ⇒ S ′ is limit computable (using LPO)

Dominik Kirst Mechanised Constructive Reverse Mathematics November 4th, 2024 42



Wall Functions

Definition

The use function UP
e (x) approximates the continuity information of the oracle computation

ΦP
e (x) in a step-indexed way.

Define suitable γ again relative to a wall function ω of same type:

ωL
n(e) ≥ 2 · e ⇒ S satisfies the requirements Pe

ωL
n(e) ≥ maxe′≤e U

L
e′(e

′)[n] ⇒ S satisfies the requirements Ne (using LPO)

Theorem

Assuming LPO, a low simple set exists.

Proof.

Choose the wall function ω := max(2 · e,maxe′≤e U
L
e′(e

′)[n]).
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Ongoing Work

Reverse analysis:

LPO needed for limit lemma?

LPO needed to show that S ′ is limit computable?

LPO needed to construct a low simple set?

Generalisation:

Friedberg-Muchnik theorem

Low basis theorem

Connections to true second-order arithmetic
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Conclusion
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Topics we can discuss

Constructive reverse mathematics
▶ Analyse more theorems, identify robust base systems...

Synthetic computability theory
▶ Translate more theorems, analyse constellations of axioms...

Development of Coq libraries
▶ Extend library of first-order logic, implement more tool support...

Models of constructive type theory
▶ Study effectful realisability models, establish consistencty of CIC+CT+LEM...

Formalised numerical analysis
▶ Mechanise singular Euler-Maclaurin expansion, explore use of proof assistants in physics...
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