
Universität des Saarlandes

Philosophische Fakultät
Bachelor-Studiengang "Historisch orientierte Kulturwissenschaften"

Bachelorarbeit im Kernfach "Theoretische Philosophie"

Foundations of Mathematics:

A Discussion of Sets and Types

Dominik Kirst
Matrikelnummer: 2524622
Wintersemester 2017 / 2018

Advisor
Prof. Dr. Holger Sturm
Department of Philosophy
Saarland University, Germany

Reviewers
Prof. Dr. Holger Sturm
Department of Philosophy
Saarland University, Germany

Prof. Dr. Ulrich Nortmann
Department of Philosophy
Saarland University, Germany

Submitted
11th April 2018

Dominik Kirst
Saarland University
Saarland Informatics Campus
Building E1 3, Room 523
66123 Saarbrücken
kirst@ps.uni-saarland.de

ii

Statement in Lieu of an Oath:

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Saarbrücken, 11th April 2018

Declaration of Consent:

I agree to make both versions of my thesis (with a passing grade) accessible to
the public by having them added to the library of the Philosophy Department.

Saarbrücken, 11th April 2018

iii

iv

Acknowledgments

This project was kindly offered by Prof. Holger Sturm as a bachelor’s thesis
for my pursued degree in historically oriented cultural studies. He took the
time for discussing the strategy underlying this text and for making me sensible
for the philosophical questions concerning the foundations often neglected in
mathematical practice. I also owe my gratitude to Prof. Ulrich Nortmann for
initially arousing my interest in the philosophy of mathematics and for agreeing
to act as the second reviewer. Furthermore, I want to thank the numerous people
with whom I had fruitful discussions and who contributed their helpful feedback,
most notably my colleagues at the Programming Systems Lab and my PhD
supervisor Prof. Gert Smolka.

v

vi

Abstract

The aim of this thesis is to provide an introductory discussion of the two most
common modern foundations of mathematics: axiomatic set theory and depen-
dent type theory. To provide a basis, we begin by explaining the main concepts
of and motivations for the respective systems in their standard formulation. This
includes a brief outline of first-order logic and ZF set theory on the one side, and
of simply typed lambda calculus and Martin-Löf type theory on the other side.
Subsequently sketching an ongoing debate, both approaches are compared with
respect to general criteria for practicality, their respective philosophical justifica-
tion, and their approximate consistency strength. We argue that, despite being
similarly expressive for the purposes of formal mathematics, dependent type
theory is based on the more convincing constructivist view and advantageous
for computer-assisted proving. To illustrate its potential for modern applications,
some parts of the mathematical development are formally verified using the Coq
proof assistant.

vii

viii

Contents

1 Introduction 1

1.1 What is a Foundation of Mathematics? 2

1.2 What is a Satisfactory Foundation of Mathematics? 3

1.3 The Plan of this Thesis . 4

2 Axiomatic Set Theory 5

2.1 First-Order Predicate Logic . 5

2.1.1 Syntax . 5

2.1.2 Semantics . 7

2.1.3 Deduction . 8

2.2 ZF Set Theory . 10

2.2.1 Axioms . 10

2.2.2 Relations and Functions . 11

2.2.3 Natural Numbers . 12

3 Dependent Type Theory 15

3.1 Simply Typed Lambda Calculus . 15

3.1.1 Syntax . 15

3.1.2 Computation . 16

3.1.3 Types . 17

3.1.4 Internal Propositional Logic 19

3.2 Martin-Löf Type Theory . 20

3.2.1 Products and Sums . 20

3.2.2 Dependent Types . 21

3.2.3 Internal Predicate Logic . 22

3.2.4 Natural Numbers . 23

4 Aspects of a Comparison 27

4.1 Practicality . 27

4.1.1 Accessibility . 27

ix

4.1.2 Mechanisability . 29

4.1.3 Community . 30

4.2 Philosophical Background . 31

4.2.1 Conceptual Origin . 31

4.2.2 Classical vs. Intuitionistic Logic 32

4.2.3 First-Order vs. Higher-Order Logic 34

4.3 Relative Consistency . 36

4.3.1 Types as Sets . 36

4.3.2 Sets as Trees . 38

5 Conclusion 41

Bibliography 43

x

Chapter 1
Introduction

After logical inconsistencies had been found in Cantor’s naive set theory and in
Frege’s foundations of arithmetic, the mathematical community of the early 20th
century was left aghast. Most famously, these discoveries were due to Cantor
himself [Can91], Burali-Forti [BF97], and Russell [Rus02]. Beforehand, it was
generally supposed that all mathematical insights accomplished so far could in
principle be derived from a compact collection of initial assumptions, embodying
the so-called axiomatic method going back to Euclid’s Elements. However, after
pioneers like Cantor and Frege had run into the apparent problems, the whole
enterprise suddenly appeared unstable and the community became aware of a
fundamental problem in their current practice of mathematical reasoning. This
uncertain period is nowadays dubbed the foundational crisis of mathematics
and paved the way for an highly productive generation of researchers looking
for ways to wipe out the antinomies.

Cantor’s naive set theory was based on a very general abstraction principle, al-
lowing to consider every somehow graspable property as to form an actual whole
of objects, a so-called set [Can95]. The problem produced by this principle is that
the sets corresponding to self-referential properties may give an contradictory an-
swer to the question of which objects they contain as elements. Another common
intuition is that the conception of a set as actual whole can only accommodate
properties of small extent, leaving big collections like the universe of all objects
without reasonable corresponding set. A direct solution to these problems is to
restrict the abstraction principle to only guarantee the existence of sets for very
specific properties, which is the path leading to axiomatic set theory. Among its
founders were Zermelo, who formulated a concrete list of axioms in his second
proof of the well-ordering theorem [Zer08], and Fraenkel [Fra25], who extended
this list by the replacement and foundation axioms. The so created standard
system is now called ZF set theory, immortalising its founders.

1

2 Chapter 1. Introduction

Another approach was chosen by Russell, solving self-referentiality by intro-
ducing the conception of types [Rus08]. Types group mathematical objects into
semantic categories such as numbers, functions, and relations. Moreover, func-
tions and relations are again distinguished by the types they operate on, e.g.
separating a relation on numbers from a relation on functions. In this approach,
a property simply cannot refer to itself as it operates on a type it does not belong
to. Together with his colleague Whitehead, Russell created the epochal Principia
Mathematica [WR10], a formal development of elementary mathematics based
on the theory of types. Although this system appeared highly complicated and
was therefore eventually outrun by the arguably simpler ZF set theory, types
became integral in the emerging field of theoretical computer science. Extend-
ing previous work by Church [Chu40], Girard [Gir72], and Reynolds [Rey74]
on typed function calculi, dependent type theory as proposed by Martin-Löf
[ML85] evolved into a credible foundational alternative to axiomatic set theory.

1.1 What is a Foundation of Mathematics?

To enable a meaningful discussion in this thesis, we first attempt to characterise its
key notion. A foundation of mathematics is a formal system in which the body of
all mathematical constructions and theorems can be derived from first principles.
Such systems come with a precise language for mathematical statements as well
as a formal and verifiable notion of proof. Moreover, the underlying logical
framework should be rich enough to capture all usual forms of mathematical
deduction and avoid contradictions. It is worth explaining these defining criteria
in more detail:

• Universality. A foundation should really be a basis for all of mathematics,
meaning that its language is general and flexible enough to accommodate all
concepts of all specific branches of mathematics and no area is conceptually
preferred. Although not all mathematical objects need to be linguistic
primitives, there are clear and elegant encodings with only reasonable
technical overhead.

• Precision. Statements and derivations can be written down in a purely
formal way, pinpointing the intended thought unambiguously. Thus any
reader can reconstruct communicated content without misunderstandings,
and formal proofs without gaps or flaws can be presented. Furthermore,
it is possible to work out and state any additional assumptions a concrete
theorem relies on.

• Effectiveness. It is algorithmically decidable whether or not given defi-
nitions and theorems are well-formed and hence meaningful at all. Most
importantly, a formal proof must be algorithmically verifiable such that the
corresponding theorem can be used without concern.

1.2. What is a Satisfactory Foundation of Mathematics? 3

• Consistency. There should be some evidence suggesting that the logical
system is free of contradictions. Although a formal consistency proof is nor-
mally not achievable due to Gödel’s second incompleteness theorem [Gö31],
it should at least be taken care to exclude the obvious logical antinomies.
This means that consistency remains an empirical property, making more
established foundational systems in principle more trustworthy than niche
alternatives.

As it will be sketched in this thesis, both axiomatic set theory and dependent
type theory are foundations of mathematics in this formal sense. Thus capable
solutions to the foundational crisis could indeed be found and the main debate
may focus on identifying satisfactory solutions.

1.2 What is a Satisfactory Foundation of Mathematics?

While the previously discussed criteria describe the very definition of a foun-
dational system, there are further aspects that make such a system practical for
realistic use. Some of these can be formulated as follows:

• Accessibility. It should be possible to teach a foundational system in
reasonable time and with reasonable effort. This presupposes a not too
complicated and rather intuitive presentation, making the initial hurdle not
too discouraging. In general, the more the formal language and deduction
system resemble the natural mathematical habits, the easier it is for a
working mathematician to adopt to a specific foundation. This includes
aspects like the compactness of formal statements and derivations, the
legibility of notations, and a basically small distance between informal and
formal reasoning.

• Mechanisability. In an age dominated by the increasing opportunities
of high-performance computers, it is a key advantage of a foundational
system to be mechanisable for at least three reasons. First, increasingly
complex mathematical problems demand increasingly complex solutions,
which may be cumbersome and hard to verify even for experts. Having
computers perform automated proof checking speeds up the mathematical
review process and enhances the trustworthiness of new results. Secondly,
interactive proof assistants are helpful during proof development, as these
programs take care of the formal bookkeeping and hence allow the user
to focus on the main ideas. Thirdly, the ideal vision is of course to have a
program able to find proofs on its own, having the user only give guidance
during the search. Although this vision is naturally hard to fulfil in general,
state-of-the-art proof automation is on a level where the more calculable
goals can be left to the computer.

4 Chapter 1. Introduction

• Community. It is desirable that a foundation of mathematics is not only
supported by an active community of both theoretically and practically
working researchers but also accepted as standard by the general majority.
The former ensures that the system is continuously improved, simplified,
and adjusted for the intendedly wide range of applications. The latter
guarantees that mathematicians from diverse backgrounds can always
discuss formally in a standardised lingua franca without first having to
clarify their jargon and notation.

Most importantly, a satisfactory foundation of mathematics rests upon a con-
vincing philosophical basis which provides plausible answers to the ontological
and epistemic questions concerning mathematical entities and deductions. These
answers should include clear conceptions of objects like numbers or functions,
their possible existence and infinite extent, as well as logical inference - hence
allowing for a meaningful exploration of the mathematical sciences. Particularly,
the accepted rules of logical inference and the order of expressible objects have a
dramatic impact on the flavour of mathematical practice.

1.3 The Plan of this Thesis

This thesis is supposed to provide an introductory comparison of axiomatic set
theory and dependent type theory as the two common approaches to foundations
of mathematics. In order to let this comparison penetrate the surface, we begin by
explaining the basics of both approaches in Chapter 2 and Chapter 3, respectively.
These rather technical chapters are written for an audience with a rough experi-
ence in mathematical logic and are presented in a mildly formal language. It is
intended that the more experienced reader is able to reconstruct full formal detail,
while the less experienced reader can still understand the main ideas. In fact,
the tutorial chapters already constitute an evaluation of the accessibility of both
systems, in that both explanations are given roughly the same space, allowing
for a potentially differently deep understanding.

Subsequently, in Chapter 4, axiomatic set theory and dependent type theory are
compared with respect to their practicality, their philosophical basis, and their
approximate consistency strength. First, concerning practicality, we evaluate both
systems by means of the three aspects we have introduced above. Secondly, we
mainly compare the classical first-order logic underlying axiomatic set theory to
the intuitionistic higher-order logic expressed by dependent type theory. Thirdly,
we show how to interpret set theory in type theory and vice versa, showing that
one system in principal proves the consistency of the other.

We end with a few conclusive remarks in Chapter 5 summarising the previous
discussion and coming to the result that its general usability, suitability for
mechanisation, and constructive philosophy make dependent type theory the
more satisfactory foundation of mathematics.

Chapter 2
Axiomatic Set Theory

Axiomatic set theory is usually formulated as a first-order theory, meaning that
the set-theoretic axioms are expressed as statements in first-order predicate logic
extended by the symbols of set-theoretic language. This approach separates the
logical fragment dealing with formulas, their semantics and correct deductions
on the one hand from the mathematical component expressing the particular
theory. Mirroring this separation, this chapter first introduces predicate logic with
its most important concepts and then establishes the basics of ZF set theory as a
particular first-order theory. There are lots of introductory textbooks concerning
set theory, we refer to [Kun14], [HJ99], [Sup60], and [SF10] for a selection. Also,
see [Moo88] and [Kan96] for a historical sketch of first-order logic and set theory.

2.1 First-Order Predicate Logic

2.1.1 Syntax

Predicate logic is a formal language capturing much of the logical structure of
natural language. For example, consider the following English sentence:

Every dog has a human owner whose mother has no red hair.

Formalising such a sentence means to replace individuals, functions, and predi-
cates by symbols as well as using the common notation for the logical connectives
and quantifiers. Following these steps, an unambiguous formal version could be

∀x. d(x) ⊃ ∃y. h(y) ∧ o(y, x) ∧ ¬r(m(y))

5

6 Chapter 2. Axiomatic Set Theory

where x and y are variables for individuals, m denotes the function mapping
every individual to their mother, and d, h, o, and r stand for the predicates of
being a dog, being a human, ownership, and having red hair. The function
and predicate symbols are called non-logical symbols as they express semantic
concepts rather than purely logical structure. Note that they each come with a
concrete arity, i.e. number of expected arguments: in our example, almost all are
unary, only o is binary.

By fixing a collection S of non-logical symbols, a so-called signature, one can
adjust the language to the needs of the specific topic of interest. Then formally,
the formulas of (first-order) predicate logic are generated inductively in four
stages relative to S:

• Variables. We simply assume a sufficient supply of variable symbols such
as x, y, z, x′, x1, etc. Actually, starting from a single symbol x and employing
a rule generating variables x′, x′′, x′′′, etc. is enough.

• Terms. Every variable is a term. If t1, . . . , tk are terms and f is a k-ary
function symbol in S, then f(t1, . . . , tk) is a term.

• Atomic formulas. If t1 and t2 are terms, then t1 = t2 is an atomic formula.
Moreover, if t1, . . . , tk are terms and p is a k-ary predicate symbol in S, then
p(t1, . . . , tk) is an atomic formula.

• Formulas. Every atomic formula is a formula. If φ and ψ are formulas, then
φ ∧ ψ, φ ∨ ψ, φ ⊃ ψ, and ¬φ are formulas. Moreover, if x is a variable, then
∀x.φ and ∃x.φ are formulas.

The example formula from above, let’s call it φE , can indeed be generated from
these syntax rules. In fact, it is an easy problem to decide whether or not an
arbitrary string of symbols is a well-formed formula or not.

In the forthcoming development, we freely adopt the common conventions to ex-
press the tree-like structure of formulas using parentheses regarding associativity
and operator precedence. Moreover, if not indicated otherwise by parentheses,
the quantifier scope is maximal.

Note that the given syntactic rules impose strong restrictions on the available
formulas. Functions and predicates operate only on terms and only produce
terms and atomic formulas, respectively. Moreover, quantification is restricted
to the solely available individual variables. These restrictions distinguish first-
order logic as sketched here from higher-order logics, e.g. allowing for applying
functions to functions and for quantifying over relations. Although first-order
logic hence surely expresses not all of the logical structure hidden in natural
language, however, (combined with set-theoretic assumptions) it is still sufficient
to capture most of the statements needed in ordinary mathematics.

2.1. First-Order Predicate Logic 7

2.1.2 Semantics

Having our example sentence reduced to the purely syntactic version φE , its
status is completely unclear if we happen to forget the intended use of the non-
logical symbols. In the original meaning, the statement is certainly false as not
every dog even does have an owner. However, if we alter d to denote being a
human as well and o to express friendship, then the English version becomes

Every human has a human friend whose mother has no red hair.

which might actually be true. Also, we have not at all qualified which domain
the individuals belong to, but this knowledge is again crucial for the meaning
of φE . So far, the intended domain could have been the collection of all living
creatures. However, we could as well restrict quantification to humans only, then
φE holds vacuously since no human is a dog and hence all humans who are dogs
have human owners whose mothers have no red hair.

This means that a formula is only meaningful in a fixed domain D of individuals
together with a symbol assignment A mapping the k-ary function and predicate
symbols to k-ary functions and predicates on D, respectively. Both ingredients
together form an interpretation M = (D,A). Then following Tarski [Tar43], the
predicate M |= φ expressing that M satisfies φ is defined inductively:

• Terms. Variable-free terms can be evaluated to concrete individuals. Specif-
ically, if terms t1, . . . , tk have values d1, . . . , dk and f is a k-ary function
symbol, then f(t1, . . . , tk) evaluates to Af (d1, . . . , dk). Here Af denotes the
k-ary function corresponding to the symbol f under the assignment A.

• Equality. M |= t1 = t2 if t1 and t2 have the same value d of D.

• Predication. If terms t1, . . . , tk have values d1, . . . , dk and p is a k-ary pred-
icate symbol, then M |= p(t1, . . . , tk) if Ap holds for (d1, . . . , dk). Here
Ap denotes the k-ary predicate corresponding to the symbol p under the
assignment A.

• Connectives. The meaning of the logical connectives is defined according
to the usual truth tables. For instance, M |= φ ∧ ψ if M |= φ and M |= ψ.

• Quantification. M |= ∃x.φ if there is an individual d in the domain D such
that M |= φ[cd/x]. Here φ[cd/x] denotes the formula φ with all occurrences
of the variable x replaced by a new 0-ary function symbol cd corresponding
to d. Similarly, M |= ∀x.φ if M |= φ[cd/x] for all individuals d.

Note that this formal definition confirms the informal interpretations of φE above.
If an interpretation satisfies a formula, we call it a model and formulas that are
satisfied by every interpretation are called valid and express logical tautologies.
Then φE is not valid as its truth really depends on the chosen interpretation.

8 Chapter 2. Axiomatic Set Theory

However, consider the following two formulas in the same signature as φE :

φA := ∀x.d(x) ⊃ ∃y.h(y) ∧ o(y, x)

φB := ∀x.h(x) ⊃ ¬r(m(y))

As they formulate two conditions implying φE , one can show that the formula
φA ∧φB ⊃ φE is in fact valid by following the above definition for an arbitrary in-
terpretationM . This means that we can think of φA and φB as axioms constituting
a theory that has φE as a theorem.

2.1.3 Deduction

As purely semantical reasoning for the validity of formulas such as φA∧φB ⊃ φE
is done in natural language and hence subject to the usual ambiguities and com-
munication flaws, it is a main concern of formal logic to provide for a purely syn-
tactical deduction system. We here outline the idea of a system in the flavour of
natural deduction with introduction and elimination rules for all logical symbols
as introduced by Gentzen [Gen35]. Consider the following rules for conjunction
and implication:

Γ ` φ Γ ` ψ
Γ ` φ ∧ ψ

(∧I)
Γ ` φ ∧ ψ

Γ ` φ
(∧E1

)
Γ, φ ` ψ

Γ ` φ ⊃ ψ
(⊃I)

Γ ` φ ⊃ ψ Γ ` φ
Γ ` ψ

(⊃E)

Such inference rules list on top of the bar the necessary assumptions to conclude
the statement below the bar. The statements in natural deduction are of the form
Γ ` φ, indicating that from a list Γ of assumed formulas a formula φ is provable.
The rule (∧I) states that a conjunctive formula is provable if both its subformulas
are provable. Conversely, if a proof of a conjunction could be derived, the rule
(∧E1) can be used to obtain a proof of the left subformula (and likewise there is a
rule (∧E2) for the right subformula). By (⊃I), an implication φ ⊃ ψ is provable
whenever ψ is provable if φ is added to the assumptions, and (⊃E) transforms
evidence for φ ⊃ ψ and φ into evidence for ψ.

A proof of a composite formula is a derivation tree using the rules of natural
deduction. We do not give the full system here but encounter a few more rules
considering a (simplified) derivation tree for φA ∧ φB ⊃ φE from no assumptions:

2.1. First-Order Predicate Logic 9

φA ∧ φB, d(x0) ` φA ∧ φB
(Γ)

φA ∧ φB, d(x0) ` ∀x.d(x) ⊃ ∃y.h(y) ∧ o(y, x)
(∧E1

)

φA ∧ φB, d(x0) ` d(x0) ⊃ ∃y.h(y) ∧ o(y, x0)
(∀E)

φA ∧ φB, d(x0) ` d(x0)
(Γ)

φA ∧ φB, d(x0) ` ∃y.h(y) ∧ o(y, x0)
(⊃E)

φA ∧ φB, d(x0) ` h(y0) ∧ o(y0, x0)
(∃E)

...
φA ∧ φB, d(x0) ` h(y0) ∧ o(y0, x0) ∧ ¬r(m(y0))

φA ∧ φB, d(x0) ` ∃y.h(y) ∧ o(y, x0) ∧ ¬r(m(y))
(∃I)

φA ∧ φB ` d(x0) ⊃ ∃y.h(y) ∧ o(y, x0) ∧ ¬r(m(y))
(⊃I)

φA ∧ φB ` φE
(∀I)

` φA ∧ φB ⊃ φE
(⊃I)

From bottom to top, the target formula is first decomposed using several intro-
duction rules. The universal quantification can be introduced if the respective
formula holds for arbitrary x0 and the existential quantification holds if there
is a specific witness y0. In the omitted part one basically derives that ¬r(m(y0))
follows from h(y0) using the assumption φB . Above, the witness y0 is obtained by
eliminating an existential quantifier and the general statement for x0 is obtained
by eliminating a universal quantification. The leafs end the derivation as the
respective statements occur in the list of assumptions.

Along those lines, a sound and complete deduction system for first-order predi-
cate logic can be given, meaning that it proves only valid formulas and that every
valid formula is provable, respectively. The more involved completeness theorem
is due to Gödel [Göd30] and implies further useful properties of first-order logic
such as the compactness and model existence theorems.

10 Chapter 2. Axiomatic Set Theory

2.2 ZF Set Theory

2.2.1 Axioms

Having the logical framework all set, we can now develop axiomatic set theory as
a specific first-order theory. As outlined above, the first step is to fix a signature
listing the non-logical symbols the language should comprise. It might come as a
surprise that requiring a single binary predicate symbol ∈, usually written infix,
suffices. The other set-theoretic symbols such as ⊆, ∅,∪, or P can all be defined
within the theory, for instance x ⊆ y is an abbreviation for ∀z.z ∈ x ⊃ z ∈ y.

The second step is to pose the axioms that constitute the deductive base of the
theory. ZF set theory as developed by Zermelo [Zer08] and Fraenkel [Fra25] (in
principle) consists of nine axioms.

Extensionality: ∀xy.(∀z.z ∈ x↔ z ∈ y) ⊃ x = y

This states that sets are extensional in the sense that they are uniquely determined
by their elements. The next few axioms state the existence of some specific sets:

Empty Set: ∃x.∀y.y 6∈ x
Pairing: ∀x, y.∃z.∀u.u ∈ z ↔ u = x ∨ u = y

Union: ∀x.∃z.∀u.u ∈ z ↔ ∃y ∈ x.u ∈ y
Power Set: ∀x.∃z.∀u.u ∈ z ↔ u ⊆ x
Although it is no formal 0-ary function symbol in our signature, we use ∅ in
formulas to refer to the set guaranteed by the empty set axiom. This is justified
since every formula containing ∅ can be translated into an equivalent formula
referring to the defining property instead. Similarly, we use the symbols {x, y}
for the unorderd pair,

⋃
x for the union, and P(x) for the power set given by the

respective axioms. We can even introduce further symbols such as {x} for {x, x},
x ∪ y for

⋃
{x, y}, and

⋂
x for { z ∈

⋃
x | ∀y ∈ x. z ∈ y }.

The operations so far only allow for constructing finite sets such as {∅} or {{∅} , ∅}.
Since this is surely not enough to express a lot of mathematics, we explicitly
assume an infinite set as a starting point for larger sets:

Infinity: ∃x.∅ ∈ x ∧ (∀y ∈ x. y ∪ {y} ∈ x)

The next two axioms are in fact schemes with one instance for every formula φ.

Separation: ∀x.∃y.∀u.u ∈ y ↔ u ∈ x ∧ φ(u)

Replacement: ψ ⊃ ∀x.∃y.∀v.v ∈ y ↔ ∃u ∈ x.φ(u, v)

Separation and replacement clarify the existence of subsets { y ∈ x | φ(y) } and
image sets { z | ∃y ∈ x. φ(y, z) }, respectively. In the statement of the replacement
axiom, the formula ψ expresses that φ is functional, which can be expressed
formally by (∀u, v, v′.φ(u, v) ∧ φ(u, v′)→ v = v′). Including these two schemes,
ZF actually consists of infinitely many axioms, however, given their particular
structure it is still an easy problem to decide whether a given formula is an axiom.

2.2. ZF Set Theory 11

Finally, it is custom for ZF-like axiomatisations to exclude non-well-founded
membership as in x ∈ x, x ∈ y ∈ x, or any other infinitely decreasing chain of
membership judgements. A first-order statement excluding such behaviour can
be given as follows:

Regularity. ∀x.x 6= ∅ ⊃ ∃y ∈ x.∀z ∈ y.z 6∈ x

2.2.2 Relations and Functions

As the only objects available in ZF set theory are sets, the ordinary mathematical
objects such as functions and numbers need to be encoded. The base for the
former is the cartesian product containing ordered pairs. The standard encoding
of ordered pairs is due to Kuratowski [Kur21] and sets (x, y) := {{x} , {x, y}}.
Then the cartesian product X × Y is the set containing all ordered pairs (x, y)
with x ∈ X and y ∈ Y . Formally, it can be defined by

X × Y :=
⋃
x∈X { p | ∃y ∈ Y.p = (x, y) }

The set tight to the union is an instance of the replacement scheme as p = (x, y)
is a functional property and forms all pairs with first component x. Then the
indexed union is an abbreviation for taking the union after replacing every x ∈ X
with its corresponding set of pairs, hence obtaining all possible combinations.

Moving on, a set-theoretic relation R on sets X and Y is nothing but a subset of
the cartesian product X × Y . Moreover, a set-theoretic function is a relation f ⊆
X×Y with a special property, namely that for every x ∈ X there is a unique y ∈ Y
with (x, y) ∈ f . The latter is normally written f(x) = y and the set of functions
from X to Y is denoted by X → Y . One can in fact give a formal definition of
f(x) in terms of the set operations by setting f(x) :=

⋃
{ y | ∃p ∈ f.p = (x, y) }.

As examples, we define the projections π1 ∈ X × Y → X and π2 ∈ X × Y → Y :

π1(p) :=
⋃⋂

p π2(p) :=
⋃
{ z ∈

⋃
p | ∀y, y′ ∈ p. y 6= y′ → z 6∈ y ∨ z 6∈ y′ }

Here we used a point-wise pattern for defining a function f ∈ X → Y by
just specifying a term t(x) and setting f := { p ∈ X × Y | ∃x ∈ X.p = (x, t(x)) }.
The projections then satisfy the properties π1((x, y)) = x, π2((x, y)) = y, and
p = (π1(p), π2(p)) if p is an ordered pair. In usual practice, these equations can be
shown by simply plugging in the respective definitions and arguing by equational
reasoning, but it is important to note that one could also give fully formal proofs
in the language of the previously discussed natural deduction system. This is in
fact the practice we adopt in the following section on natural numbers by giving
informal statements and arguments which, in principle, always have formal
counterparts.

12 Chapter 2. Axiomatic Set Theory

2.2.3 Natural Numbers

The standard way to encode the numbers in set theory is due to von Neu-
mann [vN23], setting 0 := ∅ and σ(n) := n ∪ {n}. That some set containing
all natural numbers exists is guaranteed by the infinity axiom and one defines
the set ω of natural numbers to be the smallest such set. Formally, if ω′ is the set
provided by the infinity axiom and ψ(x) is the formula asserting that x contains
0 and is closed under σ, then one sets ω :=

⋂
{x ∈ P(ω′) | ψ(x) }. In particular,

given that the set of natural numbers exists, the successor operation defines an
actual function σ ∈ ω → ω. In order to verify that this encoding of numbers is
meaningful, we justify the Peano axioms:

• Disjointness. We first prove that the successors are disjoint from zero,
meaning that there is no n ∈ ω with σ(n) = 0. So let σ(n) = 0 hold for some
n ∈ ω. By the construction of σ we have n ∈ σ(n) = n∪{n} as n ∈ {n}. but
then n ∈ 0 = ∅, which contradicts the empty set axiom.

• Injectivity. We next prove that the successor function is injective, that is
σ(n) = σ(n′) implies n = n′ for all n, n′ ∈ ω. By the extensionality axiom,
we have to prove two inclusions. For n ⊆ n′, we suppose x ∈ n and show
x ∈ n′. Since n ⊆ σ(n) it follows that x ∈ σ(n) and hence x ∈ σ(n′). This
leaves us with two cases, either the wished x ∈ n′ or x ∈ {n′} and hence
x = n′. The latter leads to a contradiction of the regularity axiom and hence
we can conclude n ⊆ n′. Analogously we obtain the other inclusion n ⊆ n′
and thus n = n′.

• Induction. Finally, the set-theoretic induction principle for natural numbers
basically expresses that ω is the smallest set containing all numbers, which
was the very construction of ω. Formally, we have to show for every formula
φ satisfying φ(0) and ∀n.φ(n) ⊃ φ(n+ 1) it holds that φ(n) for every n ∈ ω.
For such a formula φ, it clearly holds that {n ∈ ω′ | φ(n) } has the property
ψ from above, so ω ⊆ {n ∈ ω′ | φ(n) } and hence φ(n) for every n ∈ ω.

There is also the slightly stronger complete induction principle, stating
that φ(n) holds for all numbers n if φ(n) can be proved whenever φ(n′)
holds for all n′ ∈ n. Although we omit the rather technical formal proof
at this point, we take the freedom to employ this form of induction where
necessary.

To reach the point where we can express all of number arithmetic, it remains
to define the less-than ordering and functions like addition and multiplication.
Given the particular encoding, a number is exactly the set of all previous numbers.
Hence m < n can be simply defined as m ∈ n, more formally, we define a relation
<⊆ ω × ω by < := { p ∈ ω × ω | π1(p) ∈ π2(p) }. Moreover, we define the non-
strict counterpart ≤ := { p ∈ ω × ω | π1(p) ⊆ π2(p) }. In order to justify these
definitions, we prove that ∈ restricted to ω is a well-ordering.

2.2. ZF Set Theory 13

• Asymmetry. If m ∈ n it cannot be that n ∈ m as this contradicts regularity.

• Transitivity. We first show by induction that x ⊆ n for all x ∈ n and n ∈ ω.
The claim holds trivially for 0 since ∅ has no elements. So suppose n is
transitive and x ∈ σ(n). Then either x ∈ n or x = n. If x ∈ n we know that
x ⊆ n since n is transitive and if x = n then x ⊆ n holds trivially. Now
given that every number is transitive, supposing n1 ∈ n2 ∈ n3 implies
n2 ⊆ n3 and hence n1 ∈ n3.

• Trichotomy. The statement that for any two numbersm and n one ofm ∈ n,
m = n, or n ∈ m holds follows by a nested induction on both m and n.
Since this is rather technical, we omit the formal proof here.

• Well-Foundedness. Let x be a non-empty subset of ω, so assume n0 ∈ x.
We have to find a least element n ∈ x, meaning that n ⊆ n′ for all n′ ∈ x.
By applying the complete induction principle, we may assume that x has
a least element if we find some n ∈ x with n ∈ n0. Now we distinguish
two cases. Either n0 is already the least element of x, then we are done.
Otherwise, there must be n ∈ xwith n0 6⊆ n. Then by the trichotomy n ∈ n0

must hold and the inductive assumption applies.

Addition and Multiplication are usually defined by giving recursive equations:

m+ 0 := m m · 0 := 0

m+ σ(n) := σ(m+ n) m · σ(n) := m+m · n

It takes some effort to show that one can really define functions + and · from
ω × ω to ω satisfying these equations. The solution is given by the following
recursion theorem:

Theorem (Recursion). Assume a base value n0 ∈ ω and a step function s ∈ ω → ω.
There exists a unique function f ∈ ω → ω such that f(0) = n0 and f(σ(n)) = s(f(n)).

Before we prove the recursion theorem, we show how it is applied to define
addition and multiplication. We fix a number m and pick the base value n0 := m
and the step function s := σ. Then the recursion theorem yields a function fm
with fm(0) := m and fm(σ(n)) = σ(fm(n)). So on any input n, fm adds m to n.
Hence to obtain the full binary addition function, we simply set m+ n := fm(n).
Formally, we actually define a function f ∈ ω → (ω → ω) where f(m) := fm
and set m + n := f(m)(n). Multiplication is obtained similarly for base value
n0 := 0 and step function s(n) := m + n. Moreover, one could continue and
define exponentiation for base value n0 := 1 and step function s(n) := m · n.

We end our development of the set-theoretic approach to the foundations of
mathematics with a proof of the recursion theorem.

14 Chapter 2. Axiomatic Set Theory

Proof of the recursion theorem. We have to prove two things, namely existence and
uniqueness of a function f ∈ ω → ω satisfying the recursive equations stated in
the theorem. Beginning with the uniqueness part, assume two such functions
f and g. As functions encoded as sets of pairs (x, f(x)) are extensional, we
just have to prove that f(n) = g(n) for every n ∈ ω. We apply the induction
principle, so we have to show f(0) = g(0) and f(σ(n)) = g(σ(n)) whenever
f(n) = g(n). Both follow from the specification as f and g are solutions to
the recursion equations: the former since f(0) = n0 = g(0), the latter since
f(σ(n)) = s(f(n)) = s(g(n)) = g(σ(n)).

We now prove the existence of f . To this end, we say that a computation on n
is a function c ∈ σ(n) → ω satisfying the recursive equations from above, so
c(0) = n0 and c(σ(n′)) = s(c(n′)) for all n′ ∈ n. Note that by setting σ(n) as
domain for c, we again exploit that numbers are the set of all previous numbers.
Now we first prove by induction that for every n there is a computation on n.
In the base case, we simply set c := {(0, n0)}. It is easy to see that this defines
a function c : 1 → ω as the single element 0 of the domain 1 is mapped to a
unique value n0. Moreover, c clearly satisfies the recursive equations, so c defines
a computation on 0. Now suppose that c′ is a computation on n. Then we set
c := c′ ∪ {(σ(n), s(c′(n))} which defines a function c ∈ σ(σ(n))→ ω that agrees
with c′ on all n′ ≤ n and additionally maps σ(n) to s(c′(n)). It follows that c is a
computation on σ(n).

Now by an analogous argument as above, for every number n there can only
be a single computation on n. Hence we can refer to this computation via cn or,
more formally, have a function C ∈ ω → (ω → ω) with C(n) := cn that maps
every number to its respective computation. Then we can set f(n) := C(n)(n)
to define a function f ∈ ω → ω and establish the recursive equations. Indeed
f(0) = C(0)(0) = n0 since C(0) is a computation on 0. Moreover f(σ(n)) =
C(σ(n))(σ(n)) = s(C(n)(n)) = s(f(n)) using that C(σ(n)) is a computation on
σ(n) and that computations on n are unique.

Chapter 3
Dependent Type Theory

The type theoretic approach to foundations of mathematics is based on rather
different primitives than axiomatic set theory. At its core lies the simply typed
lambda calculus, an abstract theory of functions and computation, which can be
thought of as a simple programming language. In this language, terms are asso-
ciated with particular types, distinguishing their behaviour as specific sorts of
functions or individuals, and only well-typed expressions are admitted. Instead
of a clear separation of logical formulas and mathematical objects, logical lan-
guage arises as an internal concept expressed by the typing rules of the calculus.
By gradually introducing further constructions on types and terms in the style
of Martin-Löf type theory, the internal logic amounts to higher-order predicate
logic and the basic mathematical objects and properties become expressible. We
refer to [BDS13], [GTL89], [ML85], and [Luo18] for introductory material.

3.1 Simply Typed Lambda Calculus

3.1.1 Syntax

The primitive notion of the lambda calculus is that of a syntactic function de-
scribing an algorithmic procedure. As a motivating example, we consider the
identity function I on the natural numbers. This function comes with a clear
procedural intuition: it simply returns any given input. However, in set-theoretic
language, I is encoded as the set of all pairs (n, n) of numbers n ∈ N and the
more informative point-wise definition I(n) := n is a mere abbreviation for the
formal encoding. Moreover, applying the obtained function I to the concrete
number 3 by writing I(3) is again an abbreviation for a set-theoretic operation
not at all capturing the procedural behaviour.

15

16 Chapter 3. Dependent Type Theory

The lambda calculus starts from the exactly opposite perspective, being centred
around the very meaning of a procedure. Primitive to the syntax are exactly
the point-wise function definitions and applications, that were indirect in set
theory. For instance, the identity function is defined by I := λx.x, where the λ
introduces an argument variable x that is used in the trivial procedure described
in the subterm. Then applying the function I to another term s is again expressed
by a primitive term, normally written I s, usually without the use of parentheses.
Formally, the terms of the lambda calculus are defined by three syntax rules:

• Variables. Every variable x, y, z, x′, x1, . . . is a term.

• Applications. Ifs s and t are terms, then s t is a term.

• Abstractions. If s is a term and x is a variable, then λx.s is a term.

As we did with the quantifiers in logical formulas, we group together prefixes of
lambdas by writing λxy.s for λx.λy.s. We consider two further terms:

K := λxy.x S := λxyz.x z (y z)

The term K describes a procedure taking two arguments and returning the first
one. A bit more interesting, the procedure defined in S takes another procedure
x as argument and applies it to the third argument z as well as to the result of
applying the second argument y to z.

3.1.2 Computation

The meaning of a lambda term is given by its computational behaviour. For
instance, consider the application I s = (λx.x) s for some term s. As I is meant
to express the identity function, we expect its application to s just to return s.
Formally, this is captured by replacing the single occurrence of the argument
variable x in the body of I by the argument s, written by I s � x[s/x] = s. The
notation [s/x] abbreviates the substitution of x by s as before and � denotes
a reduction step. The general definition of reductions s � t is given by the
following inductive rules:

(λx.s)t � s[t/x]
s � s′
s t � s′ t

t � t′
s t � s t′

s � s′
λx.s � λx.s′

Note that the example I s � s was an application of the first rule. The other
rules simply assert that reduction works in the context of composite terms. Also
consider the following more interesting example of a reduction sequence

S K K �∗ λz.K z (K z) �∗ λz.z

3.1. Simply Typed Lambda Calculus 17

where �∗ is an abbreviation for several reduction steps. From the left to the
middle, we took two steps for simply plugging in the two arguments into S.
From the middle to the right, we then took two steps below the outer lambda,
evaluating the application of K to z and (K z). The obtained term λz.z is the
same as I up to a renaming of the variables. In fact, it is common practice to
identify such terms, so we in total obtain that S K K �∗ I . Moreover, since I
cannot reduce any further, we say that I is a normal form and consequently that
S K K has the normal form I . Not every term necessarily has a normal form, the
standard example is Ω := (λx.x x)(λx.x x) where Ω � Ω.

The most important property of the obtained reduction system is confluence:
whenever s �∗ t and s �∗ t′ there is a term u with t �∗ u and t′ �∗ u. A corollary
is the uniqueness of normal forms, meaning that t = t′ whenever t and t′ are
normal forms of a term s. This shows that the computation expressed by term
reductions is well-behaved, as it always yields the same value independent of
the chosen evaluation order.

Seen as a computational model, the lambda calculus is in fact as expressible as
any other programming language. In fact, it can shown to be Turing complete,
meaning that every effectively computable algorithm can be implemented as
lambda term. One proof of this statement proceeds by encoding natural numbers,
booleans and unbounded recursion directly as terms, allowing for computing all
general recursive functions. Making this idea precise is beyond the scope of this
thesis and we refer to the relevant literature, for instance the famous article by
Turing [Tur36]. We study an alternative type-theoretic construction of the natural
numbers in Section 3.2.

3.1.3 Types

In the introductory example for this section, we actually introduced I as the
identity function on natural numbers. However, after giving the formal syntax,
the term I lost this semantic aspect and now operates on arbitrary terms. In the
remainder of this section, we recover the idea of functions for specific arguments
by introducing types. To this end, we first extend the syntax to accommodate
type constructions and annotations.

• Base Types. We assume some base types a, b, c, etc.

• Function Types. If A and B are types, then so is the function type A→ B.

• Type Annotations. Abstractions now have the form λx : A.s for a type A.

Types are a means to categorise the terms into semantic classes such as the coarse
distinction into functions and individuals. For instance, we could now assume
some encoding of the natural numbers as a type N and consider the specific term
IN := λn : N.n. Then IN should then be associated with the function type N→ N,
making it applicable only to terms of type N and producing results of type N.

18 Chapter 3. Dependent Type Theory

The fact that a term s has type A is formalised by a judgement Γ ` s : A, where Γ
is a context assigning some variables to types. The typing judgements are defined
inductively by rules following the term syntax:

Γ, (x : A) ` s : B

Γ ` (λx : A.s) : A→ B
(λ) Γ ` s : A→ B Γ ` t : A

Γ ` s t : B
(a)

(x : A) ∈ Γ

Γ ` x : A
(v)

By the rule (λ), an abstraction λx : A.s has the function type A→ B whenever
binding the variable x to type A yields type B for the body s. Conversely, an
application s t has type B whenever s has a function type A → B and t the
matching argument type A by the rule (a). Finally, the rule (v) yields a type A
for a variable x if a corresponding assignment is in the context.

Now by single applications of (λ) and (v) we can derive the typing judgement
` IN : N→ N as desired. To see a more involved example, we derive a type for
an annotated version of S:

Γ ` x : A→ B → C
(a)

Γ ` z : A
(v)

Γ ` x z : B → C
(a)

Γ ` y : A→ B
(v)

Γ ` z : A
(v)

Γ ` y z : B
(v)

Γ ` x z (y z) : C
(a)

` SA,B,C : (A→ B → C)→ (A→ B)→ A→ C
(λ)

Here SA,B,C := λ(x : A → B → C)(y : A → B)(z : A).x z (y z) and Γ consists of
the pairs (x : A→ B → C), (y : A→ B), and (z : A).

The simply typed lambda calculus consists of all terms that are typeable using
the given rules. It adds further remarkable properties to the confluent reduction
behaviour we have already encountered in the untyped case:

• Unique Types. If Γ ` s : A and Γ ` s : A′, thenA = A′. This means that any
term can only be associated to a single type and is due to the annotations at
the argument variables. Hence, IN solely operates as the identity function
on the natural numbers.

• Subject Reduction. If Γ ` s : A and s � t, then also Γ ` t : A. This means
that the type of a term is preserved under reduction. Hence, applying a
numeric function of type N→ N such as IN to a term of type N reduces only
to terms of type N.

• Strong Normalisation. Every reduction sequence terminates. Hence, it is
guaranteed that every term evaluates to a normal form, independent of the
reduction order.

The latter property implies that non-terminating terms like Ω are not typeable.
In fact, all terms necessary to express unbounded recursion are not typeable,
meaning that the simply typed lambda calculus is not Turing-complete.

3.1. Simply Typed Lambda Calculus 19

3.1.4 Internal Propositional Logic

Given the well-behaved interaction of typing and computation, the simply typed
lambda calculus qualifies as a meaningful framework for the theory of functions.
That it can also be seen as a logical system may come as a surprise and is the basic
insight underlying all foundational type theories. Comparing the typing rules
for abstraction and application to introduction and elimination of implication in
natural deduction unveils the analogy:

Γ, (x : A) ` s : B

Γ ` (λx : A.s) : A→ B
(λ)

Γ, φ ` ψ
Γ ` φ ⊃ ψ

(⊃I)

Γ ` s : A→ B Γ ` t : A
Γ ` s t : B

(a)
Γ ` φ ⊃ ψ Γ ` φ

Γ ` ψ
(⊃E)

Indeed, these rules are identical if we interpret implications as function types
and leave out the terms. The former is known as the propositions-as-types
or Curry-Howard correspondence [Cur34, Cur58, How80, Wad15]. Under this
interpretation, a proposition is seen as the type of its proofs, implying that a
proposition is provable whenever its corresponding type is inhabited.

Considering the terms, we have just encountered a first instance of the so-called
proofs-as-programs or Brouwer-Heyting-Kolmogorov interpretation [Hey34,
Kol32]. If we interpret A as a data type, then the term IA expresses the now very
familiar identity procedure of type A→ A. On the other hand, interpreting A as
a logical proposition, IA can be seen as a proof of the tautology A→ A since the
typing derivation for ` IA : A→ A is isomorphic to the natural deduction proof
of ` φ ⊃ φ for some formula φ. More generally, following the proofs-as-programs
interpretation, a proof of any implication φ ⊃ ψ is a function transforming a
proof of φ into a proof of ψ.

As it solely comes with base and function types, the simple type system studied
so far only covers the implicative fragment of propositional logic. In the following
section, we will enrich the system with more complex types and terms such as
sums and products. We will see that this likewise enriches the internal logic to
the extent of higher-order predicate logic.

20 Chapter 3. Dependent Type Theory

3.2 Martin-Löf Type Theory

3.2.1 Products and Sums

Martin-Löf considered his intuitionistic type theory an open system, where
additional types with respective terms and rules could be introduced by need.
We outline some of the standard constructions following the general pattern
consisting of type formation, term formation, introduction and elimination rules.

Given types A and B we form a new type A×B called the product. The corre-
sponding terms are pairs (s, t) of terms s and t. The eliminator for products is an
operation E× lifting functions f : A → B → C to functions E× f : A × B → C.
Introduction and elimination are formalised by respective typing rules:

Γ ` s : A Γ ` t : B
Γ ` (s, t) : A×B

Γ ` f : A→ B → C

Γ ` E× f : A×B → C

The introduction rule on the left expresses the conditions one would expect,
demanding each component of the pair to have the corresponding type. The
elimination rule on the right clarifies how the mentioned lifting works. On top
of the additional syntax and typing rules, new types may come with reduction
rules clarifying the intended behaviour of elimination on normal forms. For
products, one adds the rule E× f (s, t) � f s t asserting that elimination just
decomposes pairs and feeds the components to the given function. From the gen-
eral elimination scheme, one can easily reconstruct the more familiar projection
functions:

π1 := E× (λ(x : A) (y : B).x) π2 := E× (λ(x : A) (y : B).y)

By simple type derivations we obtain ` π1 : A×B → A and ` π2 : A×B → B.
Moreover, from the additional reduction rule it follows that π1 (s, t) � s and
π2 (s, t) � s, so the projections behave as expected.

A second additional type former is the sum A+B for types A and B. The terms
have either the form i1 s for a term s : A or i2 t for a term t : B. The eliminator E+

takes two functions f1 : A→ C and f2 : B → C and applies the one matching to
the particular member of A+B. Formally, the sum type comes with typing rules

Γ ` s : A
Γ ` i1 s : A+B

Γ ` t : B
Γ ` i2 t : A+B

Γ ` f1 : A→ C Γ ` f2 : B → C

Γ ` E+ f1 f2 : A+B → C

as well as the reduction rules E+ f1 f2 (i1 s) � f1 s and E+ f1 f2 (i2 t) � f2 t.

Next, we define the empty type ⊥ and the unit type >. As it is supposed to have
no members, we simply do not provide any introduction rule for ⊥ but assume
an eliminator EA : ⊥ → A for every type A. Contrarily, the unit type introduces
a particular term T : > and comes with no meaningful eliminator.

3.2. Martin-Löf Type Theory 21

3.2.2 Dependent Types

So far, we have considered types and terms as completely separate entities.
However, it is fruitful to also accommodate types that depend on values, hence
called dependent types. For instance, once we have defined a type N of natural
numbers in Section 3.2.4, it might be interesting to consider types Nn for some
n : N which contains all m < n. In order to express such types, we at least have
to allow types to contain variables. Then for a type B containing a variable x we
can define the dependent product Πx : A.B and the dependent sum Σx : A.B.

The former describes dependent functions for which the return type might de-
pend on the argument. Hence the introduction and elimination rule for depen-
dent products resemble the rules (v) and (a) for normal function types:

Γ, (x : A) ` s : B

Γ ` (λx : A.s) : (Πx : A.B)

Γ ` s : (Πx : A.B) Γ ` t : A

Γ ` s t : B[t/x]

The latter contains dependent pairs for which the type of the second component
might depend on the first component. Hence the typing rules for dependent
sums are a generalised version of the rules for normal products:

Γ ` s : A Γ, (x : A) ` t : B

Γ ` (s, t) : (Σx : A.B)

Γ ` f : (Πx : A.B)→ C

Γ ` EΣ f : (Σx : A.B)→ C

Note that, although there is the obvious similarity to products, the type Σx : A.B
is called dependent sum as it can also be seen as a big sum over B indexed by A.
For similar reasons, instead the type Πx : A.B is called dependent product.

Now that we admit variables in types, it is a natural idea to also allow abstraction
on type level. That is, we now also consider terms λx : A.B for types A and B
which describe functions taking a term s of a type A and yielding a type B[s/x].
In order to assign types to such abstractions, we need to be able to assign a type
to the resulting B[s/x]. Hence we simply assume a universal type U which we
assign to every type we have considered so far. Then the rule for type abstraction
is in fact captured by the rule for normal abstractions:

Γ, (x : A) ` B : U

Γ ` λx : A.B : A→ U

As types now may contain programs, and additional conversion rule has to
assert that Γ ` s : B whenever Γ ` s : A and A and B have the same normal form.
Members s of the type A→ U can be seen as type families, as they yield a type
s t for every t : A. Also, we can now simply interpret all types as special terms
and use them as arguments for functions and dependent types. For instance, we
can express the type constructor for products as a function of type U → U → U
by λ(A : U)(B : U).A × B and the corresponding term constructor of type
Π(A : U)(B : U).A→ B → A×B by λ(A : U)(B : U)(x : A)(y : B).(x, y).

22 Chapter 3. Dependent Type Theory

3.2.3 Internal Predicate Logic

At this point we have arrived at a very powerful type system that allows for
expressing constructions on various levels in a uniform way. All operations
were introduced with clear procedural intuitions and we now turn to exploring
their logical interpretation. As mentioned in Section 3.1.4, the basis for using
dependent type theory as a foundation of mathematics is to interpret logical
propositions as types. We have already discussed that functions are the core of
dependent type theory. Now considering U as the type of propositions, functions
P : A → U can be seen as predicates since they return a proposition for every
member of A. Then the rest of predicate logic can be interpreted as summarised
in Table 3.1.

Table 3.1: Summary of propositions-as-types and proofs-as-programs.

Logical concept Interpretation Proof term
Truth > the canonical proof T
Falsity ⊥ none
Conjunction A×B pair (s, t) of respective proofs of A and B
Disjunction A+B i1 s or i1 s for a respective proof s of A or B
Implication A→ B function turning proofs of A to proofs of B
Negation A→ ⊥ function turning proofs of A to absurdity
∀-quantification Π(x : A).P x function yielding proofs of P s for s in A
∃-quantification Σ(x : A).P x pair of a witness s in A and a proof of P s

We have already seen that the interpretation of implication as function types is
justified by the similarity of the natural deduction and typing rules, respectively.
The same holds for the other logical operations, we do not discuss the correspon-
dence here in detail. Note that the internal logic is higher order in that it can
express higher-order functions and predicates and allows quantification over all
typeable terms, which includes functions and predicates.

The only symbol of predicate logic we have not interpreted yet is = for equality.
As equations are formulas, we also want to accommodate equality as a type.
Hence for every type A and terms s and t we define a type s =A t and with rules:

Γ ` s : A
Γ ` e s : s =A s

Γ ` H : P s Γ ` P : A→ U
Γ ` E=H : s =A t→ P t

The introduction rule internalises the reduction behaviour of terms in that the
canonical equality proof e s proves equations t =A u if the terms t, u, and s all
have the same normal form. Reading the elimination rule in the propositional
interpretation, it states that if a predicate P holds for a term s, then it also holds
for all terms t equal to s. Hence =A expresses Leibniz equality in the sense that
there is no property distinguishing equal objects.

3.2. Martin-Löf Type Theory 23

3.2.4 Natural Numbers

As we did in our development of set theory, we again choose the natural numbers
as a case study. Since we are interested in entities such as the collection N of
numbers itself as well as functions from N to N, we want to interpret N as a type.
It is an immediate implementation of the inductive conception underlying the
Peano axioms to define N with two term constructors 0 and S:

Γ ` 0 : N
Γ ` s : N

Γ ` S s : N

Note that these rules do not assign a type to S itself but we can capture its
behaviour by the function λn : N.S n of type N→ N. Concerning the eliminator
for N, we first consider a simplified form

Γ ` s : A Γ ` f : A→ A

Γ ` EN s f : N→ A

with reduction rules EN s f 0 � s and EN s f (S n) � f (EN s f n). So EN s f is a
function returning the start value s in input 0 and the step function f applied to
the result for n on input S n. This means that EN exactly implements primitive
recursion, making addition and multiplication immediately definable by setting

m+ n := ENm (λn′.S n′)n and m ∗ n := EN 0 (λn′.m+ n′)n

where we introduce the convention to leave out clear type annotations and to use
the pattern s x := t as short form of s := λx.t. The infix notations m+n and m ∗n
hence define functions + and ∗ of type N→ N→ N. We can use the eliminator
E× for products to obtain cartesian versions E×+ : N× N→ N of addition and
E× ∗ : N× N→ N of multiplication.

The simplified elimination rule from above employs a constant return type A.
This can be generalised to a type family P : N→ U such that eliminating a value
n yields a result of type P n:

Γ ` P : N→ U Γ ` s : P 0 Γ ` f : Πn : N.P n→ P (S n)

Γ ` EN s f : (Πn : N.P n)

Given the extra argument n in f specifying the argument type P n and return
type P (S n), the second reduction rule now reads EN s f (S n) � f n (EN s f n).
The simplified elimination is a special case of of the general elimination as we
can always set P := λn : N.A to be the type family being constantly A and let
the step function ignore its additional argument. Also, we can easily define an
expression c performing a case distinction such that c s t 0 � s and c s t (S n) � t
by setting c s t n := EN s (λnx.t)n.

24 Chapter 3. Dependent Type Theory

We prove the Peano axioms for our type N to illustrate that the chosen definition
was indeed meaningful. Recall that this means to give types expressing the
axioms and to construct terms inhabiting these types.

• Disjointness. This axiom states that zero is no successor and a correspond-
ing type is Π(n : N).¬0 = S n. A term of this type is a function taking a
number n : N and a proof of H : 0 = S n as arguments and returning a
proof of ⊥. Recall that the eliminator E= can transform H and a proof of
P 0 for some predicate P into a proof of P (S n). So we just have to define
a predicate P that is easily provable for 0, for instance P 0 = >, but with
P (S n) = ⊥. This can be done via case distinction by P n := c>⊥n.

• Injectivity. That S defines an injection can be formulated as the type
Πmn.S m = S n→ m = n. A term of this type is function taking arguments
m, n, and a proof that S m = S n, yielding a proof that m = n. We define
the predecessor function p := EN 0 (λmr.m). By the reduction behaviour
of EN we have p (S n′) �∗ n′ for every n′, so in particular we have proofs
p (S n) = n and p (S m) = m. Then applying E= yields a proof of m = n.

• Induction. Interpreting the general elimination rule for EN logically, it
exactly expresses natural induction: the term EN s f is a proof that for all
numbers a predicate P holds whenever s is a proof that P holds for 0 and f
is a proof that P n implies P (S n) for all n. So in the propositions-as-types
interpretation, induction and recursion are the very same thing. Formally,
the induction principle can be expressed by the dependent function type
Π(P : N→ U).P 0→ (Πn.P n→ P (S n)))→ (Πn.P n), which is inhabited
by the term λ(P : N→ U)(s : P 0)(f : Πn.P n→ P (S n)). EN s f .

The final type construction we consider is a type s ≤ t for natural numbers:

Γ ` s : N
Γ ` l1 s : s ≤ s

Γ ` s : N Γ ` t : N Γ ` H : s ≤ t
Γ ` l2 s tH : s ≤ S t

The proof constructor l1 justifies that s ≤ s for every term of type N. The second
constructor l2 allows to increase the term on the right. Elimination is based on

Γ ` P : N→ U Γ ` s : P n Γ ` f : Πm.n ≤ m→ P m→ P (S m)

Γ ` E≤ nP s f : Πm.n ≤ m→ P m

which, seen as an induction principle, yields a proof of P m for all m with n ≤ m
if there is a proof of P n and a transformation of evidence for P m to evidence
for P (S m) for every such m with n ≤ m. We end this case study by establishing
that ≤ is a well-ordering of N. This time we exemplify the common practice in
not giving explicit proposition types and proof terms but providing an informal
mathematical justification.

3.2. Martin-Löf Type Theory 25

• Reflexivity. This is exactly the first introduction rule of ≤.

• Transitivity. Assume n ≤ m and m ≤ k. We prove n ≤ k by induction on
the derivation of m ≤ k. This means, we apply E≤ for P l := n ≤ l and
have to prove P m and that P l implies P (S l) if m ≤ l. For the former, P m
is exactly the assumption n ≤ m. So now let m ≤ l and P l, so n ≤ l, we
want to prove P (S l), so n ≤ S l. This follows from the second introduction
rule of ≤.

• Antisymmetry. We show that n ≤ m and m ≤ n together imply n = m
by induction on n and a case distinction for m. This leaves four cases. In
the first case, all numbers are 0 and the claim follows trivially. The next
two cases contain absurd assumptions of the form S n ≤ 0. In the last
case we assume S n ≤ S m and S m ≤ S n and want to prove S n = S m.
The inductive assumption reads n = m if n ≤ m and m ≤ n, where the
conditions follow from the respective assumptions for the successors by
case distinction and transitivity. Hence n = m and thus S n = S m.

• Linearity. We show that either n ≤ m or m ≤ n by the same induction and
case distinction that we applied for antisymmetry. This time the three cases
where one of the number is 0 are trivial since we can always prove 0 ≤ n. In
the final case we know that either n ≤ m or m ≤ n by induction and want
to derive a decision for the successors. This decision is straight-forward as
n ≤ m implies S n ≤ S m by a simple induction on n ≤ m.

• Foundation. We define the strict ordering n < m := S n ≤ m. A way to
express that ≤ and < are well-founded is to demand that every downward
chain like · · · < n < m eventually stops. That a number n does not admit
an infinite downward chain can be expressed as a type W n:

Γ ` n : N Γ ` H : Πm.m < n→W m
Γ ` wH : W n

This expresses the insight that n does not admit an infinite chain if nom < n
does. A proof that < is well-founded hence amounts to a proof that W n
for all n. We apply natural induction, there are two cases. Clearly W 0
since there simply is no n < 0. So now we assume W n and want to prove
W (S n), hence we letm < S n and showW m. Case distinction onm < S n
admits two cases. In the former, we have m = n and the claim follows by
assumption. In the latter, we have m < n and obtain W m by applying W n.

To provide a demo of mechanised proving, we have implemented the construc-
tions and proofs of this section in a commented Coq script available online.1

1 https://www.ps.uni-saarland.de/~kirst/hok/numbers.html

https://www.ps.uni-saarland.de/~kirst/hok/numbers.html

26 Chapter 3. Dependent Type Theory

Chapter 4
Aspects of a Comparison

There is no real need to argue in depth that both axiomatic set theory and de-
pendent type theory are formal foundations of mathematics as characterised in
Section 1.1. As shown in the two previous chapters, both systems offer an equally
universal and precise language for mathematical statements and their respective
notion of deduction is effectively verifiable following the given inference rules.
Concerning the aspects of practicality given in Section 1.2, however, it turns out
that both approaches can be judged differently. Although similarly accessible, de-
pent type theory seems more suitable for implementation on computers whereas
axiomatic set theory is currently accepted by the larger community. After adress-
ing these aspects in Section 4.1, we contrast the philosophical background of the
classical first-order formulation of axiomatic set theory with the intuitionistic
higher-order logic internal to dependent type theory in Section 4.2. Finally, in
Section 4.3, we show how one system can be modelled by the other, giving a
partial answer to the consistency question.

4.1 Practicality

4.1.1 Accessibility

In the two previous chapters we have introduced the basic ideas of axiomatic set
theory and dependent type theory on roughly ten pages each. In our intention,
these should provide enough information for a formally experienced reader to be
able to consult the literature we referred to and work out the remaining details
on their own. Hence we suppose that both systems are in principle similarly
well-suited for teaching and that there are no major obstacles making one of the
systems considerably hard to access.

27

28 Chapter 4. Aspects of a Comparison

Moreover, working on a reasonably detailed level, both languages do not differ
very much from an informal approach to mathematics. As no one would ever
give a full natural deduction tree or proof term for a realistic theorem by hand,
one anyway resorts to a less formal language where the outlined reasoning
appears almost identical to common practice. The only importance is that it is
possible to reconstruct a fully formal proof if need be, for instance to dispel any
doubts. Concerning the statements themselves, the type-theoretic language with
judgements n : N and type constructors × or Π might be less familiar to the
working mathematician but of course one can always employ a more common
notation using n ∈ N, ∧, and ∀.
One frequent objection to dependent type-theory is its apparent relative complex-
ity in comparison to an axiomatisation of set theory. Not only is there a lot of
syntax to digest but also the amount of typing rules may seem discouraging at
first glance. In contrast, one could say, ZF set theory only comes with nine axioms
and no syntax but a symbol for membership. It is clear that this argument can
mostly be dismantled since a formal development of ZF presupposes the whole
machinery of first-order logic including the syntax and semantics of formulas
as well as the rules of a deduction system. Quite the contrary, the additional
syntax type-theory provides to include proof terms has a major advantage. Proof
terms are a very compact and natural representation of derivations, allowing for
a precise notion of proof simplification via β-reduction and a correspondence of
strong normalisation with consistency.

The remaining technical overhead produced by a fully-fledged type theory with
conversion and universes is compensated by the very concept of types, captur-
ing semantic intuition and ruling out meaningless statements. For a novice to
axiomatic set theory it may come as a surprise that the only objects considered
are sets and other concepts like functions and numbers are encoded as sets. From
an intuitive perspective, one is more likely to think that functions and numbers
are distinct entities and that it is meaningless to apply a number to itself or a
function on numbers to some other function. Whereas all these terms are per-
fectly well-formed in an axiomatic set theory, they are excluded by dependent
type theory as they cannot be assigned meaningful types.

The apparent complexity of dependent type theory also comes with the benefit
that many mathematical concepts are built-in, causing no additional need for
indiscriminate encodings. This includes the notions of ordered pairs, functions,
and predicates, which are all primitive to dependent type theory. Moreover,
as seen in the type-theoretic treatment of Peano arithmetic (Section 3.2.4), the
intuitive conception of inductively generated numbers is captured perfectly by
the introduction rules of the type N and the recursive definitions of addition and
multiplication are immediately expressed by the internal computational system.
Axiomatic set theory lacks a direct treatment of these elementary concepts.

4.1. Practicality 29

4.1.2 Mechanisability

Dependent type theory is well-suited for direct implementation on a computer.
Similar to other functional programming languages, such an implementation
mainly consists of algorithms for type checking and the computation of normal
forms. The features of mature proof assistants based on dependent type theory
may include a helpful tactic language, which allows for interactively constructing
proof terms following informal reasoning, and code extraction, translating inter-
nally verified programs into other executable languages. Proof assistants based
on axiomatic set theory are harder to implement and less suited for program
verification.

Among the currently most prominent proof assistants, only Mizar [NK09] is
based on axiomatic set theory. Developed by Trybulec in 1973, to date the system
provides the largest library of formalised mathematics. Statements and proofs
can be written in a pseudo-natural language, making Mizar accessible for a broad
community. Interestingly, the language allows to define a weak type structure
such that some of the advantages of a typed language are accommodated.

On the other side, there are many proof assistants based on various dialects of
type theory, each with their own active community and field of applications.
To only mention a few representatives, there is Agda [Nor08], which is a close
implementation of Martin-Löf type theory as outlined in Section 3.2, Coq [Coq18],
which is based on a close derivative called calculus of constructions proposed by
Coquand and Huet [CH88], and Isabelle/HOL [NWP02], which implements a
version of classical higher-order logic without dependent types.

Implementations of type theory already play a key role in establishing new math-
ematical results. As an example, in the mid 19th century it was conjectured that
any (possibly fictional) map could be coloured using only four colours such that
no two adjacent countries have same colour. The four colour theorem remained
without accepted proof until 1976, when Appel and Haken used computers to
perform the necessary large case distinctions [AH76]. Since the employed soft-
ware was not formally verified, the status of the theorem was left uncertain until
Gonthier published a fully formalised Coq proof in 2006 [Gon08].

The Kepler conjecture, stating that the densest possible way to pack oranges into
a box is the so-called cubic close packing, presents a similar example. Suggested
by Kepler in the early 17th century, the conjecture was only proved by Hales in
2005 [Hal05]. Again, this first proof employed untrusted software and only after
a version formalised in HOL Light and Isabelle had been given in 2017 [HAB+17],
the theorem was accepted without doubt.

There are many more examples of extensive formalisation projects (e.g. [GAA+13]
and [Ler09]) and it is to assume that computer-assisted formal verification will
play an increasingly important role in mathematical research. Type theory seems
to provide a reasonable basis for this purpose. To emphasise this point, Sec-
tions 3.2.4 and 4.3.2 are accompanied by formal Coq proof scripts.

30 Chapter 4. Aspects of a Comparison

4.1.3 Community

To date, ZF set theory is the widely accepted and fully canonised standard system
for foundations of mathematics. Most mathematical results in research articles,
textbooks, as well as lectures are presented in a set-theoretic language and it
is generally agreed on a concrete formulation of the underlying logical system
and axioms. Moreover, having been developed for over one hundred years by
now, the theory is well-understood and there are only few discussed extensions
such as the axiom of choice playing a major role for the working mathematician.
Other arguable additions such as the continuum hypothesis or large cardinal
assumptions only manifest in rather specific situations. Thus, axiomatic set
theory clearly enjoys the general prevalence one expects of a foundational system
to be reasonable in practice.

Dependent type theory, on the other side, only plays a marginal role outside of a
few areas within mathematics and theoretical computer science. For one reason,
dependent type theory in its modern formulation is considerably younger than
axiomatic set theory and hence now faces a more mature competitor. Moreover,
as yet there is no standard type system similar to ZF set theory everyone agrees
on, rather there are several equally investigated alternatives. Although most of
them share the common structure embodied in Martin-Löf type theory, some
of these alternatives differ in fundamental aspects of their internal logic and
younger disciples such as homotopy type theory [Uni13] still involve some open
questions.

Of course, such an evaluation is always a current snapshot that might be subject
to change. For instance, as it will be discussed in the next section, dependent type
theory naturally implements an intuitionistic logic which is a good fit for ques-
tions comprising algorithmic aspects. So although dependent type theory might
perhaps not supersede axiomatic set theory as a general purpose foundation of
mathematics, it probably will become more prominent in some areas native to
theoretical computer science.

4.2. Philosophical Background 31

4.2 Philosophical Background

4.2.1 Conceptual Origin

The historical path leading to axiomatic set theory is roughly based on a view-
point dubbed platonism. In this view, mathematical objects are considered to
exist as abstract entities independent of the human mind. Concretely, objects
such as specific numbers or geometrical shapes, that appear in numerous instan-
tiations within the physical world, belong to a single abstract essence inhabiting
a non-physical universe of conceptions. From this perspective, the underlying
logical system and axioms of set theory are attempts to formalise the self-evident
knowledge about this conceptual universe we can gain from studying its inklings
in the physical world. Taking this idea literal, the platonic reading of the logical
quantifiers really refers to existence and universality of corresponding abstract
ideas, and proving mathematical theorems means to explore their eternal truths.

The explorative flavour underlying set theory shows in the way how open ques-
tions are faced. For instance, as established by results of Gödel and Cohen, the
continuum hypothesis (CH) determining the cardinality of the reals can neither
be proved nor disproved from the ZF axioms. However, a prominent impression
is that CH in fact has a determined status in the conceptual universe which is yet
to discover by finding the right extensions of the axiomatisation. This singles out
the intended structure described by ZF as the real mathematical universe from the
interpretations of alternative but still formally consistent axiomatisations. Facing
the growing variety of alternatives, modern ideas such as the set-theoretic multi-
verse proposed by Hamkins [Ham12] and the search for maximality principles
outlined by Incurvati [Inc17] express weaker forms of platonism.

Dependent type theory, on the other hand, has its roots in constructivism. Instead
of resorting to a universe of abstract ideas, the constructivist or intuitionistic
view supposes the mathematical objects to only exist as concepts in the human
mind. For instance, encountering various triangular shapes in the physical
world gives rise to the abstract concept of a triangle that we can grasp and
communicate. Similarly, we can abstract out the amount of any collections of
objects and moreover, since we can imagine empty collections and the procedure
of extending collections by single objects, we can develop and share an intuitive
understanding of the natural numbers.

As a convinced constructivist, Martin-Löf developed his formulations of depen-
dent type theory following the paradigm that all objects either are canonical terms
only built from primitive constructors, or procedures that compute such normal
forms. That is, terms that have the type of natural numbers are either iterated ap-
plications of the successor function starting on the canonical zero term or concrete
procedures that eventually compute canonical numbers. Consequently, existence
means constructibility and as there is no presupposed universe of mathematical
truth, truth simply means provability by the logical principles wired in the brain.

32 Chapter 4. Aspects of a Comparison

4.2.2 Classical vs. Intuitionistic Logic

The different philosophical origins of axiomatic set theory and dependent type
theory have a governing influence on the respectively accepted logical principles.
Most importantly, the first-order predicate logic at the base of axiomatic set theory
is classical in assuming the law of excluded middle (XM), stating that for every
formula φ the disjunction φ ∨ ¬φ holds. This is equivalent to the double negation
principle, stating that from ¬¬φ one can always derive φ, and has no constructive
interpretation. This and related differences of the two foundational systems as
well as their consequences are outlined in this section.

Classical reasoning appears in many ways during a traditional development of
axiomatic set theory and stems from the belief that every logical statement has
a definite truth value in the platonic universe. Several elementary set-theoretic
statements rely on, or are in fact equivalent to XM, for instance that subsets of
finite sets are finite, that non-empty sets are inhabited, and the like. Moreover,
common axiomatic additions like the axiom of choice (AC) or a generalised
form of the continuum hypothesis (GCH), determining the cardinality of the
power sets of arbitrary sets, both imply XM. Concerning the former, assuming
the axiom of choice yields a general way to choose elements from arbitrary
families of non-empty sets and is, among others, equivalent to the well-ordering
theorem and Zorn’s lemma. As shown by Diaconescu [Dia75], AC implies XM
and hence can only be assumed in a classical setting. Concerning the latter, that
GCH in turn implies AC was shown by Sierpiński [Sie47]. Another feature of
axiomatic set theory is that it admits impredicative definitions, where an object
may be constructed using a seemingly circular definition that may refer to the
very object under consideration. For instance, when proving the Knaster-Tarski
fixed-point theorem for monotone functions, one obtains the least fixed point as
the intersection of all pre-fixed points, which includes this intersection itself.

Not only is it the case that many mathematical results rely on classical reasoning,
also the induced technique of proof by contradiction potentially allows to shortcut
elaborate constructive proofs. For instance, consider existential formulas of
the form ∃x. φ(x). It may well be that for concrete properties φ there is an
explicit construction of a witnessing object. However, in a classical setting, such
statements can be proved indirectly by showing that assuming ¬∃x. φ(x) leads
to a contradiction and hence ∃x. φ(x) must hold as the only remaining option.
A similar argument is possible to prove disjunctions φ ∨ ψ without having to
provide a concrete decision for either φ or ψ. So in particular, classical reasoning
establishes De Morgan’s laws which judge ∃x. φ(x) and ¬∀x.¬φ(x) as well as
φ∨ψ and ¬φ∧¬ψ to be logically equivalent, respectively. Note by the way that a
proof by contradiction must not be confused with a proof of negation. A formula
¬φ may be proved by assuming φ and then deriving absurdity, which is totally
fine with the constructive interpretation of negation. In general, whether or not a
short classical proof or an explicit constructive proof is to be preferred mainly
depends on the personal taste and philosophical stance one is willing to take.

4.2. Philosophical Background 33

It is clear that a committed constructivist, on the other hand, has to reject XM.
In the interpretation of truth as provability witnessed by mental constructions,
there is no place for underspecified objects as derived from indirect proofs. Con-
sequently, neither AC nor GCH can be assumed in a meaningful constructive
mindset. Note that this also gives rise to various degrees of weak constructivism,
for instance one could still soundly accept XM but refrain from accepting AC
or GCH. Intuitionistic logic allows for developing the main body of standard
mathematical results as illustrated by Bishop [BB85] and others. Such a project re-
quires some effort in finding constructive proofs where possible or to reformulate
definitions and statement in a constructively suitable and classically equivalent
way. Contrarily, the stronger position of finitism even restricts the logical lan-
guage to consider finite objects only, a view severely shrinking the fragment of
representable mathematics. Also not shared by all constructivists is the objection
against impredicative definitions based on the paradigm of iterated constructions,
stating that every object may only consist of already intuited parts.

Dependent type theory naturally internalises intuitionistic logic based on the
proofs-as-programs interpretation. As we have outlined in Section 3.2, disjunc-
tions and existential quantification are interpreted as sum types and dependent
sum types, respectively. The only canonical inhabitants provided by the typing
rules for sum types A + B are the injections i1 s and i2 t for s : A and t : B,
so a type-theoretic proof of a disjunction in fact carries the information which
alternative was established. Similarly, a canonical inhabitant of a dependent sum
Σx : A.P x is a dependent pair (s, t) where s : A is a concrete witness and t : P s
its corresponding correctness proof. Although by design interpreting intuitionist
logic, many dialects of dependent type theory are designed such that they are
still consistent with classical assumptions. For instance, in our presentation of
Martin-Löf type theory, it is consistent to assume a term c of type ΠA : U.A+¬A,
hence recovering the availability of proof by classical case distinction. Moreover,
appropriate type-theoretic versions of AC and GCH can be assumed and there is
also a way to carefully admit impredicative definitions.

The axiomatic freedom of constructive logic is one of its key advantages. Classical
principles can be added flexibly by need and the constructive core allows for
subclassical logical analyses. This means for instance that only in a logical system
without a hard-wired choice principle it is possible to study statements that
are equivalent to choice. As soon as one works in a theory with AC, there
is no meaningful information in a proof that another statements implies AC.
Analogously, classical logic admits no meaningful discussion of the equivalents
to XM or weaker assumptions possibly sufficient for a given purpose. As another
advantage, constructive proofs bear algorithmic content, as made explicit in
a dependent type theory (cf. [Con02]). In particular, a constructive proof of a
formula ∀x.∃y. φ(x, y) yields a procedure that computes a corresponding object
y for every input x. This means that intuitionistic logic is a perfect match for
computability theory, since the fact that every definable function is computable
erases the cumbersome need for an explicit model of computation.

34 Chapter 4. Aspects of a Comparison

4.2.3 First-Order vs. Higher-Order Logic

Orthogonal to the acceptance of non-constructive logical principles is the admit-
ted order of objects and quantification within the logical system. Axiomatic set
theory is usually formalised in first-order predicate logic with a single binary rela-
tion symbol for membership and quantification restricted to individuals. Thereby,
set-theoretic operations of higher-order character like separation referring to
predicates and replacement referring to functions must be presented in a some-
what artificial way using axiomatic schemes. In sharp contrast, dependent type
theory naturally internalises a higher-order logic where functions may uniformly
act on and return functions, and where quantification is in principle allowed on
all types. We sketch in this section how the difference in logical order results in a
completely distinct metatheory, which is subject to quite a controversial debate.

As it was outlined in Section 2.1, first-order logic can be equipped with a sound
and complete deduction system. This means that a formula is semantically
valid if and only if it can be syntacticly derived using the deduction rules. An
immediate consequence is compactness, stating that a set of formulas has a
model if and only if all its finite subsets have a model. Moreover, it follows that
a set of formulas is free of derivable contradictions if and only if it has a model.
These properties establish a well-behaved and in some sense desirable connection
of the semantics and syntactic provability of first-order formulas. In particular,
systematically enumerating all possible deductions eventually captures every
semantic truth.

On the other hand, some results show a notorious weakness of first-order logic.
Most notably, the Löwenheim-Skolem theorem implies that theories with some
infinite model also must have models in every other infinite cardinality. Hence
first-order logic is not sufficient to characterise a single intended model, a prop-
erty which would be called categoricity, but instead always admits unintended
non-standard models. This indeterminacy is further fuelled by Gödel’s incom-
pleteness theorem, stating that every formal and effective system of reasonable
strength contains statements that are neither provable nor rejectable. As a con-
sequence, the completeness of the deduction system applied to one of these un-
decided statements produces two models where one satisfies the statement and
the other its negation. This procedure can be iterated and hence yields arbitrarily
incompatible models.

In contrast, the additional expressive strength of higher-order logic allows for
categorical axiomatisations. For instance, axiomatising the natural numbers
with their usual operations in higher-order logic, a system called second-order
arithmetic, singles out the intended model of the usual numbers. Hence the
unwelcome distinction of standard and non-standard models of arithmetic com-
pletely vanishes when using a logic of at least second order. Similarly, set theory
itself can be naturally axiomatised in a higher-order logic by replacing the ax-
iomatic schemes by their universal closure. Concretely, in this system called
second-order ZF there is a single separation axiom of the form

4.2. Philosophical Background 35

∀x.∀P.∃y.∀z. z ∈ y ↔ z ∈ x ∧ P (z)

stating that every set x and predicate P produces a subset y = { z ∈ x | P (z) }.
That an axiomatisation in this style only admits a very regular form of models
was already observed by Zermelo [Zer30], who decidedly argued in favour of the
higher-order axiomatisation against the opposition led by Skolem, Gödel, and
Quine (cf. [Sko22]). Zermelo’s quasi-categoricity result inspired a line of recent
work by Uzquiano [Uzq99], McGee [McG97], and Kirst and Smolka [KS17].

However, the strength of higher-order logic comes at the loss of deductive com-
pleteness. As the incompleteness theorem applies to second-order arithmetic,
for every effective deduction system for higher-order logic there must be a de-
ductively undecided arithmetic statement. But there is only a single model of
second-order arithmetic, so (thinking classically) either the statement itself or its
negation is semantically valid. Thus in either case the deduction system cannot
prove a valid formula and is hence necessarily incomplete. Informally this can
be understood as a transition of the incompleteness of first-order theories to the
incompleteness of the deduction systems for higher-order logic.

There has been some work to establish first-order-like semantics for higher-order
logic, most notably by Henkin [Hen50]. In his approach, higher-order variables
for predicates and functions not necessarily range over the whole collection of
possible relations and functions within the semantic domain. That is, assuming
an interpretation M = (D,A), the first-order variables still range over the whole
of D but a variable P for a unary predicate need not range over all of P(D) and a
variable f for a unary function need not range over all ofD → D. Then restricting
the higher-order quantification in certain ways can maintain completeness and
compactness.

Conversely, axiomatised set theory with its internal notion of predicates and
functions renders higher-order logic to some extent. For instance, one can of
course quantify over all predicates on the natural numbers ω, since those are
elements of P(ω). Only when talking about concepts on proper classes, the
internal representation fails and a uniform higher-order treatment gets desirable.
This is to a certain degree implemented in class-set theories such as NBG [vN25],
providing at least some support for reasoning on class level.

Dependent type theory offers an elegant treatment of higher-order logic, where
categoricity is attainable and the problem of incompleteness is lessened by the
constructive philosophy. In this mindset, there are deductively undecidable
statements everywhere, most obviously XM itself, and focussing on provabil-
ity anyway reduces the importance of semantic validity. Following exemplary
objections voiced by Shapiro [Sha91] and Väänänen [Vä01], it hence may seem
puzzling how much higher-order logic has been fought against and that a foun-
dational system such as ZF based on a language with unwelcome logical defects
could become mainstream.

36 Chapter 4. Aspects of a Comparison

4.3 Relative Consistency

4.3.1 Types as Sets

We now describe a simple set-theoretic semantics for dependent type theory. This
semantics is given by a denotation function mapping types A to sets [[A]] and
well-typed terms Γ ` s : A to elements [[Γ ` s : A]] ∈ [[A]]. By means of such a
denotational semantics we obtain an interpretation of the type-theoretic language
within set theory and, most importantly, deduce the logical consistency of the
type system. In the following informal presentation we outline the standard
ideas given by Coquand [Coq87], Dybjer [Dyb91], and Werner [Wer97].

In principle, every type-theoretic concept is interpreted as its set-theoretic coun-
terpart. Hence we naturally begin by setting [[⊥]] := ∅, so we interpret the empty
type as the empty set. Similarly, we set [[>]] := {∅}, interpreting the unit type as
the concrete singleton {∅}. Concerning the canonical member T of the unit type
we then set [[Γ ` T : >]] := ∅, yielding [[Γ ` T : >]] ∈ [[>]] as wished.

Similarly simple is the interpretation of binary products on types by cartesian
product on sets, formally [[A×B]] := [[A]]×[[B]]. Then the primitive pairs inhabiting
A×B are mapped to the encoded ordered pairs which are elements of [[A]]× [[B]]:

[[Γ ` (s, t) : A×B]] := ([[Γ ` s : A]], [[Γ ` t : B]])

Here, we first analyse the typing of (s, t) to obtain typings of the components
s and t, respectively. Then we construct the ordered pair of the two respective
denotations. The interpretation of binary sums A+B is dually given by disjoint
union of sets and not discussed here in detail.

The following extends the denotation to functions, application and abstraction:

[[A→ B]] := [[A]]→ [[B]]

[[Γ ` s t : B]] := [[Γ ` s : A→ B]]([[Γ ` t : A]])

[[Γ ` (λx : A.s) : A→ B]] := { (a, [[Γ, (x : A) ` s : B]]ax) | a ∈ [[A]] }

So function types A→ B are interpreted as the set of functions from [[A]] to [[B]].
Then analysing an application Γ ` s t : B, we know that s has type A → B
for some A with member t. Hence the interpretation [[Γ ` s : A → B]] of s is a
function in [[A]]→ [[B]] we can apply to the interpretation [[Γ ` t : A]] of t. Finally,
a lambda abstraction λx : A.s is translated point-wise into a set of pairs with first
component a in [[A]] and the image [[Γ, (x : A) ` s : B]]ax as second component.
The notation [[s]]ax is the interpretation of s with x interpreted as a and can be
formalised by carrying an environment for variables throughout the definition of
the denotation function.

4.3. Relative Consistency 37

Now that we have studied the semantics of functions, we can consider the
eliminators for empty type and product that were neglected before. Recall that
the eliminator EA for ⊥ has type ⊥ → A. Hence it must be interpreted as
a function ∅ → [[A]]. There is only a single such function, namely the empty
function, so we set [[Γ ` EA : ⊥ → A]] := ∅. Next, recall that the eliminator E×
for binary products turns a function f : A → B → C into a function of type
A×B → C. We define this function point-wise by

[[Γ ` E×f : A×B → C]] p := [[Γ ` f : A→ B → C]](π1(p))(π2(p))

where p is an ordered pair in [[A]] × [[B]] and so the interpretation of f can be
applied to the components π1(p) and π2(p).

Moving to dependent products and sums, they are interpreted as indexed carte-
sian product and indexed disjoint union, respectively. Only discussing the prod-
uct case at this point, we formally set [[Πx : A.B]] := Πa∈[[A]][[B]]ax with the product
of all [[B]]ax indexed by [[A]] on the right-hand side. The elements of this indexed
product are exactly functions taking an element a ∈ [[A]] and returning an element
of [[B]]ax, so a typing Γ ` (λx : A.s) : (Πx : A.B) is correctly translated into an
element of [[Πx : A.B]].

So far we could work out the whole interpretation in ZF set theory without
additional assumptions. Now considering the type universe U which is closed
under all type constructions, its counterpart mus be a set [[U]] which is anal-
ogously closed under the set operations. Such a set is called Grothendieck
universe [Wil69] and does not necessarily exist in ZF set theory. However, it is
consistent to add an axiom asserting a Grothendieck universe and hence com-
pleting the interpretation.

Theorem (Soundness). Assuming ZF and the existence of a Grothendieck universe,
the denotation function [[_]] is total on both types and well-typed terms. Moreover, for
every well-typed term Γ ` s : A it holds that [[Γ ` s : A]] ∈ [[A]].

Note that, in order to maintain the soundness property, every extension of the
type system needs to be accompanied by a sound interpretation. For instance,
if we add a type N of natural numbers as in Section 3.2.4, we have to add the
canonical interpretation of the type N as the set ω, the term 0 as ∅ and the type
function S : N→ N as the set function σ ∈ ω → ω. In fact, a very general scheme
for inductively defined types has an intuitive set-theoretic semantics [Dyb91].

Employing the soundness theorem, we immediately deduce that there is no
well-typed term s : ⊥ as this would yield an element [[` s : ⊥]] of [[⊥]] = ∅.
Hence we can conclude that the logical interpretation of the type system is free
of contradictions.

Corollary (Consistency). Assuming ZF and the existence of a Grothendieck universe,
Martin-Löf type theory with a single type universe is consistent. That is, there is no proof
of absurdity, or equivalently, the empty type ⊥ is not inhabited.

38 Chapter 4. Aspects of a Comparison

4.3.2 Sets as Trees

A way to conversely interpret set theory in dependent type theory was given
by Aczel [Acz78] and elaborated by Werner [Wer97], Barras [Bar10], and Kirst
and Smolka [KS18]. In this interpretation, a set is seen as the well-founded tree
depicting its membership structure in the sense of the following simple examples:

•

•

• •

•

•

x y

The trivial tree on the left depicts ∅ as it indicates no elements. The tree in the
middle has one trivial child and one child with trivial child, hence denoting
the set {∅, {∅}}. The tree on the right shows the general way to interpret an
unordered pair {x, y} as a binary tree with children for each component.

The type T of well-founded trees can be expressed in dependent type theory by

Γ ` A : U Γ ` f : A→ T
Γ ` τ A f : T

Γ ` F : ΠAf. (Πa. P (f a))→ P (τ A f)

Γ ` ET F : (Πs : T .P s)

with a constructor τ and an eliminator ET implementing structural recursion.
The term τ A f denotes the tree with subtrees f a for all a : A as depicted by

τ A f =

•

f a f a′ . . . f a′′

which suggests to define membership s ∈ (τ A f) to mean that there is a : A
with s = f a. However, as there are structurally equivalent but syntacticly
different trees, we actually first have to introduce a corresponding equivalence
relation s ≡ t on trees and then set s ∈ (τ A f) := Σa : A.s ≡ f a as well as
s ⊆ t := Πu : T . u ∈ s → u ∈ t. In fact, we directly interpret the set-theoretic
equality as tree equivalence and prove that T satisfies type-theoretic formulations
of (some of) the ZF axioms. For instance, by simple inductions it follows that
s ≡ t if and only if s ⊆ t and t ⊆ s, establishing the extensionality axiom.

Now that we found a way to express membership and equality, we can start
interpreting the set operations by employing their type-theoretic counterparts. To
represent the empty set, we simply define the trivial tree ∅ := τ ⊥ET . Note that
the eliminatorET of⊥ indeed has the expected type⊥ → T and that it is straight-
forward to prove that s 6∈ ∅ for all trees s. Pairing is defined by {s, t} := τ N (c s t)
where c s t : N → T performs the case distinction as defined in Section 3.2.4. It
then follows that u ∈ {s, t} if and only if u ≡ s or u ≡ t, as required.

4.3. Relative Consistency 39

Employing the projections p1 (τ A f) := A and p2 (τ A f) := f we further define

⋃
(τ A f) := τ (Σ a. p1 (f a)) (λ(a, b). p2 (f a) b)

and prove that u ∈
⋃
s if and only if there is t with u ∈ t ∈ s, justifying the

union axiom. Now we can express the set-theoretic successor σ s := s ∪ {s} and
immediately obtain the natural numbers by ω := τ N (λn : N. σn ∅), where σn ∅
denotes the iteration EN ∅σ n. This in particular proves the infinity axiom.

Concerning the axiom schemes for separation and replacement, we first have
to clarify how to interpret the formulas φ(x) in { y ∈ x | φ(y) } and φ(y, z) in
{ z | ∃y ∈ x. φ(y, z) }. As the former express properties, it is natural to use pred-
icates P : T → U and define sets { t ∈ τ A f | P t } := τ (Σ a. (f a) ∈ P) (f ◦ π1),
where (f ◦ π1) denotes the function applying f after the projection π1. The lat-
ter formulas expressing functional relations can be approximated by functions
F : T → T and considering sets {F t | t ∈ τ A f } := τ A (F ◦ f). Both operations
satisfy membership laws corresponding to higher-order versions of the respec-
tive axiom schemes of ZF. However, the full replacement axiom relying on a
functional relation rather than a function does not have a direct interpretation
in dependent type theory. Moreover and for related reasons, T satisfies only
a weak form of the power set axiom, resulting in the fact that T interprets the
constructive set theory CZF [Acz78].

Theorem. (Interpretation) T satisfies the axioms of the constructive set theory CZF.

This result implies the relative consistency of CZF in the following sense. Suppose
there is a formula φ such that both φ and ¬φ are provable from the axioms of CZF.
This formula has a type-theoretic counterpart A and as the axioms of CZF hold
for T , the respective proofs translate into inhabitants of A and A → ⊥. Hence
there is an inhabitant of ⊥, which means that such φ cannot exist.

Corollary. (Consistency) Martin-Löf type theory with a single type universe proves the
constructive set theory CZF consistent. That is, every deducible contradiction within
CZF translates into a term inhabiting ⊥.

We remark that extended type theories such as the calculus of constructions [CH88]
with its impredicative universe of propositions and full hierarchy of predicative
universes interpret more expressive versions of set theory. Werner [Wer97] has
shown that the calculus of constructions with a choice assumption proves ZF
(with the axiom of choice) consistent, and that there is a general correspondence
of the predicative type universes to set-theoretic Grothendieck universes. This
connection was also elaborated by Aczel [Acz98] and partially formalised by Kirst
and Smolka [KS18]. More details and explanations concerning the constructions
and proofs in this section are given in a corresponding Coq script.2

2 https://www.ps.uni-saarland.de/~kirst/hok/setsastrees.html

https://www.ps.uni-saarland.de/~kirst/hok/setsastrees.html

40 Chapter 4. Aspects of a Comparison

Chapter 5
Conclusion

This thesis attempts to provide an initial account of the foundational discussion
in mathematics. Given the restrictions of a bachelor’s project, such an attempt
necessarily remains incomplete, as it is noticeable throughout this text. For
instance, the explanation of the two systems under consideration in Chapters 2
and 3 avoided some technical details and elementary type-theoretic concepts like
general inductive types, the hierarchy of universes and impredicativity had to be
left out. Furthermore, the philosophical discussion in Chapter 4 was simplified
in sharpening the platonic conception of axiomatic set theory in contrast to the
constructive viewpoint leading to dependent type theory. In reality, there are
a lot more subtle positions and we only focused on the respective mainstream
interpretations. Finally, this thesis is not comprehensive in only examining two
particular foundational systems. Concerning set theory, this is fair enough since
ZF is widely accepted as standard, although there are the mentioned alternatives
such as constructive set theory CZF, class-set theory NBG, and their higher-order
versions. Given that dependent type theory is relatively young, there is no
agreement on a standard formulation yet. Already when opting for Martin-Löf
type theory, one has to make decisions concerning the structure of type universes,
the notion of conversion, and the concrete presentation of typing judgements,
to only mention a few. Moreover, there is still active research on derivatives
as witnessed by the work on the calculus of constructions and the recent rise
of homotopy type theory [Uni13]. Completely neglected in this thesis is the
foundational approach via category theory (cf. Section 1.8 in [Awo10]), yielding
a third option next to axiomatic set theory and dependent type theory.

For the two particular systems studied in this thesis, however, we suppose it
was sufficiently illustrated how they serve as formal foundations of mathemat-
ics. Both systems were outlined in adequately technical terms, making precise
their concrete representation of mathematical statements as formulas and the

41

42 Chapter 5. Conclusion

corresponding notion of formal proof as rule-based deduction. Subsequently,
some basic Peano arithmetic was developed in order to provide a case study for
the respective mathematical practice. Hereby the most remarkable difference is
the need for encoding and recursion by hand in axiomatic set theory opposed to
the primitive treatment of numbers and computation in dependent type theory.
Moreover, the complementary Coq proof scripts are meant to exemplify the use
of implemented type theories for the formal verification of mathematical results.

Concerning the studied aspects of practicality, we judge dependent type theory
to be the superior foundation. The basic notion of a type as a semantic category
for mathematical objects captures usual pre-formal intuitions such as a principal
distinction of individuals, predicates, and functions. These distinctions are not
syntactically visible in the less structured world of sets and need to be recon-
structed internally. Similarly, the primitive support for inductive structures and
computation in a type-theoretic framework allows to establish a formal treatment
closer to mathematical ideas and is more suitable for applications in computer
science. These advantages definitely even out the potentially steeper learning
curve one might face when studying dependent type theory with all its syntacti-
cal subtleties. It is needless to reiterate that the biggest potential of dependent
type theory lies in its applicability for mechanisation, which might shape the
future of mathematical research and hence ultimately cause a replacement of
axiomatic set theory as accepted standard foundation.

Besides these inner-mathematical considerations, constructivism as embodied in
dependent type theory provides a very convincing philosophical base for math-
ematics. The constructivist interpretation of mathematical objects as intuited
conceptions in the human mind answers the ontological questions which cannot
be as easily solved by a realistic viewpoint. Furthermore identifying truth with
provability, the hardly graspable and formally ill-behaved conception of eternal
truth in the platonic universe can be disposed of and results in a pragmatic
epistemology. Also, the concrete consequences of constructivism for the accepted
logical system are entirely desirable. Intuitionistic proofs carry more information
and enable a meaningful analysis of the computational content of formal justifi-
cations. Lessening the importance of a complete deduction system, intuitionistic
logic is not tied to a first-order view on mathematics, which admit the advantages
of higher-order languages such as categoricity and syntactic uniformity.

Of course, all these arguments cannot provide a definite answer to the search
for foundations in mathematics. Mathematical habits change over time and the
evaluation of competing foundational approaches will always be influenced by
the currently predominating paradigms. From this perspective, the mathematical
venture is open-ended and hence there is a need for formal flexibility and courage
for constant reformation. Thus any satisfactory foundational system should be
the best current solution for portraying and explaining the mathematical practice
in all its numerous facets. As argued in this thesis, dependent type theory seems
to be a good candidate for now.

Bibliography

[Acz78] Peter Aczel. The Type Theoretic Interpretation of Constructive Set
Theory. Studies in Logic and the Foundations of Mathematics, 96:55–66,
January 1978.

[Acz98] Peter Aczel. On Relating Type Theories and Set Theories. In Types for
Proofs and Programs, Lecture Notes in Computer Science, pages 1–18.
Springer, Berlin, Heidelberg, March 1998.

[AH76] Kenneth Appel and Wolfgang Haken. Every Planar Map is Four
Colorable. Bulletin of the American Mathematical Society, 82(5):711–712,
September 1976.

[Awo10] Steve Awodey. Category Theory. Oxford University Press, 2010.

[Bar10] Bruno Barras. Sets in Coq, Coq in Sets. Journal of Formalized Reasoning,
3(1):29–48, October 2010.

[BB85] Errett Bishop and Douglas S. Bridges. Constructive Analysis.
Grundlehren der mathematischen Wissenschaften. Springer-Verlag,
Berlin Heidelberg, 1985.

[BDS13] Hendrik P. Barendregt, Wil Dekkers, and Richard Statman. Lambda
Calculus with Types. Perspectives in logic. Cambridge University Press,
2013.

[BF97] Cesare Burali-Forti. Una Questione sui Numeri Transfiniti. Rendiconti
del Circolo Matematico di Palermo (1884-1940), 11(1):154–164, December
1897.

[Can95] Georg Cantor. Beiträge zur Begründung der transfiniten Mengenlehre.
Mathematische Annalen, 46(4):481–512, November 1895.

[Can91] Georg Cantor. A Letter to Hilbert on September 26, 1897. In Herbert
Meschkowski and Winfried Nilson, editors, Briefe, page 408. 1991.

[CH88] Thierry Coquand and Gérard P. Huet. The Calculus of Constructions.
Information and Computation, 76(2):95–120, February 1988.

[Chu40] Alonzo Church. A Formulation of the Simple Theory of Types. The
Journal of Symbolic Logic, 5(2):56–68, 1940.

43

[Con02] Robert L. Constable. Naïve Computational Type Theory. In Proof
and System-Reliability, NATO Science Series, pages 213–259. Springer,
Dordrecht, 2002.

[Coq87] Thierry Coquand. Metamathematical Investigations of a Calculus of
Constructions. January 1987.

[Coq18] Coq Proof Assistant. http://coq.inria.fr, 2018.

[Cur34] Haskell B. Curry. Functionality in Combinatory Logic. Proceed-
ings of the National Academy of Sciences of the United States of America,
20(11):584–590, 1934.

[Cur58] Haskell B. Curry. Combinatory Logic. Amsterdam: North-Holland
Pub. Co., 1958.

[Dia75] Radu Diaconescu. Axiom of Choice and Complementation. Proceed-
ings of the American Mathematical Society, 51(1):176–178, 1975.

[Dyb91] Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory
and Their Set-Theoretic Semantics. In Logical Frameworks, pages 280–
306. Cambridge University Press, 1991.

[Fra25] Abraham Fraenkel. Untersuchungen über die Grundlagen der Men-
genlehre. Mathematische Zeitschrift, 22:250–273, 1925.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, Francois Garillot, Stéphane Le Roux, Assia Mahboubi, Russell
O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey
Solovyev, Enrico Tassi, and Laurent Théry. A Machine-Checked
Proof of the Odd Order Theorem. In Interactive Theorem Proving,
Lecture Notes in Computer Science, pages 163–179. Springer, Berlin,
Heidelberg, July 2013.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 1935.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur. PhD thesis, Université Paris Diderot,
1972.

[Göd30] Kurt Gödel. Die Vollständigkeit der Axiome des logischen Funk-
tionenkalküls. Monatshefte für Mathematik und Physik, 37(1):349–360,
1930.

[Gon08] Georges Gonthier. Formal Proof: The Four-Color Theorem. Notices of
the American Mathematical Society, 55(11):1382–1393, 2008.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types.
Cambridge University Press, New York, NY, USA, 1989.

44

http://coq.inria.fr

[Gö31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Math-
ematica und verwandter Systeme I. Monatshefte für Mathematik,
38(1):173–198, 1931.

[HAB+17] Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John
Harrison, Le Truong Hoang, Cezary Kaliszyk, Victor Magron, Sean
Mclaughlin, Tat Thang Nguyen, Quang Truong Nguyen, Tobias Nip-
kow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, Thi
Hoai An Ta, Nam Trung Tran, Thi Diep Trieu, Josef Urban, Ky Vu,
and Roland Zumkeller. A Formal Proof of the Kepler Conjecture.
Forum of Mathematics, Pi, 5, 2017.

[Hal05] Thomas C. Hales. A Proof of the Kepler Conjecture. Annals of Mathe-
matics, 162(3):1065–1185, 2005.

[Ham12] Joel David Hamkins. The Set-Theoretic Multiverse. The Review of
Symbolic Logic, 5(03):416–449, September 2012. arXiv: 1108.4223.

[Hen50] Leon Henkin. Completeness in the Theory of Types. The Journal of
Symbolic Logic, 15(2):81–91, 1950.

[Hey34] Arend Heyting. Mathematische Grundlagenforschung Intuitionismus
Beweistheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2.
Folge. Springer-Verlag, Berlin Heidelberg, 1934.

[HJ99] Karel Hrbacek and Thomas Jech. Introduction to Set Theory, Third
Edition, Revised and Expanded. CRC Press, June 1999.

[How80] William Howard. The Formulas-as-Types Notion of Construction. In
JP Seldin and JR Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pages 479–490. Academic Press,
1980.

[Inc17] Luca Incurvati. Maximality Principles in Set Theory. Philosophia
Mathematica, 25(2):159–193, June 2017.

[Kan96] Akihiro Kanamori. The Mathematical Development of Set Theory
from Cantor to Cohen. Bull. Symbolic Logic, 2(1):1–71, 03 1996.

[Kol32] Andrei N. Kolmogorov. Zur Deutung der intuitionistischen Logik.
Mathematische Zeitschrift, 35(1):58–65, December 1932.

[KS17] Dominik Kirst and Gert Smolka. Categoricity results for second-order
ZF in dependent type theory. In ITP 2017, Brazil, Sep 2017.

[KS18] Dominik Kirst and Gert Smolka. Large model constructions for
second-order ZF in dependent type theory. In CPP 2018, USA, Jan
2018.

45

[Kun14] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs.
Elsevier, June 2014.

[Kur21] Kazimierez Kuratowski. Sur la notion de l‘ordere dans la Théorie des
Ensembles. Fundamenta Mathematica, 2(1):161–171, 1921.

[Ler09] Xavier Leroy. Formal Verification of a Realistic Compiler. Commun.
ACM, 52(7):107–115, July 2009.

[Luo18] Zhaohui Luo. Computation and Reasoning: A Type Theory for
Computer Science. March 2018.

[McG97] Vann McGee. How we Learn Mathematical Language. The Philosophi-
cal Review, 106(1):35–68, 1997.

[ML85] Per Martin-Löf. Intuitionistic Type Theory: Notes by Giovanni Sambin
of a Series of Lectures Given in Padua, June 1980. Prometheus Books,
Napoli, June 1985.

[Moo88] Gregory H. Moore. The Emergence of First-Order Logic. In University
of Minnesota Press, Minneapolis, pages 95–135, 1988.

[NK09] Adam Naumowicz and Artur Kornilowicz. A Brief Overview of
Mizar. In Theorem Proving in Higher Order Logics, Lecture Notes in
Computer Science, pages 67–72. Springer, August 2009.

[Nor08] Ulf Norell. Dependently Typed Programming in Agda. In Advanced
Functional Programming, Lecture Notes in Computer Science, pages
230–266. Springer, May 2008.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Is-
abelle/HOL: A Proof Assistant for Higher-order Logic. Springer, Berlin,
Heidelberg, 2002.

[Rey74] John C. Reynolds. Towards a Theory of Type Structure. In Program-
ming Symposium, Proceedings Colloque Sur La Programmation, pages
408–423, London, UK, UK, 1974. Springer-Verlag.

[Rus08] Bertrand Russell. Mathematical Logic as based on the Theory of
Types. American Journal of Mathematics, 30:222–262, July 1908.

[Rus02] Bertrand Russell. A Letter to Frege on Jun 16, 1902. In Jean van
Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical
Logic, pages 124–125. 2002.

[SF10] Raymond M. Smullyan and Melvin Fitting. Set Theory and the Con-
tinuum Problem. Dover books on mathematics. Dover Publications,
2010.

46

[Sha91] Stewart Shapiro. Foundations Without Foundationalism: A Case for
Second-Order Logic. Oxford University Press, 1991.

[Sie47] Waclaw Sierpiński. L’hypothèse généralisée du continu et l’axiome
du choix. Fundamenta Mathematicae, 34(1):1–5, 1947.

[Sko22] Thoralf Skolem. Some Remarks on Axiomatized Set Theory. In Jean
van Heijenoort, editor, From Frege to Gödel: A Sourcebook in Mathemati-
cal Logic, pages 290–301. toExcel, Lincoln, NE, USA, 1922.

[Sup60] Patrick Suppes. Axiomatic Set Theory. Dover Books on Mathematics
Series. Dover Publications, 1960.

[Tar43] Alfred Tarski. The Semantic Conception of Truth: and the Founda-
tions of Semantics. Philosophy and Phenomenological Research, 4(3):341–
376, 1943.

[Tur36] Alan M. Turing. On Computable Numbers, with an Application to
the Entscheidungsproblem. Proceedings of the London Mathematical
Society, 2(42):230–265, 1936.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univa-
lent Foundations of Mathematics. https://homotopytypetheory.
org/book, Institute for Advanced Study, 2013.

[Uzq99] Gabriel Uzquiano. Models of Second-Order Zermelo Set Theory. The
Bulletin of Symbolic Logic, 5(3):289–302, 1999.

[vN23] John von Neumann. Zur Einführung der transfiniten Zahlen. Acta
Scientiarum Mathematicarum, 1(4):199–208, 1923.

[vN25] John von Neumann. An Axiomatisation of Set Theory. In Jean van
Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931, pages 393–413. Harvard University Press, 1925.

[Vä01] Jouko Väänänen. Second-Order Logic and Foundations of Mathemat-
ics. The Bulletin of Symbolic Logic, 7(4):504–520, 2001.

[Wad15] Philip Wadler. Propositions As Types. Commun. ACM, 58(12):75–84,
November 2015.

[Wer97] Benjamin Werner. Sets in Types, Types in Sets. In Theoretical Aspects
of Computer Software, pages 530–546. Springer, Heidelberg, September
1997.

[Wil69] Neil H. Williams. On Grothendieck Universes. Compositio Mathemat-
ica, 21(1):1–3, 1969.

[WR10] Alfred N. Whitehead and Bertrand Russell. Principia Mathematica.
Cambridge University Press, 1st edition, 1910.

47

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

[Zer08] Ernst Zermelo. Neuer Beweis für die Möglichkeit einer Wohlordnung.
Mathematische Annalen, 65:107–128, 1908.

[Zer30] Ernst Zermelo. Über Grenzzahlen und Mengenbereiche: Neue Un-
tersuchungen über die Grundlagen der Mengenlehre. Fundamenta
Mathematicæ, 16:29–47, 1930.

48

	 Introduction
	What is a Foundation of Mathematics?
	What is a Satisfactory Foundation of Mathematics?
	The Plan of this Thesis

	 Axiomatic Set Theory
	First-Order Predicate Logic
	Syntax
	Semantics
	Deduction

	ZF Set Theory
	Axioms
	Relations and Functions
	Natural Numbers

	 Dependent Type Theory
	Simply Typed Lambda Calculus
	Syntax
	Computation
	Types
	Internal Propositional Logic

	Martin-Löf Type Theory
	Products and Sums
	Dependent Types
	Internal Predicate Logic
	Natural Numbers

	 Aspects of a Comparison
	Practicality
	Accessibility
	Mechanisability
	Community

	Philosophical Background
	Conceptual Origin
	Classical vs. Intuitionistic Logic
	First-Order vs. Higher-Order Logic

	Relative Consistency
	Types as Sets
	Sets as Trees

	 Conclusion
	Bibliography

