
Saarland University
Faculty of Mathematics and Computer Science

Bachelor’s Thesis

Mechanizing Second-Order
Logic in Coq

Author
Mark Koch

Supervisor
Prof. Gert Smolka

Advisor
Dominik Kirst

Reviewers
Prof. Gert Smolka

Prof. Bernd Finkbeiner

Submitted: 23rd August 2021

iii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 23rd August, 2021

Abstract

Second-order logic is an extension of first-order logic, allowing quantifiers to not
only range over individuals, but also over properties of individuals. This leads to
major meta-theoretic differences compared to its first-order counterpart.

In the first part of this thesis, we analyse standard Tarski semantics for second-
order logic and verify the categoricity of second-order Peano arithmetic. We re-
fute the standard first-order model-theoretic results regarding compactness and
upward Löwenheim-Skolem, and show that every sound and enumerable second-
order deduction system is inherently incomplete, assumingMarkov’s principle and
employing a reduction from the solvability of Diophantine equations (Hilbert’s
tenth problem). Additionally, we verify that second-order validity and satisfiabil-
ity in the empty signature as well as in second-order Peano arithmetic are neither
decidable, nor enumerable underMarkov’s principle. Wemake use of the synthetic
approach to computability theory, showing those results up to decidability of the
halting problem.

In the second part of this thesis, we switch to Henkin semantics. We prove that
under this semantics, second-order logic reduces to mono-sorted first-order logic.
This allows us to transport first-order compactness, Löwenheim-Skolem and com-
pleteness to Henkin semantics, restoring the model theory that failed for standard
semantics.

All results in this thesis are formalized in the calculus of inductive constructions
and mechanized in the Coq proof assistant.

Acknowledgements

First and foremost, I want to thank my advisor Dominik Kirst for his exceptional
support and guidance throughout the development of this thesis. I am very grate-
ful for his advice and many helpful discussions and ideas. I also appreciate Do-
minik’s feedback and valuable suggestions on various drafts of this thesis.

I also want to thank Professor Smolka for the opportunity to write this thesis at his
chair and for introducing me to the subject of computational logic. Moreover, I am
grateful for his support and mentoring during my Bachelor’s studies. In addition,
I thank Professor Finkbeiner for reviewing this thesis.

Finally, I want to thank my family and friends for their support throughout my
studies. In particular, I thank Niklas for proof-reading this thesis.

Contents

Abstract v

1 Introduction 1
1.1 Contributions . 4
1.2 Overview . 4

2 Preliminaries 7
2.1 Type Theory . 7
2.2 Synthetic Computability Theory . 8

2.2.1 Basic Definitions . 9
2.2.2 Post’s Theorem and Markov’s Principle 10

2.3 Reductions . 12

3 Second-Order Syntax, Standard Semantics, and Natural Deduction 13
3.1 Syntax . 13

3.1.1 First-Order Syntax . 14
3.1.2 Second-Order Syntax . 15
3.1.3 Properties of the Syntax . 16

3.2 Semantics . 19
3.2.1 Standard Tarski Semantics . 19
3.2.2 Extension to Function Quantifiers 21

3.3 Natural Deduction . 22

4 Categoricity of Second-Order Peano Arithmetic 29
4.1 Second-Order Peano Arithmetic . 29
4.2 Categoricity . 31
4.3 Consequences of Categoricity . 33

5 Incompleteness and Undecidability of Standard Semantics 35
5.1 Overview . 35
5.2 Undecidability via Reduction from Hilbert’s Tenth Problem 37

x Contents

5.3 Incompleteness . 39
5.4 Extending Incompleteness to Arbitrary Signatures 40
5.5 Further Undecidability Results . 41

6 Henkin Semantics 43
6.1 Definition of Henkin Semantics . 43
6.2 Soundness of the Deduction System 45

7 Henkin Completeness: Translation to First-Order Logic 47
7.1 Intuition . 48
7.2 Translation Function to First-Order Logic 50

8 Henkin Completeness: Semantic Reduction Property 53
8.1 Translating Henkin Models into First-Order Models 53
8.2 Translating First-Order Models into Henkin Models 56
8.3 Final Semantic Reduction . 58

9 Henkin Completeness: Deductive Reduction Property 61
9.1 Overview . 61
9.2 Backwards Translation Function to Second-Order Logic 62
9.3 Translating First-Order Derivations . 65
9.4 Removing the Falsity Predicates . 71
9.5 Combining Forwards and Backwards Translation 72
9.6 Summary . 76

10 Consequences of the Reduction 77
10.1 Completeness . 77
10.2 Compactness . 77
10.3 Löwenheim-Skolem . 78

11 Discussion 81
11.1 Summary . 81
11.2 Related work . 82
11.3 Future Work . 83

A Coq Mechanization 85
A.1 Remarks on the Mechanization . 85
A.2 Structure of the Mechanization . 86

Bibliography 87

Chapter 1

Introduction

Second-order logic used to enjoy wide popularity as a foundational system for
mathematics among late 18th and early 19th century logicians. While it has been
gradually superseded by fist-order logic and set theory, the discussion around the
merits of second-order logic is still a hot topic to this day (for example [56, 66]).
On the other hand, second-order logic has found success in the domain of theoreti-
cal computer science with fruitful applications in graph theory [7] and complexity
theory [11, 30].

The delineating feature between first- and second-order logic is concerned with
quantification. Quantified statements are ubiquitous in mathematics, take for in-
stance the sentence “for every natural number x there is a number y that is greater
than x”, which a logician would write as ∀x. ∃y. y > x. This is an example of univer-
sal (∀) and existential (∃) quantification stating that a property holds for all objects
x or for at least one object y. Allowing such quantifiers that range over individ-
uals of some domain of discourse (in our case natural numbers) results in what
is known today as first-order logic.1 However, consider the usual formulation of
the principle of induction for the natural numbers: “All properties P are satisfied
by all numbers if P holds for 0 and n + 1 whenever it holds for n.” Here, we have
not only quantified over numbers, but also over properties of numbers. Quantify-
ing over properties (or functions, or sets) is quite natural and commonplace in ev-
eryday mathematical arguments. Extending first-order logic with those so-called
second-order quantifiers results in second-order logic. This can again be extended
to third-order logic encompassing properties of properties and so on, culminating
in the generalization of higher-order logic and type theory.

While the conscious distinction between first- and second-order logic is essential
in today’s view, it certainly was not when the notion of quantifiers was originally

1Extending propositional logic which is only concerned the logical operations of conjunction, dis-
junction, implication, and negation.

2 Introduction

devised. The contemporary use of predicate logic and ordered quantification can
be traced back to the works of Frege [16, 17], as well as Russell and Whitehead
[54]. Their goal was to express all of mathematics through pure logic, resulting in
the programme of logicism. In his Begriffsschrift [16] in 1879, Frege gave the first
account of a calculus for predicate logic, extending propositional logic with a no-
tion of quantification. His system freely used second-order quantifiers and also
the precursor of the theory of types developed in Russel and Whitehead’s Prin-
cipia Mathematica [54] is decisively higher-order. Similarly, Zermelo’s [69] original
conception of set theory was also second-order.

It was only realised later that the addition of second-order quantification, albeit
seeming like a small step conceptionally, drastically alters the behaviour of the logic
and makes it significantly more expressive. The most prominent example of this
concerns again the natural numbers. Following the programme of Frege, there was
great interest in developing an axiomatic basis for arithmetic. This task was cham-
pioned by Dedekind [9] and Peano [47] who were able to give a set of axioms that
uniquely characterize the natural numbers, the key ingredient being the second-
order induction axiom mentioned above. In 1915, Löwenheim [40] demonstrated
that this feat would not have been possible in first-order logic. In fact, he showed
that without the power of second-order quantification, first-order logic is not able
to uniquely characterize any infinite structure. This observation sparked great in-
terest in first-order logic and laid the groundwork for the domain of model theory,
which together with further results contributed to the prominence that first-order
logic enjoys today. Wether the relativeweakness of first-order logic is seen as an ad-
vantage or disadvantage of course depends on perspective, but at least it shows that
the power of the second-order quantifier is really necessary to achieve Dedekind’s
and Peano’s goals.

However, this expressive power also comes at a cost, as the model theory carefully
built up for first-order logic must of course fail in the second-order case. Evenmore
damning is the realisation that Gödels completeness theorem, stating that all valid
first-order statements are provable, does no longer hold as soon as second-order
quantification is involved: There is no hope for a second-order notion of provabil-
ity that encompasses all true statements. The situation changed somewhat in 1950
when Henkin [26] introduced his general models that restore completeness, sacri-
ficing the expressivity of the standard semantics. Finally, there is the critique that
second-order logic depends too heavily on the set theory in which it is usually de-
fined,2 with Quine famously referring to it as “set theory in sheep’s clothing” [49].
Proponents of second-order logic like Shapiro [56] on the other hand argue that

2For example, one can construct a second-order sentence that is valid iff the continuumhypothesis
holds in the meta-theory. Thus, the validity of statements can depend on problems that even the
underlying meta-theory cannot solve [67].

3

this mathematical character is not problematic and that second-order logic can in
fact be regarded as a suitable foundational system.

The purpose of this thesis is to give a formal account of second-order logic and
its relationship to first-order logic with a particular focus on (in)completeness and
undecidability. A formal treatment of meta-logic and proof theory requires great
attention to detail and at times fairly technical arguments. Carrying out such analy-
sis in full detail on paper is tedious and quite error prone. The advent of interactive
theorem proving provides an attractive alternative to this approach: So called proof
assistants are software system that aide in the construction of formal proofs and
guarantee their correctness. We refer to the process of formalizing proofs in such
an assistant as mechanization.

We have mechanized all results in this thesis in the Coq proof assistant [1]. Thus,
our analysis is carried out inCoq’s logic, which is based on constructive type theory.
This type-theoretic foundation we build on is different from the usual set-theoretic
meta-theory employed in the literature, leading to some interesting consequences
which we will discuss throughout the thesis. We also want to point out that Coq’s
logic is constructive. Constructivism is a field of mathematics concerned with ob-
taining results without relying on classical assumptions like the law of excluded
middle (LEM). Since functions defined in a constructive manner are always com-
putable this opens up a convenient alternative to the traditional characterization of
computability theory: Instead of relying on a concrete model of computation, like
Turing machines, computability can be framed in terms of those intrinsic compu-
tations. This approach is called synthetic computability theory [2, 51].

Ourwork lies in the context of an ongoing project to formalize computability theory
inCoqusing this synthetic approach. TheCoqLibrary ofUndecidability Proofs [12]
is a collection of various problems that are shown to be synthetically undecidable,
based on the initial Coq formalization of synthetic computability theory developed
in [14]. The relevant undecidability results mechanized in thesis are intended as a
contribution to this library. Additionally, we build on previous Coq formalizations
of first-order logic developed in [15] and [32]. The work of Kirst and Hermes [31]
investigating synthetic undecidability and incompleteness of first-order axiom sys-
tems is particularly relevant and serves as the basis for our second-order analysis
of those concepts.

The full Coq development accompanying this thesis is available at:

https://www.ps.uni-saarland.de/~koch/bachelor.php

The definitions and theorems are hyperlinked to the formalized versions viewable
online. Appendix A remarks on some differences between the mechanization and
the presentation on paper.

https://www.ps.uni-saarland.de/~koch/bachelor.php

4 Introduction

1.1 Contributions
To the best of our knowledge, we contribute the first formalization of second-order
logic mechanized in a proof assistant. We formalize well-known results, largely
following the exposition by Shapiro [56] and transport them to the type-theoretic
setting. Our results can be split into two distinct parts. The first half is concerned
with the standard Tarski semantics, where

• We show that second-order Peano arithmetic is categorical.

• We conclude the failure of the upward Löwenheim-Skolem and compactness
theorems using this categoricity result. Employing the failure of compact-
ness, we present a concise constructive proof demonstrating that there is no
deduction system that is complete for all decidable theories.

• We verify undecidability of second-order validity and satisfiability for the
empty signature and in second-order Peano arithmetic via a reduction from
the decidability of Diophantine equations (Hilbert’s tenth problem). Further-
more, we prove that those problems are also not recursively enumerable, as-
suming Markov’s principle.

• We obtain the full incompleteness result under Markov’s principle, stating
that there is no deduction system that is sound, complete and enumerable via
a computability argument making use of the aforementioned enumerability
results.

In the second half of the thesis we switch to Henkin semantics, where

• We show that second-order validity and provability reduce to their mono-
sorted first-order counterparts, verifying a proof by Nour and Raffalli [43].

• We conclude that second-order logic with Henkin semantics is complete for a
Gentzen-style second-order natural deduction system with full comprehen-
sion as a consequence of the first-order completeness theorem.

• We demonstrate that further properties like the Löwenheim-Skolem theo-
rems and compactness can be transported from first-order logic via the pre-
sented reduction.

The reduction tomono-sorted first-order logicmight also be used to easily transport
future mechanizations of similar first-order model-theoretic properties to second-
order logic.

1.2 Overview
After establishing some preliminary definitions in Chapter 2, we introduce the syn-
tax and standard semantics of second-order logic, along with a natural deduction

1.2. Overview 5

system in Chapter 3. Chapter 4 is concerned with second-order Peano arithmetic
and mainly focused on the categoricity property that is then used to refute the
aforementioned meta-theoretic properties for second-order logic. Chapter 5 opens
with a brief overview of incompleteness and establishes various undecidability re-
sults that yield the incompleteness of second-order logic. Henkin semantics are
introduced in Chapter 6 and employed in the following Chapters 7, 8, and 9 to re-
duce second-order to mono-sorted first-order logic. Afterwards, the reduction is
used to transport completeness and further meta-theoretic properties from first- to
second-order logic with Henkin semantics in Chapter 10. We discuss our results
and comment on related and future work in Chapter 11. Finally, we remark on the
accompanying Coq mechanization in Appendix A.

Chapter 2

Preliminaries

We begin by establishing some preliminary definitions and notions that wewill use
in the subsequent chapters. First, we outline the type theory used throughout this
thesis. Then, we discuss the concepts of synthetic computability theory that will be
employed in later chapters.

2.1 Type Theory
All results in this thesis are formalized in the framework of constructive type the-
ory as implemented in the Coq proof assistant. Coq implements the polymorphic
calculus of cumulative inductive constructions (pCuIC) [63, 5, 45], which features an
impredicative universe P of propositions and a countably infinite hierarchy of pred-
icative universes T0 ⊆ T1 ⊆ · · · with P ⊆ T0. We usually omit the universe level
and just write T for all Ti. The type universes T contain computational information
whereas predicates typically live in P, where elimination into T is only allowed in
restricted cases.

We use dependent function types ∀x : X. f x with f : X → T where the return type
of the function depends on the argument x. The ordinary function type from type
X to Y, denoted by X → Y, is represented as ∀_ : X. Y. We denote such functions
as λx : X. t. Dependent function types also double as universal quantification ∀x :

X. p x and logical implication X → Y for p : X → P and Y : P. Furthermore, we use
falsity (⊥), logical conjunction (∧), logical disjunction (∨), logical equivalence (↔)

and existential quantification (∃x. p x) all placed in P (with elimination of ∨ and ∃
blocked).

Coq also supports inductive type definitions. Figure 2.1 shows common inductive
types used throughout the thesis. B is the type of Booleans with the truth values
true and false. Natural numbers are defined as the typeNwith the zero constant 0 : N
and the successor function S : N→ N. We use the usual decimal notation to refer to
numbers. Furthermore, wemake use of a Cantor pairing function 〈· , ·〉 : N→ N→ N
and corresponding projections π1 and π2, embedding pairs of natural numbers into

8 Preliminaries

the natural numbers. Pairs X × Y contain a value of type X and a value of type Y,
whereas the sum type X + Y may contain either one. The option type O(X) either
contains an element x : X, denoted by x, or is ∅ which represents the absence of a
value.

We write L(X) for the type of lists over X. They are constructed from the empty list
nil and the cons operator _ :: _ : X → L(X) → L(X). We use the notation [x1, ..., xn]

to refer to the list x1 :: ... :: xn :: nil. Additionally, we write A ++ B for concatenation,
x ∈ A for membership, |A| for length and A ⊆ B for inclusion. We overload the
function application notation such that fA denotes the point-wise application of a
function f : X → Y to a list A : L(X). Finally, we use list comprehension, written as
[f x1 ... xn | x1 ∈ A1, ..., xn ∈ An, p x1 ... xn] where f : X1 → ... → Xn → Y, Ai : L(Xi)
and p : X1 → ... → Xn → B. This operation returns a list containing the values
f x1 ... xn for all combinations of xi ∈ Ai that satisfy the Boolean test p.

Vectors can be seen as lists of fixed length. We denote a vector over X of length n : N
as the type Xn. Vectors are constructed from the empty vector nil : X0 and the cons
operation :: : X → Xn → XSn. We overload the previously defined operations and
notations for lists to vectors.

Finally, sigma types Σx. p x represent dependent pairs where the type of the sec-
ond component depends on the value of the first one. They are the counterpart
of dependent function types and their components can always be obtained. This
is different from the existential quantifier ∃x. p x whose witness is only accessible
when constructing a proof of a proposition in P.

B : T := true | false

N : T := 0 | Sn (n : N)
X× Y := (x, y) (x : X, y : Y)

X+ Y := L x | Ry (x : X, y : Y)

O(X) := x | ∅ (x : X)

L(X) := nil | x :: A (x : X,A : L(X))

Xn := nil : X0 | (x :: A) : XSn (x : X,n : N, A : Xn)

Σx : X. p x := (x, y) (x : X, p : X→ P, y : px)

Figure 2.1: Inductive type definitions.

2.2 Synthetic Computability Theory
Usually, computability theory is defined in terms of a concrete model of compu-
tation, for example Turing machines or the λ-calculus. However, constructive type

2.2. Synthetic Computability Theory 9

theory allows for an interesting alternative to this approach: Every function that can
be defined in a constructive theory must also be computable. In terms of (axiom-
free) Coq this means that in order to show that a function is computable it suffices
to give an implementation of it. The approach of relying on this inherent notion of
computation is called “synthetic computability theory” [2, 14, 51]. Working in this
setting is significantly less tedious than formalizing results in an explicit model of
computation, where all low-level details that are usually left out on paper would
need to be mechanized. In this section, we present the main notions of synthetic
computability following Forster, Kirst and Smolka [14].

2.2.1 Basic Definitions
We begin by defining the notion of decidability for predicates:

Definition 2.1 (Decidable Predicates) A predicate p : X→ P is decidable if there is a
boolean decider f : X→ B such that ∀x. p x↔ f x = true. We also generalize this notion to
predicates with more than one argument in the expectable way. Finally, we write ppxq for
the implicit invocation of a decider.

Types with decidable equality are called discrete:

Definition 2.2 (Discrete Types) A typeX is called discrete if there is an equality decider
for λxy : X. x = y.

Another well-known concept of computability theory is (recursive) enumerability.
Traditionally, a predicate p : X→ P is called enumerable if there is a Turingmachine
(or other computable function) that outputs all values for which p holds. In the
synthetic setting we could capture this notion by a function N → X whose image
are exactly the values that satisfy p. However, in order to also incorporate empty
predicates, we actually use an option type for the codomain:

Definition 2.3 (Enumerability)

1. A predicate p : X → P is enumerable, if there is an enumerator f : N → O(X), such
that ∀x. px ↔ ∃n. fn = x. We say that p is co-enumerable if its complement p,
defined as p = λx.¬px, is enumerable. We also generalize these notions to predicates
with more than one argument in the expectable way.

2. A type X is called enumerable, if there is an enumerator f : N → O(X), such that
∀x. ∃n. fn = x.

Forster, Kirst and Smolka also introduce the notion of list enumerators L : N →
L(X) to enable more convenient enumerability proofs. The idea is to allow more
than one value to be enumerated at once. This coincides with the interpretation of
enumerability in Definition 2.3:

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Decidable.html#decidable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Decidable.html#eq_dec
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Enumerable.html#enumerable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Enumerable.html#enumerable__T

10 Preliminaries

Fact 2.4 (List Enumerators)

1. A predicate p : X→ P is enumerable iff there is a list enumerator L : N→ L(X) such
that ∀x. p x↔∃n. x ∈ L x.

2. A type X is enumerable, if there a list enumerator L : N→ L(X), such that ∀x. ∃n. x ∈
Ln.

Proof We can turn enumerators f : N → O(X) into list enumerators L : N → L(X)

and vice versa, such that (∃n. fn = x)↔ (∃n. x ∈ L x) for all x. Given f or L, we
obtain the other one by

f n := (L (π1 n))[π2 n] Ln :=

{
[x] if f n = x

nil if f n = ∅

where A[n] : O(X) denotes element access on lists. �

List enumerators allow for a general and scalable technique that can be used to
show enumerability of inductive types and predicates. The idea is to use cumula-
tive list enumerators (satisfying Ln ⊆ L (Sn)) to successively construct new values
from the previously enumerated ones. We will see an example of this in the next
chapter (Fact 3.6).
2.2.2 Post’s Theorem and Markov’s Principle
Post’s theorem is a standard result from computability theory that states that prob-
lems that are both enumerable and co-enumerable (called bi-enumerable) are also
decidable. As it turns out, this result cannot be proven constructively [6]. How-
ever, we do not require full classical logic in order to obtain it. There is an axiom
calledMarkov’s principle (MP) that is strictly weaker than the law of excluded mid-
dle (LEM) [27] and deemed constructive by many. As we will see, MP is both suf-
ficient and necessary to prove Post’s theorem.

Definition 2.5 (Markov’s Principle) MP states that for all functions f : N → B it
holds that ¬¬(∃n. fn = true) implies ∃n. fn = true.

MP is independent in Coq’s type theory [6] and a consequence of LEM. However,
it is accepted by the Russian school of constructive mathematics [36]. It has many
equivalent characterizations, for examplewe can alsowrite it as¬(∀n. fn = false)→
∃n. fn = true. The computational justification behind this axiom is unbounded
linear search: If we know that f does not return false for all inputs, we can start a
search by checking first 0, then 1, and so on, until we find an n for which f n = true.
The principle idea of linear search is actually available in Coq. From propositional
knowledge ∃n. fn = true we can obtain a computational witness Σn. f n = true.
Since the existential quantifier cannot be eliminated into T the proof is not obvious
and makes use of the idea of unbounded search.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Enumerable.html#enum_enum
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Enumerable.html#enum_enumT
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Decidable.html#MP

2.2. Synthetic Computability Theory 11

Fact 2.6 (Unbounded Search) ∃n. fn = true implies Σn. f n = true for all f : N→ B.
Proof We outline the proof idea described in [58]. We define an inductive predi-
cate T : N→ Pwith the single constructor C : f n = false→ T (Sn)→ T n. Intuitively,
this is the certificate that allows to continue the linear search as long as f returns
false. We do this by defining a function µ : ∀n. T n → Σm.pm = true by recursion
on the proof of T n:

µn (Cg) :=

{
(n, h) if we have h : f n = true

µ (Sn) (gh) if we have h : f n = false

The only remaining obligation is to give a proof of T 0 to start the search. Since this
is propositional, we can eliminate the existential quantifier and obtain thewitnessn
which immediately gives us T n. Since T (Sn)→ T n, we can get T 0 by an induction
on n. �

We have seen that the propositional knowledge ∃n. fn = true can be used as a
guarantee that the search terminates eventually. Intuitively, Markov’s principle ex-
tends on this, by allowing to perform this search, even if only classical evidence
¬¬∃n. fn = true of termination is available. This enables us to define a boolean
decider built from an enumerator and a co-enumerator, yielding Posts’s theorem.
Interestingly, MP is really necessary to prove this, since we can also show that it is
implied by Post’s theorem [2, 15]:

Fact 2.7 (Post’s Theorem) Bi-enumerable predicates over discrete types are decidable iff
MP holds.
Proof We show both directions separately:

→ Suppose we have MP as well as an enumerator f and a co-enumerator g of a
problem p : X→ P where X is discrete. It suffices to show

∃n. pf n = xq | pgn = xq

for all x where | denotes boolean disjunction. That is because a boolean de-
cider can simply obtain the witness with Fact 2.6. By MP it then suffices to
show the double negation of this statement, such that we can argue classi-
cally: We either have px such that x is enumerated by f, or we have ¬px such
that x is enumerated by g.

← Assume ¬¬∃n. fn = true. It suffices to show that P := λ x : N. ∃n. fn = true is
decidable. By assumption this is the case if P is bi-enumerable. We can show
that p is co-enumerated by λn. ∅ and enumerated by

gn :=

{
π1 n if f (π2 n) = true

∅ if f (π2 n) = false

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Util.html#W
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Enumerable.html#Post

12 Preliminaries

2.3 Reductions
After defining the positive notions of decidability and enumerability, we also want
definitions of negative ones like undecidability. Note, that we cannot simply de-
fine it as the negation of decidability, as constructive type theory is consistent with
the assumption that every predicate is decidable. This means that it is not pos-
sible to prove that a predicate cannot be decided by a boolean function. Instead,
we characterize synthetic undecidability as the existence of a chain of reductions
from a problem that is widely known to be undecidable, for example the halting
problem on Turing machines. Decidability of the target would then imply that this
seed problem is also decidable, which is rejected. Optionally, a contradiction can
the be derived by assuming computability axioms. The definition of (many-one)
reductions is again straightforward in the synthetic setting:

Definition 2.8 (Many-One Reductions) Given predicates p : X → P and q : Y → P,
we call a function f : X → Y (many-one) reduction if ∀x. P x↔Q (f x). We say p reduces
to q and write p 4 q if such a function exists.

Fact 2.9 Let p 4 q. Then p is decidable if q is.

Proof Let f be a decider for q and g the function witnessing the reduction. Then
f ◦ g is a decider for p. �

The Coq Library of Undecidability Proofs [12] contains many problems that are
proven to be synthetically undecidable (for example [14, 13, 37, 59, 10]). The re-
duction chains in the library will serve as a starting point for our own reductions
later in this thesis.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Decidable.html#reduces
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Decidable.html#decidable_transport_red

Chapter 3

Second-Order Syntax, Standard Semantics,
and Natural Deduction

In this chapter, we formally introduce second-order logic. Generally, there are three
things that are needed to define a formal logic. First, the syntax describes the rules
from which logical sentences can be constructed. Thus, we begin by defining the
syntax of second-order logic in Section 3.1. Secondly, semantics are used to give
meaning to the syntax by defining what it means for a sentence to be valid. In Sec-
tion 3.2 we discuss the standard semantics of second-order logic. Finally, a notion
of provability is needed to syntactically verify that sentences are true. To this end,
we introduce a second-order natural deduction system in Section 3.3.

3.1 Syntax
The syntax of second-order logic is based on the one of first-order logic. Therefore,
we believe it is instructive to briefly recap first-order logic and also introduce its
syntax.

The syntax of both first- and second-order logic can be divided into two distinct
parts: Terms constitute the objects we want to reason about, whereas formulas de-
scribe properties of those objects and represent statements that can be true or false.
While the so called logical symbols like quantifiers and connectives can be chosen
fairly canonically, the so called non-logical symbols needed to represent constants,
functions, and predicates vary widely between applications. For example, in order
to study Peano arithmetic in Chapter 4 we will need a constant 0, a unary successor
function S, and two binary functions + and ×. Other languages like ZF set theory
in turn require completely different symbols to describe the concepts they want to
reason about. Since many of the abstract properties we investigate in this thesis do
not depend on the specific choice of non-logical symbols, we define the syntax over
a signature Σ that generalizes this notion:

Definition 3.1 (Signature) A signature Σ = (FΣ,PΣ) consists of a type FΣ of function

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#funcs_signature

14 Second-Order Syntax, Standard Semantics, and Natural Deduction

symbols and a type PΣ of predicate symbols. We write F : FΣ and P : PΣ for members of
those types. The arity of the symbols is denoted by |F| : N and |P| : N. Constants can be
represented by nullary function symbols.

We fix a signature Σ for the remainder of this chapter.
3.1.1 First-Order Syntax
We begin by giving the syntax of first-order logic following [15].

Definition 3.2 (First-Order Syntax) The type of terms T and first-order formulas F1
is defined by

t : T ::= xi | F v (i : N,F : FΣ, v : T
|F|)

ϕ,ψ : F1 ::= ⊥̇ | P v | ϕ →̇ψ | ϕ ∧̇ψ | ϕ ∨̇ψ | ∀̇ϕ | ∃̇ϕ (P : PΣ, v : T
|P|)

We write ¬̇ϕ for ϕ →̇ ⊥̇ and ϕ ↔̇ ψ for (ϕ →̇ ψ) ∧̇ (ψ →̇ ϕ). Furthermore, we use �̇ as a
placeholder for any of the connectives →̇, ∧̇, and ∨̇, and ∇̇ for ∀̇ and ∃̇. We write T(Σ) and
F1(Σ) if we want to emphasize the dependency on the signature.

Terms consist of variables (xi) and function applications (F v). Formulas are con-
structed from the falsity constant (⊥̇), atomic formulas (P v), implications (→̇), con-
junctions (∧̇), disjunctions (∧̇), universal quantifiers (∀̇), and existential quantifiers
(∃̇).

One might wonder why both ∀̇ and ∃̇ are missing a binding variable. Usually, one
would expect to write quantifiers like ∀x.ϕ. The lack of names is due to the fact that
we use so called de Bruijn binders instead. They were originally designed by Nico-
laas de Bruijn to allow for a machine-friendly representation of binders in lambda
terms [8]. But as it turns out, this approach also works well in other situations.
Relevant for us, it is well suited for fomalization [60] and usually results in less
overhead compared to dealing with names when trying to mechanize syntax with
binders. However, wewill resort to the usual named syntaxwhenwriting formulas
on paper to increase legibility.

The general idea behind the de Bruijn encoding is that variables are represented
by the number of quantifiers that shadow their binder. We call those numbers
(de Bruijn) indices. For example, the formula ∃a. P(a) ∧ ∀b.Q(a, b) is represented
by ∃̇P(x0) ∧ ∀̇Q(x1, x0). If an index exceeds the number of quantifiers, we say
that the variable is free. Free variables are identified with the index remaining
after subtracting the number of shadowing binders. For example, in the formula
∀̇P(x3) ∨̇ ∃̇P(x4), both indices refer to the free variable with index 2. One benefit
of de Bruijn binders it that α-equivalence of formulas1 reduces to simple equality.

1This refers to the fact that bound variables can be consistently renamed. For example ∀x. P(x) is
equivalent to ∀y. P(y).

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.FOL.html#form

3.1. Syntax 15

On top of that, this approach allows for a straightforward definition of substitution,
sidestepping the issues with unwanted capturing of named binders.

3.1.2 Second-Order Syntax

The terms of second-order logic are exactly the terms T of first-order logic. Second-
order formulas F2 are obtained by extending F1 with two new constructs: Besides
the individual quantifiers ∀̇ and ∃̇ we add n-ary predicate quantifiers ∀̇np and ∃̇np ,
along with n-ary predicate variables pni for all n : N:

Definition 3.3 (Second-Order Syntax) The type F2 of second-order formulas is de-
fined by extending Definition 3.2 with

ϕ,ψ : F2 ::= ... | p
n
i v | ∀̇npϕ | ∃̇np ϕ (i, n : N, v : Tn)

We use the type Pn to denote n-ary predicates, that is variables pni and predicate symbols
P : Σp with |P| = n. We extend the | · | notation to predicate variables and write |P| = n for
the arity of any predicate P : Pn.

Note, thatwe annotate quantifierswith the arity of the predicate they quantify over.
Alternatively, they could quantify over predicates of all arities and the right one is
picked based on each usage. This, however, would allow unintuitive formulas like
∀P. P(x) → P(a, b) where P is unary and binary at the same time. Thus, additional
well-formedness requirements would need to be put in place to rule out such for-
mulas. In our approach, the quantifier would instead specify the arity of P. For
example, if P is unary, the binary occurrence should no longer be bound to the
quantifier but be considered free instead. This of course will make the semantics
slightly more complicated as the scoping of variables now depends on arity.

Importantly, predicate variables also live in a different scope than the individuals.
This means that predicate variables count de Bruijn indices independently of in-
dividual variables and predicate variables of other arities. It also means that for
determining the binder of a variable pni , only predicate quantifiers ∀̇np and ∃̇np of
the same arity are taken into account.

Example 3.4 (De Bruijn Scopes) In the following formula, the arrows point from vari-
ables to the quantifier they are bound to:

∀̇ ∀̇1p p10 (x0) →̇ ∃̇0p ∀̇ ∃̇1p p11 (x1) ∧̇ p00

With named binders this formula would be written as ∀a. ∃P. P(a)→ ∃Q. ∀b.∃R. P(a)∧Q.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#form

16 Second-Order Syntax, Standard Semantics, and Natural Deduction

Besides predicate quantifiers, some authors also consider function quantifiers as
part of second-order logic (for example [56, 67]). In the textbook setting they sim-
ply allow for more convenient notation and do not bring any additional expressive
power with them. However, the treatment of function quantifiers is a bit more in-
volved in our setting of constructive type theory. We will discuss this later in the
context of semantics (Section 3.2). To this end, we also define the syntactic frag-
ment FF2 that extends F2 with function quantifiers and variables:

Definition 3.5 (Second-Order Syntax with Function Quantifiers) The types TF2
and FF2 of second-order terms and formulas with function quantifiers is defined by extending
Definition 3.3 with

t : TF2 ::= ... | f
n
i v (i, n : N, v : (TF2)n)

ϕ,ψ : FF2 ::= ... | ∀̇nf ϕ | ∃̇nf ϕ (n : N)

The de Bruijn scoping works analogously to F2.

While de Bruijn indices are well suited for a formal treatment of syntax, the result-
ing formulas tend to be difficult to understand, especially when different scopes
are involved as in Example 3.4. Therefore, we fall back to named binders when
giving examples or stating concrete formulas, and keep in mind that the formal-
ization uses the de Bruijn paradigm behind the scenes. In this case we also drop
the subscript p and f annotation of second-order quantifiers and distinguish the
different kinds of variables by names, using lower case letters a, b, c, x, y, z for indi-
viduals, f, g, h for functions and upper case letters X, Y, Z, P,Q, R for predicates. We
also leave out the aritiy annotations if arities can be derived from the context.

3.1.3 Properties of the Syntax

Discreteness and enumerability of Σ also extends to the syntax. Therefore, we fre-
quently require the signature to be discrete and enumerable, meaning that FΣ and
PΣ are required to have those properties.

Fact 3.6 (Discreteness and Enumerability)

1. If Σ is discrete, then F1, F2, and FF2 are also discrete.

2. If Σ is enumerable, then F1, F2, and FF2 are also enumerable.

Proof We prove both statements separately.

1. Given formulas ϕ and ψwe need to decide if ϕ and ψ are equal. This follows
by induction on ϕ and case analysis on ψ and requires a similar property for
terms, also shown by induction.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#form
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#form_eq_dec
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#form_enumerable

3.1. Syntax 17

2. We only discuss the case of F1 as the proof can easily be extended to the other
fragments. By Fact 2.4 is suffices to give a list enumerator for F1. We also
get list enumerators LFΣ and LPΣ for FΣ and PΣ. We begin by defining a list
enumerator LT for terms:

LT 0 := []

LT (Sn) := LT n++ [xn] ++ [F v | F ∈ LFΣ n, v ∈ (LT n)
|F|]

where An returns a list of all vectors of length n that can be constructed from
values in the list A. LT is cumulative, that is LT n ⊆ LT (Sn). We can see
that LT uses the previously enumerated values to construct new terms, thus
enumerating every term eventually. Formally, we can show ∀t : T. ∃n. LT n = t

by induction on t. A list enumerator for F1 is defined in a similar way. �

Next, we introduce the notion of substitution.

Definition 3.7 (Substitutions)

1. A capture avoiding individual instantiation of a formula ϕ with a parallel substitu-
tion σ : N → T is denoted by ϕ[σ]. This operation is extended to terms and vectors
and is defined by

xi[σ] := σ i

(F v)[σ] := F v[σ]

⊥̇[σ] := ⊥̇

(P v)[σ] := P v[σ]

(pni v)[σ] := p
n
i v[σ]

(ϕ �̇ψ)[σ] := ϕ[σ] �̇ψ[σ]

(∇̇ϕ)[σ] := ∇̇ ϕ[x0 · ↑σ]
(∇̇np ϕ)[σ] := ∇̇np ϕ[σ]

where t · σ denotes the extension of a substitution σ with a term t and ↑σ denotes the
lifting of the so called shift substitution ↑ to σ. They are defined by

(t · σ) 0 := t
(t · σ) (Si) := σ i

↑ i := xi+1
(↑σ) i := (σ i)[↑]

As a useful shorthand we write ϕ[t] for the substitution ϕ[t · λi. xi] instantiating the
index 0 with t and reducing the other indices by one.

2. A capture avoiding predicate instantiation with arity n of a formulaϕwith a parallel
substitution σ : N→ Pn is denoted by ϕ[σ]np . It is defined by

⊥̇[σ]np := ⊥̇
(P v)[σ]np := P v

(pmi v)[σ]
n
p :=

{
(σ im) v ifm = n

pmi v otherwise

(ϕ �̇ψ)[σ]np := ϕ[σ] �̇ψ[σ]p

(∇̇ϕ)[σ]np := ∇̇ ϕ[σ]p

(∇̇mp ϕ)[σ]np :=

{
∇̇mp ϕ[pn0 · ↑σ]np ifm = n

∇̇mp ϕ otherwise

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#subst_form_i
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#subst_form_p

18 Second-Order Syntax, Standard Semantics, and Natural Deduction

Where P ·σ and ↑ are defined in the same way as in (1). Again, we use the shorthand
ϕ[P]np to denote the substitution ϕ[P · λi. pni]np .

A parallel substitution σ must specify an instantiation for every possible variable
index. While those are infinitely many, it is also clear that each individual formula
ϕ can only contain finitely many free variables. Therefore, the values from σ will
not be used from a certain index i onwards since all free variables are below i. To
capture this intuition, we define the notion of bounds on free variables occurring
in formulas:

Definition 3.8 (Bounds)

1. We say b is a bound on the free individual variables occurring in ϕ, denoted by
sup (ϕ) 6 b, if the indices of all free individual variables in ϕ are less than b. This
notion is also extended to terms. In particular, we have

sup (xi) 6 b := i < b sup (∇̇ϕ) 6 b := sup (ϕ) 6 Sb

sup (∇̇np ϕ) 6 b := sup (ϕ) 6 b.

We say a variable xi is fresh or unused inϕ, if it does not occur inϕ. This is certainly
the case if i > b for sup (ϕ) 6 b.

2. We say b is a bound on the free predicate variables of arity n occurring in ϕ, denoted
by supnp (ϕ) 6 b, if the indices of all free predicate variables of arity n in ϕ are less
than b. In particular, we have

supnp (pmi) 6 b :=

{
i < b ifm = n

> otherwise

supnp (∇̇mp ϕ) 6 b :=

{
supnp (ϕ) 6 Sb ifm = n

supnp (ϕ) 6 b otherwise

Again, we say a variable pni is fresh or unused in ϕ, if it does not occur in ϕ. This is
certainly the case if i > b for supnp (ϕ) 6 b.

3. A formula ϕ is closed if sup (ϕ) 6 0 and supnp (ϕ) 6 0 for all n.

Fact 3.9 (Bounded Substitution) Let ϕ : F2, b : N, and σ1, σ2 : N → T and τ1, τ2 :

N→ Pn for n : N be substitutions. Then

1. If sup (ϕ) 6 b and σ1 i = σ1 i for all i < b, then ϕ[σ1] = ϕ[σ2].

2. If supnp (ϕ) 6 b and τ1 i = τ2 i for all i < b, then ϕ[τ1]np = ϕ[τ2]
n
p .

3. If ϕ is closed, then ϕ[σ1] = ϕ[σ2] and ϕ[τ1]np = ϕ[τ2]
n
p .

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#bounded_indi
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#bounded_pred
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#closed
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#subst_ext_bounded_i
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#subst_ext_bounded_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#subst_ext_i_closed

3.2. Semantics 19

Proof (1) and (2) are proven by induction onϕ. (3) immediately follows from (1)
and (2). �

Bounds can easily be computed for any formula:
Fact 3.10 Let ϕ : F2. Then

1. One can construct a b with sup (ϕ) 6 b.

2. For all n, one can construct a b with supnp (ϕ) 6 b.
Proof By induction on ϕ. �

3.2 Semantics
Next, we give meaning to the previously defined syntax. That is, we want to define
what it means for a formula of second-order logic to be valid. This is determined
by a semantic relation �. We begin by defining the standard semantics of second-
order logic for the syntactic fragment F2 in Section 3.2.1. Afterwards, we discuss
how to extend the semantics to FF2 in Section 3.2.2.
3.2.1 Standard Tarski Semantics
The notion of model-theoretic semantics discussed here is due to Alfred Tarski [61,
62]. He argued that the so called object logic that is being discussed (for us, this is
second-order logic) should be interpreted by lifting statements into the meta-logic
in which the analysis is carried out (in our case this is constructive type theory).

However, in order to give meaning to all second-order formulas we need some ad-
ditional information. For example, to figure out if a formula ∃x. P(x) is valid, it is
necessary to know from which universe of values x may be picked from. This set
of values that quantifiers range over is also called domain of discourse. The choice of
domain can easily change whether a formula is considered valid or not. Secondly,
we need to know how the non-logical symbols should be interpreted. For exam-
ple, consider the formula ϕ := ∀̇xy. x+ y = y+ x. On its face, the symbols “+” and
“=” are just syntax with no direct meaning associated to them. If we interpreted
those symbols as the usual addition function and equality predicate, wewould end
up with a valid formula stating the commutativity of addition (provided our do-
main consists of numbers). However, there are many other binary functions and
predicates one could come up with, for which ϕwould be invalid.

Hence, the semantics cannot be universally defined on its own, but depends on the
domain and symbol interpretation. This additional information needed to define
validity is provided by a so called model:
Definition 3.11 (Model) A model M consists of a domain D : T and an interpretation
I for function and predicate symbols. The interpretations are given by FI : D|F| → D and
PI : D|P| → P for F : Σf and P : Σp.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#find_bounded_indi
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#find_bounded_pred
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#Model

20 Second-Order Syntax, Standard Semantics, and Natural Deduction

Finally, we also have to consider formulas that contain free variables. For instance,
the validity of the formula x = 0 depends on the value of x. In order to make sense
of such formulas, we employ so called environments ρ that specify the values of free
variables. Thus, we end up with a ternary satisfiability relationM, ρ � ϕ that states
whether ϕ is valid in a given model and environment:

Definition 3.12 (Standard Semantics) Given amodelM consisting of a domainD and
an interpretation I, as well as an environment ρ = (ρi, ρp) consisting of assignments

ρi : N→ D ρp : N→ ∀n.Dn → P

for individual and predicate variables, we define term evaluation J·Kρ : T→ D and formula
satisfiability ρ � · : F2 → P by

JxiKρ := ρi i

JF vKρ := F JvKρ

ρ � ⊥̇ := ⊥
ρ � P v := PI JvKρ
ρ � pni v := ρp i n JvKρ

ρ �̇ϕ →̇ψ := (ρ � ϕ)� (ρ � ψ)

ρ � ∇̇ϕ := ∇d : D.d · ρ � ϕ
ρ � ∇̇np ϕ := ∇P : Dn → P. P · ρ � ϕ

where � and∇ are the meta-logical counterparts of the logical symbols. The modified envi-
ronments d · ρ and P · ρ occurring in the quantifier cases extend the individual or predicate
environment with an additional value. They are defined by

(d · ρi) 0 := d

(P · ρp) 0n :=

{
P if |P| = n
ρp 0n otherwise

(d · ρi) (Si) := ρi i

(P · ρp) (Si)n :=

{
ρp i n if |P| = n
ρp (Si)n otherwise

We write M, ρ � ϕ and JtKMρ when we want to make the used model explicit. We also
extend satisfiability to theories T : F2 → P and write M, ρ � T if M, ρ � ϕ for all ϕ ∈ T.
Furthermore, we write M � ϕ if M, ρ � ϕ for all ρ. Similarly, we say that M is a model
of T, written M � T, if M, ρ � T for all ρ. Finally, we say that ϕ is valid under T, written
T � ϕ, if M, ρ � ϕ for all M and ρ with M, ρ � T.

Overall, we can see that � maps logical connectives and quantifiers to their meta-
level counterpart, adding quantified variables to the environment. Hence, the ini-
tial choice of ρ only affects the free variables in a formula ϕ. Therefore, the envi-
ronment is irrelevant if ϕ is closed:

Fact 3.13 M, ρ1 � ϕ implies M, ρ2 � ϕ for all M, ρ1, ρ2, and closed ϕ.

Proof It suffices to prove

∀b. sup (ϕ) 6 b→ (∀i. i < b→ ρ1 i = ρ2 i)→M, ρ1 � ϕ↔M, ρ2 � ϕ

and a similar lemma for predicates by induction on ϕ. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#sat
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#sat_ext_closed

3.2. Semantics 21

3.2.2 Extension to Function Quantifiers
While � can easily be adapted to the first-order fragment F1 by removing the un-
necessary cases, extending it to FF2 poses an interesting question. The approach that
first comes to mind is to interpret function quantifiers ∀̇nf by quantifying over func-
tions Dn → D. This is also in line with the way we interpreted function symbols.

Definition 3.14 (Standard Semantics for Function Quantifiers) Consider a model
M with domain D. Environments ρ are extended with an additional component ρf : N →
∀n.Dn → D assigning values to function variables. We extend term evaluation and for-
mula satisfiability from Definition 3.12 to TF2 and FF2 by adding the following cases:

Jfni Kρ := ρf i n ρ � ∇̇nf ϕ := ∇f : Dn → D. f · ρ � ϕ

However, most people working in second-order logic use classical set theory as
their meta-logic. There, n-ary functions can simply be considered as the (n+1)-ary
relation containing the graph of the function. Hence, extending second-order logic
with function quantifiers does not add anything new since it can all be reduced
back to predicates.2 The same also holds for function symbols; they just serve as a
notational convenience in their setting.

But the concept of functions in type theory does not directly match up with func-
tions in set theory. The function spaceDn → D is underspecified and therefore this
correspondence to relations is not available without axioms. As a result, the se-
mantics given above behaves slightly differently than one would normally expect.
We will later see an example of this in Chapter 4.

One approach to remedy this and to get the same properties as the set-theoretic
semantics in the literature is to interpret functions in a different way. We define
X Y as the type of total and functional relations from X to Y:

X Y := ΣF : X→ Y → P. total F∧ functional F

where total F := ∀x. ∃y. F x y and functional F := ∀xyy ′. F x y → F x y ′ → y = y ′.
Interpreting functions as Dn D is more faithful to the traditional set-theoretic
approach and leads to the following relational semantics:

Definition 3.15 (Relational Standard Semantics for Function Quantifiers) The
function interpretation and variable assignment in a relational Model MR have types FI :

D|F| D and ρf : N → ∀n.Dn D. Term evaluation turns into a relation J·Kρ : TF2 →
D→ P and we get formula satisfiability ρ � ϕ with

JxiKρ d := ρi i = d

JF vKρ d := ∃w : D|F|. JvKρw∧ FIwd

ρ � P v := ∃w : D|P|. JvKw∧ PIw

ρ � ∀̇nf ϕ := ∀f : Dn D. f · ρ � ϕ
2One could also get rid of predicates and in turn express them using their characteristic function.

Thus, functions and relations can be used interchangeably.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#sat
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#sat_p

22 Second-Order Syntax, Standard Semantics, and Natural Deduction

The remaining cases are defined in a similar way.

Fact 3.16 The evaluation relation J·Kρ is total and functional.

Proof By induction on the terms. �

One way to bridge the gap between the two semantics is to alter our meta-theory
by assuming unique choice. It is defined by

UC := ∀XY : T. ∀R : X Y. ∀x. Σy. R xy

Note that this is not a propositional axiom, but instead a stronger computational
operator for the totality of the relation.

Fact 3.17 Assuming UC, one can turn F : X Y into F̂ : X→ Y. Similarly, one can turn
f : X → Y into f̃ : X Y with f̃ := λxy. f x = y. Lifting those translations to models and
environments yields the following results:

1. M, ρ � ϕ iff M̃, ρ̃ � ϕ for all models M and environments ρ.

2. MR, ρ � ϕ iff M̂R, ρ̂ � ϕ for all relational models MR and environments ρ.

Proof We show (1) by induction on ϕ. (2) follows from (1) and the fact that ˜̂
MR

and ˜̂ρ behave the same as MR and ρ. �

The downside of the relational semantics is that it is quite tedious to work with and
mechanize because of the overhead introduced by always needing to invoke totality
and functionality. Generally, we will not focus on FF2 on paper and instead present
the results only in terms of F2 most of the time. We refer to the underlying Coq
mechanization that extendsmost results regarding Tarski semantics to FF2 using the
more convenient function semantics from Definition 3.14.3 When appropriate, we
will comment whether and how the results can be extended to function quantifiers.

3.3 Natural Deduction
Next, we introduce the notion of provability via a relation `. For this, we use a
variant of Gentzen’s natural deduction system [18, 19] defined on the syntactic
fragment F2. It is based on the first-order system presented in [15].

Definition 3.18 (Natural Deduction) We represent the deduction system as an induc-
tive predicate ` : L(F2)→ F2 → P. Its rules are given by

ϕ ∈ ACtx
A ` ϕ

A ` ⊥̇Exp
A ` ϕ

A,ϕ ` ψ
II
A ` ϕ →̇ψ

A ` ϕ →̇ψ A ` ϕ
IE

A ` ψ
3The main exception were relational semantics are required will be discussed in Section 4.2.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#eval_p_functional
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#sat_iff_sat_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#sat_iff_sat_p2
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#prv

3.3. Natural Deduction 23

A ` ϕ A ` ψ
CI

A ` ϕ ∧̇ψ

A ` ϕ ∧̇ψCE1 A ` ϕ
A ` ϕ ∧̇ψCE2 A ` ψ

A ` ϕDI1
A ` ϕ ∨̇ψ

A ` ψDI2
A ` ϕ ∨̇ψ

A ` ϕ ∨̇ψ A,ϕ ` θ A,ψ ` θ
DE

A ` θ

A[↑] ` ϕ
AllI

A ` ∀̇ϕ
A ` ∀̇ϕAllE
A ` ϕ[t]

A ` ϕ[t]
ExI

A ` ∃̇ϕ
A ` ∃̇ψ A[↑], ψ ` ϕ

ExE
A ` ϕ

A[↑]np ` ϕAllIp
A ` ∀̇np ϕ

A ` ∀̇np ϕAllEp
A ` ϕ[P]np

A ` ϕ[P]npExIp
A ` ∃̇np ϕ

A ` ∃̇np ψ A[↑]np , ψ `2 ϕExEp
A ` ϕ

Peirce
A `c ((ϕ →̇ψ) →̇ϕ) →̇ϕ

P not free in ϕ
Compr

A ` ∃̇P. ∀̇x1...xn. P(x1, ..., xn) ↔̇ϕ

We use two versions of the deduction system denoted by `c and `i distinguishing between
classical and intuitionistic logic. The (Peirce) rule is only available in the classical system
`c and may not be used in `i. We write ` if the choice between `c and `i does not matter.

The (Ctx) rule allows us to derive assumed formulas and the (Exp) rule is used
to deduce arbitrary formulas from a contradiction. Most of the other rules can be
categorized into either introduction rules that state how the different logical con-
nectives can be proven (denoted by I), or elimination rules that state what can be
derived from them (denoted by E). For example, an implication can be proven by
showing that the conclusion holds if the premise is assumed (II), and can be used to
derive the conclusion whenever the premise holds (IE). A conjunction is shown by
proving that both parts hold (CI), and can derive both of them (CE1,CE2). A dis-
junction can be proven by demonstrating that one of the formulas hold (DI1,DI2),
and can be used to derive a formula, whenever the formula holds if either one is
assumed (DE). Universally quantified formulas are treated rather non-standardly
as they are derived by showing that they hold in a shifted context (AllI) which

24 Second-Order Syntax, Standard Semantics, and Natural Deduction

only works in a de Bruijn setting. Through the shift, the zero index becomes free
which simulates an arbitrary but fixed object. This approach allows for an easier
mechanization of abstract properties like weakening. However, we will show later
that the more traditional approach of replacing the index zero with a fresh variable
is also admissible. Furthermore, a universally quantified formula can be used to
prove the formula for any term t (AllE). Similarly, an existentially quantified for-
mula is shown by demonstrating that it holds for some term t (ExI), and can be used
to deduce every formula that holds, whenever the former is assumed in the shifted
context (ExE). The (AllIp), (AllEp), (ExIp) and (ExEp) rules are extensions of the
same notions to predicate quantifiers. The classical (Peirce) axiom states that every
formula holds, if it holds when it implies another formula. We chose this approach
of enforcing classicality since it does not rely on falsity.

Finally, we have the so called comprehension axiom (Compr). It is not adapted from
the first-order system, but a completely new axiom that is introduced for second-
order logic. To understand its motivation, consider that in order to prove ∃̇ϕ, it
suffices to construct a term t for which ϕ holds. This term can be arbitrarily com-
plex and tailored to satisfy ϕ. However, in the predicate case our choices are more
limited. For example, with the rules discussed before we would not even be able
to prove ∃̇P. ∀̇x. P(x) stating that there is a true predicate, as long as we do not al-
ready have such a predicate in the context or a symbol with this meaning. That is,
because the only predicates we can construct in order to show ∃̇np ϕ are variables or
symbols. Thus, the comprehension axiom is introduced to certify the existence of
further predicates. It states that for each formula ϕ there is a predicate P that ex-
tensionally behaves the same as the n-ary property expressed by ϕ. Importantly, P
may not occur freely in ϕ.4 To refer to the comprehension axiom later on we define
the following shorthand:

Comprnϕ := ∃̇P. ∀̇x1...xn. P(x1, ..., xn) ↔̇ϕ where P may not occur freely in ϕ

If we remove the (AllIp), (AllEp), (ExIp), (ExEp) and (Compr) rules, we end up
with a deduction system for the first-order fragment F1. This system, which we
will write as `1, exactly matches the one from [15]. We could also add analogous
rules for function quantifiers to extend ` to the syntactic fragment FF2. Function
comprehension can be similarly defined as

FuncComprnϕ := totalnϕ → functionalnϕ → ∃̇f. ∀̇x1...xn. ϕ[f(x1, ..., xn)].

The assumptions totalnϕ := ∀̇x1...xn. ∃̇y.ϕ and functionalnϕ := ∀̇yy ′x1...xn. ϕ[y] →̇
ϕ[y ′] →̇ y = y ′5 assert that ϕ describes a (n + 1)-ary relation that is total and func-
tional in the last argument. In this case, there is a function f that computes a value

4Otherwise the axiomwould be inconsistent: We could setϕ := ¬̇P(x) and get ∃̇P. ∀̇x. P(x)↔̇ ¬̇P(x).
5The equality y = y ′ can be expressed in second-order logic via the Leibniz characterization

∀̇P. P(y) →̇ P(y ′).

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin.html#comprehension_form

3.3. Natural Deduction 25

that satisfies this relation. In the remainder of this thesis, we will not explore this
further and only focus on F2 in the context of deduction.

While the context of ` is represented by finite lists A, we can also extend the notion
of provability to potentially infinite theories T : F2 → P:

Definition 3.19 (Deduction under Theories) A formulaϕ is provable under a theory
T : F2 → P, written T ` ϕ, if there is a list A ⊆ T, such that A ` ϕ. We also extend the
classicality annotations to provability under theories.

This approach makes the deduction system compact by definition. This is intu-
itively valid, since a derivation under a theory T can only use finitely many as-
sumptions. Therefore, the formula can also be derived from a list A if A contains
all those assumptions. The benefit of reducing provability under theories back to
lists is that we do not need to formalize yet another deduction system. Furthermore
it fits better to the intuition that deduction should conceptually be finitary.

Next, we show two different weakening properties of `. We can replace the context
with one that subsumes the original one and proofs remain valid under substitu-
tions.

Fact 3.20 (Weakening) The following rules hold for `:

A ′ ` ϕ A ′ ⊆ A
Weak

A ` ϕ
A ` ϕWeakS

A[σ] ` ϕ[σ]
A ` ϕWeakSp

A[σ]np ` ϕ[σ]np

Proof By induction on the derivations. �

Using theweakening results we can show that variants of the (AllI) and (ExE) rule,
that do not shift the context, but instead substitute a fresh variable, are admissible.
Those are in fact the standard rules most commonly used, especially outside of the
de Bruijn setting. We call this variant named and remark that it is helpful when
working on concrete derivations.

Lemma 3.21 (Named Quantifier Rules) The following rules hold for `:

A ` ϕ[xi] xi 6∈ A, ∀̇ϕ
AllI ′

A ` ∀̇ϕ

A ` ∃̇ψ A,ϕ[xi] ` ψ xi 6∈ A, ∃̇ϕ
ExE ′ A ` ϕ

A ` ϕ[pi]np pni 6∈ A, ∀̇npϕAllI ′p
A ` ∀̇npϕ

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#tprv
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#Weak
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#subst_Weak_i
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#subst_Weak_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#nameless_equiv_all_i'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#nameless_equiv_ex_i'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#nameless_equiv_all_p'

26 Second-Order Syntax, Standard Semantics, and Natural Deduction

A ` ∃̇npψ A,ϕ[pi]
n
p ` ψ pni 6∈ A, ∀̇npϕExE ′p A ` ϕ

where xi 6∈ A and pni 6∈ A denote that the variables do not occur in A.

Proof We only discuss (AllI ′) as the other cases are proven similarly. It suffices to
show that A[↑] ` ϕ iff A ` ϕ[xi].

→ Follows from Fact 3.20 with the substitution [xi] since A[↑][xi] = A.

← Follows from Fact 3.20 with the substitution

σ j :=

{
x0 if i = j
xj+1 otherwise

since xi does not occur in A and xi+1 does not occur in ϕ. �

In order for deduction systems to be a useful means to prove statements, they
should be enumerable. This is also the case for `:

Fact 3.22 λϕ.A ` ϕ is enumerable for all A.

Proof Similar to the proof of Fact 3.6. �

Additionally, we want that ` only proves valid statements. This property is called
soundness.

Theorem 3.23 (Soundness) Let T be a theory and ϕ a formula. Then

1. T `i ϕ→ T � ϕ 2. T `c ϕ→ T � ϕ under LEM

Proof We discuss both claims:

1. If T `i ϕ, we have a listA ⊆ T withA `i ϕ. Thus, it suffices to proveA `i ϕ→
A � ϕ since A � ϕ implies T � ϕ. This is done via an induction on A `i ϕ. We
only discuss the cases of universally quantified formulas and comprehension.
The remaining ones are similar or straightforward.

(AllI) Given a modelM and an environment ρwithM, ρ � A, we have to show
M, d · ρ � ϕ for some d : D. We know A[↑] � ϕ from the inductive
hypothesis, such that it suffices to proveM, d ·ρ � A[↑]. We can generally
show

M, ρ � ψ[σ]↔M, (λx. JσxKMρ , ρp) � ψ

for all σ and ρ by induction onψ. Therefore, it is enough to instead prove
M, (λx. J↑ xKMd·ρ, ρp) � ψ for all ψ[↑] ∈ A[↑]. This holds by assumption,
since J↑ xKMd·ρ = ρi x.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#nameless_equiv_ex_p'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#prv_enumerable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#SoundnessIT
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#SoundnessCT
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#SoundnessI
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#SoundnessI
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Tarski.html#sat_comp_i

3.3. Natural Deduction 27

(AllE) Given a modelM and an environment ρwithM, ρ � A, we have to show
M, ρ � ϕ[t] for some term t. Again, we can move the substitution into
the environment such that it suffices to show M, t · ρ � ϕ. This holds by
the inductive hypothesis.

(Compr) Given a model M and an environment ρ with M, ρ � A, we have to
showM, ρ � Comprnϕ. Comprehension is satisfied by taking the predicate
λv.M, v · ρ � ϕ, where v · ρ adds all components of v to the environment.

2. Similar to the proof of (1). In the case of (Peirce), we have to show that an
instance of the Peirce rule holds in P. This follows as a consequence of LEM.

�

Remark 3.24 The dependency on LEM in the classical case is actually necessary to get
this strong sense of soundness. As we have `c P ∨̇ ¬̇P for any nullary predicate variable
P, soundness also yields LEM. A different approach taken in [15] is to define the notion
of classical models. There, a model M is considered classical if it validates all instances of
Peirce’s law, i.e. M � ((ϕ →̇ ψ) →̇ ϕ) →̇ ϕ for all ϕ,ψ. If validity is restricted to classical
models, soundness is provable without LEM (at the cost of fewer models being definable).

Chapter 4

Categoricity of Second-Order Peano Arithmetic

An important area where second-order logic differs from its first-order counterpart
is the notion of categoricity. A theory T is called categorical, if all models of T are
equal up to isomorphism. Thus, T uniquely determines its domain and the inter-
pretation of its function and predicate symbols. In other words, T is strong enough
to uniquely characterize its own intended structure.

Interestingly, there are no categorical first-order theories (at least none that admit
an infinite model). One example of this is Peano arithmetic which tries to axioma-
tize the natural numbers with addition andmultiplication. First-order logic admits
so called non-standard models of Peano arithmetic that are not isomorphic to the
natural numbers. This is a consequence of the upward Löwenheim-Skolem theo-
rem (which is not mechanized in this thesis):

Theorem 4.1 (Upward Löwenheim-Skolem) Every countable first-order theory with
a countably infinite model has a model of every infinite cardinality.

There is also the downwards version stating that each countable first-order theory
with an infinite model also has a countable model. Overall, this justifies the previ-
ous statement that first-order logic is not able to characterize any infinite structures
in a categorical way. In this chapter, we demonstrate that this is not the case for
second-order logic. The expressive power gained by the additional quantifiers al-
lows it to characterize many structures in a categorical way, including Peano arith-
metic. We begin by defining second-order Peano arithmetic in Section 4.1 and show
its categoricity in Section 4.2. Finally, we investigate some immediate consequences
of this result in Section 4.3 and will also make further use of it in Chapter 5.

4.1 Second-Order Peano Arithmetic
The signature ΣPA of second-order Peano arithmetic contains symbols for the con-
stant zero, the successor, addition andmultiplication functions, as well as an equal-
ity predicate:

30 Categoricity of Second-Order Peano Arithmetic

(O, S_, _⊕ _, _⊗ _ ; _ ≡ _)

The addition of an equality symbolmight seempuzzling at first glance, since equal-
ity is actually second-order definable via the Leibniz characterization x = y ∼

∀̇P. P(x) →̇ P(y). We settled on the more uncommon symbol approach to stay in
closer correspondence to first-order Peano arithmetic and allow for easier argu-
ments in the first-order fragment later on.

Figure 4.1 shows the formulas making up the theory PA2 of second-order Peano
arithmetic.

⊕-zero : ∀̇x.O⊕ x ≡ x ⊕-rec : ∀̇xy. (Sx)⊕ y ≡ S(x⊕ y)
⊗-zero : ∀̇x.O⊗ x ≡ O ⊗-rec : ∀̇xy. (Sx)⊗ y ≡ y⊕ x⊗ y
O-succ : ∀̇x.O ≡ Sx →̇ ⊥̇ S-inj : ∀̇xy. Sx ≡ Sy →̇ x ≡ y
≡-refl : ∀̇x. x ≡ x ≡-symm : ∀̇xy. x ≡ y →̇ y ≡ x

induction2 : ∀̇P. P O →̇ (∀̇x. P x →̇ P (Sx)) →̇ ∀̇x. P x

Figure 4.1: Axioms of PA2.

The axiomatisation of equality might seem surprisingly concise with neither tran-
sitivity, nor congruence axioms for S, ⊕, and ⊗ being present. But as it turns out,
the axioms given here already suffice to characterize equality (see Fact 4.3). The
reason for this is the strong induction2 axiom. It is the only one that exploits the
power of second-order logic via the predicate quantifier and gives us a correspond-
ing induction principle in models of PA2:
Fact 4.2 (Induction principle) Let M be a model of PA2 with domain D and interpre-
tation I. The the induction principle ∀P : D → P. P OI → (∀x. P x → P (SI x)) → ∀x. P x
can be used for properties on D.
Proof Follows directly from M � induction2. �

In first-order Peano arithmetic (PA1) the induction axiom needs to be replaced by
an axiom scheme:

induction1 : ϕ[O] →̇ (∀̇x.ϕ[x] →̇ϕ[Sx]) →̇ ∀̇x.ϕ[x] for all ϕ : F1

Thus, PA1 only allows to induce on first-order definable properties, which is of
course weaker than the principle obtained in Fact 4.2. For example, we show in the
next Fact that the interpretation of ≡ in PA2 corresponds to equality, which is not
possible in PA1.1

1For example, consider the intensional model with domain N×B and (n1, _) ≡I (n2, _) := n1 = n2.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#PA
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#induction

4.2. Categoricity 31

Fact 4.3 Let M be a model of PA2 with domain D and interpretation I. Then x ≡I y iff
x = y for all x, y : D.

Proof By induction on x and case analysis on y using Fact 4.2. The different cases
follow with O-succ, S-inj, ≡-refl and ≡-symm. �

The so called standard model for PA2 are the natural numbers:

Definition 4.4 (Standard Model) The standard model of PA2 consists of the domain N
and interprets zero, successor, addition, multiplication and equality with the usual opera-
tions on N. We slightly overload the notation and denote this model by N.

4.2 Categoricity
The categoricity result for PA2 is originally due to Dedekind [9], but we follow the
more contemporary proof by Shapiro [56]. We fix two models M1 and M2 of PA2
and write D1 and D2 for the domains, as well as I1 and I2 for the interpretations.
The goal is to give an isomorphism between M1 and M2.

There is not much hope for being able to define this isomorphism as a function
D1 → D2. The only means of determining the structure of x : D1 is via the in-
duction axiom which is inherently propositional and cannot be used to compute
a corresponding y : D2. Thus, we need to give the isomorphism as a relation
D1 → D2 → P:

Definition 4.5 We define the relation ∼= : D1 → D2 → P inductively by OI1 ∼= OI2 and
SI1 x ∼= SI2 y if x ∼= y. We also extend ∼= to vectors, functions, predicates and environments
in the pointwise way.

Fact 4.6 ∼= is total, surjective, functional, and injective, i.e.
1. ∀x. ∃y. x ∼= y

2. ∀y. ∃x. x ∼= y

3. ∀xyy ′. x ∼= y→ x ∼= y ′ → y = y ′

4. ∀xx ′y. x ∼= y→ x ′ ∼= y→ x = x ′

Totality and surjectivity can also be extended to vectors, predicates and environments.

Proof Follows by induction. �

Fact 4.7 ∼= respects the structure of the models, i.e. for all x, x ′, y, y ′ it holds that:

1. OI1 ∼= OI1

2. x ∼= y→ SI1 x ∼= SI1 y

3. x ∼= y→ x ′ ∼= y ′ → x⊕I1 x ′ ∼= y⊕I2 y ′

4. x ∼= y→ x ′ ∼= y ′ → x⊗I1 x ′ ∼= y⊗I2 y ′

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#eq_sem
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#Standard_Model
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#Iso_vec
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#Iso_func
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#Iso_pred
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#Iso_env
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_total
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_surjective
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_functional
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_injective
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_O
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_S
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_add
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_mul

32 Categoricity of Second-Order Peano Arithmetic

5. x ∼= y→ x ′ ∼= y ′ → (x ≡I1 x ′ ↔ y ≡I2 y ′)

Proof (1) and (2) hold by definition. (3) and (4) follow by induction on x using
the axioms for ⊕ and ⊗. (5) follows by induction on x using Fact 4.3. �

We can conclude that ∼= is the isomorphism we were looking for and that PA2 is
indeed categorical. A direct consequence of this is that satisfiability of formulas
agrees in both models:

Lemma 4.8 (Agreement) Let ρ1 and ρ2 be environments with ρ1 ∼= ρ2. ThenM1, ρ1 �
ϕ iff M2, ρ2 � ϕ for all ϕ : F2.

Proof By induction on ϕwith ρ1 and ρ2 generalized.

• If ϕ = (s ≡ t), we have to show (JsKM1
ρ1 ≡I1 JtKM1

ρ1)↔ (JsKM2
ρ2 ≡I2 JtKM2

ρ2). By
Fact 4.7 it suffices to prove JtKM1

ρ1
∼= JtKM2

ρ2 for all t by induction on t using the
remaining points from Fact 4.7.

• If ϕ = pni v, we have to show ρ1 JvKM1
ρ1 ↔ ρ2 JvKM2

ρ2 . This holds since JvKM1
ρ1

∼=

JvKM2
ρ2 like in the previous case and ρ1 ∼= ρ2.

• If ϕ = ∀̇ψ, we have to show (∀d1 : D1. d1 · ρ1 � ψ)↔ (∀d2 : D2. d2 · ρ2 � ψ).

→ By surjectivity (Fact 4.6), we obtain d1 : D1 with d1 ∼= d2, such that
d1 · ρ1 ∼= ρ2 · ρ2 which allows us to use the inductive hypothesis on the
assumption.

← Symmetrical to the other direction using totality.

• If ϕ = ∀̇np ψ, we can proceed like the previous case, using the fact that surjec-
tivity and totality transport to predicates.

The remaining cases are straightforward or follow in a similar way. �

Interestingly, totality and subjectivity do not transport to functions. For example,
we cannot show that for all f1 : (D1)n → D1 there is a f2 : (D2)n → D2 with f1 ∼= f2.
That is again, because ∼= is not computable, meaning that although knowing that
∼= is total, given an x : D1, we cannot compute a y with x ∼= y. Consequently, we
cannot extend Lemma 4.8 to the fragment FF2 if we use the function semantics. The
relational semantics, on the other hand, does not face this problem as computability
is not required to translate between the domains:

Lemma 4.9 (Agreement for Relational Semantics) We can turnM1 andM2 into re-
lational modelsMR

1 andMR
2 . Let ρR1 and ρR2 be relational environments with ρR1 ∼= ρR2 . Then

MR
1 , ρ

R
1 � ϕ iff MR

2 , ρ
R
2 � ϕ for all ϕ : FF2.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_eq
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#sat_iff_funcfree
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_term_funcfree
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#sat_p_iff

4.3. Consequences of Categoricity 33

Proof Similar to the proof of Lemma 4.8, using the fact that ∼= is surjective and total
for (Di)n Di. �

Finally, we remark that ∼= becomes computational if a recursion principle is avail-
able for the domains (for example if one of the domains is N):

Fact 4.10 If a recursion principle ∀P : D1 → X. POI1 → (∀x. P x → P (SI1 x) → ∀x. P x
is available for D1, we have ∀x. Σy. x ∼= y. The same holds symmetrically for y.

Proof Analogous to the totality proof, using the recursion principle on x. �

4.3 Consequences of Categoricity
We showed that all models of PA2 are isomorphic to the standard model N. This
means that the upward Löwenheim-Skolem theorem fails for second-order logic:

Fact 4.11 (Failure of Upward Löwenheim-Skolem) There is a countable second-order
theory with only countably infinite models.

Proof PA2 is finite and thus countable. Let M be a model of PA2 with domain D.
D is in bijection with N via ∼= and therefore countably infinite. �

Similarly, the downwards Löwenheim-Skolem theorem can be refuted by show-
ing the categoricity of second-order real analysis [56] or set theory2 [33]. Thus,
second-order logic is expressive enough to distinguish different infinite cardinal-
ities. Furthermore, we can use the categoricity result to refute yet another of the
main properties of first-order logic. A logic is called compact if every theory T has
a model if every finite subset of T has a model. While first-order logic is compact,
second-order logic is not:

Fact 4.12 (Failure of Compactness) Not all second-order theories T have a model if ev-
ery finite subset of T has a model.

Proof We define the infinite theory T> := PA, ϕ>0, ϕ>1, ... where

ϕ>n := x0 6≡ O ∧̇ x0 6≡ SO ∧̇ ... ∧̇ x0 6≡ S(...(SO))︸ ︷︷ ︸
n times

states that the variable x0 does not have the value of any of the numerals up to n.
Every finite subset A ⊆ T> is satisfied by the standard model N by choosing a large
enough value for x0. However, there is no model of the whole theory T>. Oth-
erwise, T> would also be satisfied by the standard model, because of categoricity.
This is not possible since there is no value k : N that x0 can be assigned to, since
ϕ>k is contained in T>. �

2Second-order ZF is categorical for equipotent models.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#F_total_comp
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#Upwards_Loewenheim_Skolem_Failure
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#Compactness_Failure

34 Categoricity of Second-Order Peano Arithmetic

Finally, we can use the proof above to show another major point of disagreement
between first- and second-order logic. There is no sound deduction systems ` :

L(F2) → F2 → P that, lifted to theories as described in Definition 3.19, fulfills T �
ϕ → T ` ϕ for all decidable theories T and ϕ. We call this infinitary incompleteness
since it does not rule out completeness for finite contexts.

Theorem 4.13 (Infinitary Incompleteness) Every sound second-order deduction sys-
tem ` : L(F2)→ F2 → P is not infinitary complete.

Proof Let ` be sound and infinitary complete. It suffices to show that this implies
that the theory T> from the proof of Fact 4.12 is compact, contradicting the argu-
ment in the proof. Assume that all finite contexts A ⊆ T> have a model. Suppose
there where no model of T> (since we originally wanted to show a negative claim,
we can argue by contradiction without requiring LEM). Then T> � ⊥̇ and by in-
finitary completeness T> ` ⊥̇ since T> is decidable. Hence, there is also a finite
context A ⊆ T> with A ` ⊥̇ and by soundness A � ⊥̇. This is not possible, since by
assumption A ⊆ T> has a model. �

Remarkably, we do not even need to put any computability requirements like enu-
merability on the system in order for it to be infinitary incomplete. The only as-
sumption we have is that the system is sound and that the lifting to theories makes
it compact. As a consequence, we can directly conclude that the natural deduction
system from Chapter 3 is not infinitary complete:

Corollary 4.14 (Infinitary Incompleteness of `)

1. `i is not infinitary complete.

2. `c is not infinitary complete under LEM.

Proof Follows by Theorem 4.13 since ` is sound. Note that classical soundness
requires LEM. �

However, it might still be the case that there is a deduction system that is complete
when restricted to finite contexts A, which we call finitary completeness. For exam-
ple, the “system” A ` ϕ := A � ϕ is sound and finitary complete, but not infinitary
complete by Theorem 4.13. Of course, no one would consider this a sensible de-
duction system and we should be more restrictive with this term. As it turns out, it
suffices to require enumerability of deduction systems in order to rule out the one
above and show that no finitary complete one can exist. Establishing this stronger
incompleteness result requires a more intricate argument involving computability
and Gödel’s first incompleteness theorem, which will be investigated in the next
chapter.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#InfinitaryIncompleteness
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#InfinitarilyIncompleteI
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#InfinitarilyIncompleteC

Chapter 5

Incompleteness and Undecidability of
Standard Semantics

At the end of the previous chapter we already got a first taste of the inherent incom-
pleteness of second-order logic. In this chapter, we strengthen this by also refuting
finitary completeness, which is stronger than the result from Chapter 4 in the sense
that it also rules out completeness for finite contexts. This requires a very different
proof strategy and is the result that is usually presented in the literature (for exam-
ple [56]). The proof also requires Markov’s principle and the standard assumption
that deduction systems are enumerable.

We begin by giving an overview on the subject of (in)completeness and discuss
some intuition on the proof in Section 5.1. Then, we first show an undecidability
result in Section 5.2 and use it to obtain incompleteness in Section 5.3 via a com-
putability argument. Section 5.4 is concernedwith extending the result to arbitrary
signatures. Finally, we use the same reduction to obtain undecidability of second-
order validity, satisfiability, and Peano arithmetic in Section 5.5.

5.1 Overview
The terms “completeness” and “incompleteness” are used to describe many dif-
ferent concepts in mathematical logic. For our discussion in this chapter, there are
two conflicting notions that are relevant. To avoid confusionwe begin by describing
them following the exposition by Read [50].

The concept we referred to before when speaking of “(in)completeness” is usually
called deduction-(in)completeness. That is, a logic is considered deduction-complete
if there is a sound and effective deduction system ` that proves all valid formu-
las. As discussed before, one can also differentiate between the finitary and in-
finitary notion with infinitary deduction-completeness being stronger than finitary
deduction-completeness and vice versa for incompleteness. For the discussion in
this chapter, the distinction however does not matter, so we leave out the “fini-

36 Incompleteness and Undecidability of Standard Semantics

tary” and “infinitary” descriptors. The term “effective” has historical origins and
can be understood more precisely as the requirement that provability in ` should
be enumerable.1 Therefore, validity in deduction-complete logics is also enumer-
able, that is, there is an algorithm that enumerates all valid statements. In 1929,
Gödel showed his famous completeness theorem [20], stating that first-order logic
is deduction-complete. Thus, semantic entailment �1 and syntactic entailment `1
coincide for first-order logic.

Apart from this, there is the notion of negation-(in)completeness that is concerned
with axiomatisations or theories. A theory T is considered negation-complete if
T can prove or disprove every closed formula, that is T ` ϕ or T ` ¬̇ϕ for all
closed ϕ. In 1931, Gödel showed that each enumerable consistent2 first-order ax-
iomatisation of the natural numbers must inherently be negation-incomplete. This
result is known as Gödel’s first incompleteness theorem [21]. One can also view
it under the perspective of computability theory, since in this particular case, his
result shows that first-order satisfiability in N is not enumerable. So while there is
a program that outputs the first-order statements that hold in all models (cf. com-
pleteness theorem), there is no program that generates the ones that hold in N.

In light of the categoricity results discussed in Chapter 4, one might already an-
ticipate that the situation must look differently in second-order logic: The notions
“holding in allmodels” and “holding inN” fall togetherwhen talking about second-
order Peano arithmetic, since N is the only model of PA2 (up to isomorphism).
And indeed, if second-order logic were deduction-complete then PA2 would be
negation-complete. This would yield a program that enumerates all truths about
the natural numbers, contradicting the incompleteness theorem. Hence, second-
order deduction-incompleteness is usually obtained as a direct corollary of Gödel’s
first incompleteness theorem.

In his proof of the first incompleteness theorem, Gödel constructs a self-referential
statement that can neither be proven nor disproven. This result has already been
formalized in various proof assistants [55, 44, 24, 46]. In contrast to these direct
proofs, Kirst and Hermes [31] approximate the result, employing the paradigm of
synthetic computability. They mechanized the following theorem, where the the-
ory Q ′ contains the addition and multiplication axioms from the previous chapter:

Theorem 5.1 (Kirst and Hermes [31]) Let an extension A ⊇ Q ′ be given that is sat-
isfied by the standard model N. Assuming LEM, negation-completeness of A (i.e. A `c1 ϕ

1A different way of putting it is that the rules of the system should be decidable. We actually
did not need this requirement in Chapter 4, but it is certainly a sensible restriction. Otherwise such
systems would not be very useful for proving statements.

2A theory is consistent if it does not proof ⊥̇. Gödel actually required so called ω-consistency
which comes with some further restrictions that were later lifted by Rosser [53].

5.2. Undecidability via Reduction from Hilbert’s Tenth Problem 37

orA `c1 ¬̇ϕ for all closeed first-orderϕ) would imply the decidability of the halting problem
of Turing machines.

So instead of constructing an explicit independent Gödel sentence, they approxi-
mate the traditional incompleteness result by showing that negation-completeness
would imply the decidability of the halting problem. Based on the intuition given
above, we can show the following result:

Fact 5.2 Assuming LEM, PA2 � ϕ or PA2 � ¬̇ϕ for all closed ϕ : F2.

Proof By LEM we either have N � ϕ or N � ¬̇ϕ. The claim follows by Lemma 4.8
since all models of PA2 behave the same as N. �

Thus, PA2 would be negation-complete for any complete second-order deduction
system. Unfortunately, this does not suffice to invoke Theorem 5.1 since Kirst and
Hermes employ a classical first-order system `c1. But their proof could be extended
to any system that is assumed to be sound, enumerable and complete, whichwould
yield a classical proof of second-order deduction-incompleteness.

However, a different, more attractive approach is to follow the computability argu-
ment sketched above. As mentioned before, the set of closed first-order formulas
that hold in N is not enumerable. To show this, it suffices in this particular case
to prove that it is not decidable, using the same reduction as Kirst and Hermes.
This yields a proof of deductive-incompleteness that does not require full classical-
ity, but only Markov’s principle. Moreover, there is the additional benefit that the
reduction also gives us undecidability results for many other problems related to
second-order logic along the way.

5.2 Undecidability via Reduction from Hilbert’s Tenth Problem
Hilbert’s tenth problem (H10) is about deciding whether Diophantine equations
p = q have a solution in the natural numbers. This problem is undecidable [42]
which has already been verified up to the halting problem for Turing machines as
part of the Coq Library of Undecidability Proofs [37, 12]. The following reduction
is largely based on the one by Kirst and Hermes [31].

Definition 5.3 (Diophantine Equations) Polynomials consist of constants, variables,
addition and multiplication:

p, q : poly ::= num n | var x | add p q | mul p q (n, x : N)

Evaluation 〈〈p〉〉α of polynomials under a variable assignment α : N→ N is defined by

〈〈num n〉〉α := n

〈〈var x〉〉α := α x

〈〈add p q〉〉α := 〈〈p〉〉α + 〈〈q〉〉α
〈〈mul p q〉〉α := 〈〈p〉〉α · 〈〈q〉〉α

A Diophantine equation p = q has a solution if there is an α such that 〈〈p〉〉α = 〈〈q〉〉α.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#PA_models_agree_LEM
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#polynomial

38 Incompleteness and Undecidability of Standard Semantics

H10 is well suited to reduce into arithmetic since the problem can easily be ex-
pressed as a formula. We start with encoding polynomials as terms by defining
a translation function η:

Definition 5.4 (Translation) We define η : poly→ T by

η (num n) := ν(n)

η (var i) := xi

η (add p q) := ηp⊕ ηq
η (mul p q) := ηp⊗ ηq

where ν is recursively defined by ν(0) = O and ν(n+ 1) = S(ν(n)).

ADiophantine equation can now be encoded by binding all variables with existen-
tial quantifiers:

Definition 5.5 Let n be a bound on the variables occurring in p = q. We define ϕp,q :=

∃n ηp ≡ ηq where ∃0ψ := ψ and ∃Sn := ∃ ∃nψ.

Fact 5.6 ϕp,q is closed for all p, q.

Notice that the resulting formula ϕp,q is first-order, since no second-order quan-
tifiers or variables are involved. The following fact characterizes the behaviour of
the ∃n operation:

Fact 5.7 Let M be a model, ϕ a formula, and n : N with sup (ϕ) 6 n. Then M � ∃nϕ iff
there is an environment ρ with M, ρ � ϕ.

Proof We show both directions by induction on n. We only discuss the general
intuition:

→ IfM � ∃nϕ, then in particularM, ρ �M for some ρ (e.g. ρ = 〈λx.OI, λxnv.>〉).
Hence, there exist d1, ..., dn such that M, d1 · ... · dn · ρ � ϕ.

← If there is ρ with M, ρ � ϕ, then the existential quantifiers can be satisfied by
ρi 0, ..., ρi (n−1) and the remaining environment ρ ′ = 〈λx. ρi (x+n), ρp〉, such
thatM, ρ ′ � ∃nϕ. Since ∃nϕ is closed, we can switch to any other environment
and have M � ∃nϕ. �

The evaluation of the encoded term in the standard model coincides with the eval-
uation of the polynomial:

Lemma 5.8 Let p by a polynomial, α an assignment and ρp a predicate environment.
Then Jη pKN(α,ρp) = 〈〈p〉〉α.

Proof By induction on p. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#encode_polynomial
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#encode_problem
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#encoding_closed
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#exists_n_sat
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#eval_encoding

5.3. Incompleteness 39

Thus, we can reduce H10 to validity in the standard model:

Lemma 5.9 (Undecidability of N) p = q has a solution iff N � ϕp,q.

Proof We show both directions separately:

→ Let α be a solution to p = q. By Fact 5.7 it suffices to give an environment ρ
with N, ρ � ηp ≡ ηq which reduces to Jη pKNρ = Jη qKNρ. By Lemma 5.8 this
holds for the environment (α, ρp) for arbitrary ρp.

← If N � ϕp,q, we have ρ with N, ρ � ηp ≡ ηq by Fact 5.7. Thus, ρi is a solution
to p = q by Lemma 5.8. �

5.3 Incompleteness
Using the undecidability result, we can refute enumerability via Post’s theorem:

Lemma 5.10 Assuming MP, enumerability of all closed, first-order formulas that hold in
N implies decidability of H10:

Proof Suppose λϕ : F1. closedϕ∧N � ϕ is enumerable. In order to show decidabil-
ity of H10 it suffices to show decidability of λpq.N � ϕp,q by Lemma 5.9. By Post’s
theorem (Fact 2.7) it suffices to show that this problem is bi-enumerable:

• Enumerability of λpq.N � ϕp,q follows from the assumption since ϕp,q is
first-order and closed.

• Enumerability of λpq.¬N � ϕp,q is equivalent to λpq.N � ¬̇ϕp,q and follows
again by the assumption. �

However, if second-order logic were deduction-complete, we could enumerate all
first-order truths in N:

Lemma 5.11 The existence of a sound, complete, and enumerable second-order deduction
system for the signature ΣPA2 implies the enumerability of all closed first-order formulas
that hold in N.

Proof By categoricity, a closed first-order formula ϕ holds in N iff it is valid in PA2.
Since a complete deduction system enumerates all valid formulas, it also enumer-
ates all closed first-order ones. As it is decidable whether formulas are closed and
first-order, this yields the enumerator we were looking for. �

Thus, we have deduction-incompleteness:

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#H10_to_PA_standard_model_sat
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#standard_model_validity_not_enumerable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#standard_model_validity_enumerable_PA

40 Incompleteness and Undecidability of Standard Semantics

Theorem 5.12 (Incompleteness) Assuming MP, the existence of a sound, complete,
and enumerable deduction system for FF2 in ΣPA2 implies the decidability of H10.

Proof Immediate by Lemma 5.10 and Lemma 5.11. �

In particular, the system ` introduced in Chapter 3 is incomplete:

Corollary 5.13 (Incompleteness of `)

1. Assuming MP, completeness of `i implies decidability of H10.

2. Assuming LEM, completeness of `c implies decidability of H10.

Proof Follows from Theorem 5.16 since ` is sound and enumerable. Soundness in
`c requires LEM, subsuming MP needed for Theorem 5.16. �

5.4 Extending Incompleteness to Arbitrary Signatures
We can extend Theorem 5.12 to arbitrary signatures since second-order logic allows
us to encode finite signatures and axiomatisations into formulas themselves. For
this task, it is very useful to have function quantifiers available since in this case the
functions and predicates symbols can directly be replaced with variables that are
quantified at the beginning:

Lemma 5.14 (Signature Embedding in FF
2) Let ϕ : FF2(ΣPA2) be a formula and Σ ′ an

arbitrary signature. Then there is a formula ϕ ′ : FF2(Σ ′) and theory PA ′2 in this signature
such that

1. PA2 � ϕ iff � ∀̇ fO fS f⊕ f⊗. ∀̇P≡.PA ′2 →̇ϕ ′,

2. ϕ is satisfiable in PA2 iff ∃̇ fO fS f⊕ f⊗. ∃̇P≡.PA ′2 ∧̇ϕ ′ is satisfiable.

Proof We obtain ϕ ′ and PA ′2 by replacing function and predicate symbols with
variables referencing the corresponding quantifier at the beginning. We only dis-
cuss (1), as (2) is proven in a similar way.

→ We have to show M ′, fO · fS · f⊕ · f⊗ · P≡ · ρ � PA ′2 →̇ ϕ ′ for all M ′, fO, fS, f⊕,
f⊗, P≡, and ρ. We construct a modelM of PA2 by using the domain ofM ′ and
interpreting O using fO, S using fS, and so on. We have M � PA2 because we
can assumeM ′, fO · fS · f⊕ · f⊗ ·P≡ ·ρ � PA ′2. Since ϕ is valid in PA2, this yields
M, ρ ` ϕwhich finally gives us M ′, fO · fS · f⊕ · f⊗ · P≡ · ρ � ϕ ′.

← We get a model M of PA2 and construct a model M ′ in Σ ′ by choosing an
arbitrary interpretation. Then, we instantiate fO, fS, etc. in the assumption
with the symbol interpretations of M, yielding M ′, OI · SI · ⊕I · ⊗I· ≡I · ρ �
PA ′2 →̇ϕ ′. This suffices, since the interpretations satisfy PA2. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#Incompleteness_PA
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#IncompleteI
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#IncompleteC
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#PA_model_valid_iff_model_valid
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.PA.html#PA_model_sat_iff_model_sat

5.5. Further Undecidability Results 41

This allows us to extend Lemma 5.11 to arbitrary signatures:

Lemma 5.15 The existence of a sound, complete, and enumerable deduction system for FF2
in any signature implies the enumerability of all closed first-order formulas that hold in N.

Proof By categoricity, a closed first-order formula ϕ holds in N iff it is valid in PA2.
Using Lemma 5.14 this is the case iff ∀̇ fO fS f⊕ f⊗. ∀̇P≡.PA ′2 →̇ ϕ ′ is second-order
valid. Hence, the deduction system yields the enumerator we were looking for. �

Theorem 5.16 (Incompleteness for FF
2) AssumingMP, the existence of a sound, com-

plete, and enumerable deduction system for FF2 in any signature implies the decidability of
H10.

Proof Immediate by Lemma 5.10 and Lemma 5.15. �

Obtaining the same result forF2would bemore tedious since the embeddingwould
need to simulate function symbols by predicate variables. For example, the formula
S(x ⊕ y) ≡ z would be turned into ∃̇a. P⊕(x, y, a) ∧̇ ∃̇b. PS(a, b) ∧ P≡(b, z). Also, all
previous results would need to be rephrased in terms of a relational interpretation
of⊕, ⊗ and so on. While possible in principle, we have not mechanized this as part
of the thesis.

5.5 Further Undecidability Results
The H10 reduction can not only be used to obtain deduction-incompleteness, but
also yields undecidability of other problems related to second-order logic. For ex-
ample, since N is the only model of PA2 because of categoricity, we know that va-
lidity in PA2 is also undecidable:

Corollary 5.17 (Undecidability of PA2) p = q has a solution iff PA2 � ϕp,q.

Proof Follows by Lemma 5.9, Lemma 4.8, and the fact that ϕp,q is closed. �

While categoricity made this proof very convenient, it is not strictly necessary to
obtain this result. Kirst andHermeswork in a first-order settingwere categoricity is
not available. They define a homomorphism µ : N→M for arbitrary models of PA1
to transport a solution α in the natural numbers to the model domain. However,
categoricity allows us to obtain a solution to p = q from any model that satisfies
ϕp,q, not only N. This is not possible in the first-order case.

Fact 5.18 M � ϕp,q for any model M of PA2 implies that p = q has a solution.

Proof If M � ϕp, q, we also have N � ϕp,q by categoricity which yields a solution
to p = q by Lemma 5.9. �

This allows us to also obtain undecidability of satisfiability:

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#standard_model_validity_enumerable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#Incompleteness
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#H10_to_PA_validity
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#solution_from_PA_model

42 Incompleteness and Undecidability of Standard Semantics

Corollary 5.19 (Undecidability of PA2 satisfiability) p = q has a solution iff there
is a model M of PA2 and ρ with M, ρ � ϕp,q.

Proof We show both directions separately:

→ If p = q has a solution, then the standard model satisfies N, ρ � ϕp,q for any
ρ by Lemma 5.9.

← Follows by Fact 5.18. �

Using the previous embedding idea, we can extend those results to undecidability
of general validity and satisfiability in the empty signature using function quanti-
fiers.

Corollary 5.20 (Undecidability of Second-order Logic)

1. p = q has a solution iff ∀̇ fO fS f⊕ f⊗. ∀̇P≡.PA ′2 →̇ϕ ′p,q is valid in the empty signa-
ture.

2. p = q has a solution iff ∃̇ fO fS f⊕ f⊗. ∃̇P≡.PA ′2 ∧̇ ϕ ′p,q is satisfiable in the empty
signature.

Like undecidability inN, those results can also be extended to refute enumerability:

Theorem 5.21 (Enumerability) Assuming MP, enumerability of the following prob-
lems implies decidability of H10:

1. Validity in PA2

2. Satisfiability in PA2

3. Second-order validity in the empty signature

4. Second-order satisfiability in the empty signature

Proof (3) and (4) follow from (1) and (2) using the signature embedding.

1. By Corollary 5.17 it suffices to show that λpq.PA2 � ϕp,q is decidable. By
Post’s theorem (Fact 2.7) it suffices to show bi-enumerability:

• λpq.PA2 � ϕp,q is enumerable if validity in PA2 is enumerable.

• ϕ is not valid in PA2 iff ¬̇ϕ is valid in PA2, since if ϕp,q does not hold
in all models of PA2, it holds in none of them because of categrocity
(Lemma 4.8). Thus, co-enumerability of the problem also follows from
enumerability of validity in PA2.

2. Similar to (1) using the fact that ϕ is not satisfiable in PA2 iff ¬̇ϕ is satisfiable
in PA2 because of categoricity. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#H10_to_PA_satisfiability
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#H10_to_validity
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#H10_to_satisfiability
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#PA_validity_not_enumerable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#PA_satisfiability_not_enumerable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#validity_not_enumerable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Incompleteness.html#satisfiability_not_enumerable

Chapter 6

Henkin Semantics

Henkin introduced the notion of general models, now known as Henkin models, in
1950 to show completeness for the theory of types [26]. Type theory, being more
expressive than second-order logic, suffered from the same incompleteness prob-
lems for standard semantics we discussed in the previous chapter. However, his
newly introduced semantics allowed him to obtain a completeness result that also
scales down to higher-order and especially second-order logic. Roughly, the idea is
that second-order quantifiers no longer range over all predicates of a given domain,
but only over a some subset of them that is provided by the model.

6.1 Definition of Henkin Semantics
AHenkinmodelH consists of the same components as amodel in standard seman-
tics, except that it also specifies a universe U that contains the predicates that the
second-order quantifiers should range over. However, we do notwant this universe
to be chosen completely arbitrary. For example, we do notwant it to be empty. More
concretely, we require that it should at least contain all properties that are second-
order definable. Otherwise, the comprehension axiom of ` would not be sound.
Hence, we want Henkin models to satisfy H � Comprnϕ for all ϕ and n. This way
we guarantee that all second-order definable predicates are contained in H.

Remark 6.1 (Terminology) Interestingly, the terminology varies a bit in the literature.
While Väänänen [67] considers a model only “Henkin” if it satisfies comprehension and
calls them “general models” otherwise, Shapiro [56] always speaks of “Henkin models” and
calls them “faithful” if comprehension holds. Leivant [38] proceeds similarly to Väänänen
but uses the term “Henkin-prestructure”. We will use the terminology of Väänänen, so a
general model is considered a Henkin model if it has comprehension.

Using this intuition, we can now formally define Henkin semantics:

Definition 6.2 (Henkin Semantics) A Henkin model H consists of a domain D : T,
an interpretation function I for function and predicate symbols and a set of relations Un :

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin.html#sat

44 Henkin Semantics

(Dn → P) → P for each n : N. The predicate interpretations should be included in U, in
other words Un PI

n for all n-ary predicate symbols Pn : PΣ.

The model must satisfy H �H Comprnϕ for all ϕ and n, where �H is defined by

H, ρ �H ∀̇np ϕ := ∀P : Dn → P.Un P → H, P · ρ �H ϕ
H, ρ �H ∃np ϕ := ∃P : Dn → P.Un P ∧H, P · ρ �H ϕ

The remaining cases and term evaluation J·KHρ are defined in the same way as for standard
semantics. We say a formulaϕ is valid inH, writtenH �H ϕ, ifH, ρ �H ϕ for all environ-
ments ρwithUn (ρp xn) for all x, n : N. We call such environments Henkin environments.
In the remainder of this thesis we will mostly work with Henkin semantics. Therefore, we
will write � instead of �H if it is clear from the context that we are in the Henkin setting.

Henkin semantics can also be generalized to the fragment FF2. In this case, a model
also contains a set of function universes Fn : (Dn → D) → P and must satisfy
function comprehension. In the remainder of this thesis, we will however only
focus on F2.

By looking at the definition of satisfiability above, we can see thatHenkin semantics
agree with the standard semantics if Un P for all P : Dn → P.1 Amodel in standard
semantics can therefore be seen as a Henkin model that accepts all possible pred-
icates over the domain. This is also the reason why models in standard semantics
are sometimes called full models. They are “full” in the sense that U contains every
predicate.

Fact 6.3 Let M be a model in standard semantics. Then we can also interpret M as a
Henkin model with Un P := >. It holds that M, ρ � ϕ iff M, ρ �H ϕ for all ρ and ϕ.

Proof By induction on ϕwith ρ generalized. �

Therefore, we can see that T �H ϕ → T � ϕ. The converse does not hold, since
there are many more Henkin models than there are models for standard seman-
tics, so there are more models available that could potentially make ϕ invalid and
disprove T �H ϕ. This also gives a rough intuition why Henkin semantics could be
(deduction) complete: We hope that the valid but unprovable formulas for stan-
dard semantics are invalidated by the additional Henkin models.

On the other hand, completeness means that we need to give up on the idea of
categoricity of infinite structures since categoricity yields incompleteness as seen
in Chapter 5. We also see why this might be the case: There are now many more
models that can potentially be non-isomorphic and behave differently compared

1Comprehension is trivially satisfied by such a model.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin.html#sat_full_henkin

6.2. Soundness of the Deduction System 45

to each other. It seems like categoricity and completeness “pull in opposite direc-
tions” [52] and we cannot have both at the same time. So in a way, Henkin seman-
tics trade some of the expressivity of second-order logic and its power to categori-
cally describe infinite structures for the ability to have a complete proof system.

6.2 Soundness of the Deduction System
The deduction system we presented in Chapter 3 is sound for Henkin Semantics:

Theorem 6.4 (Soundness for Henkin Semantics) Let T be a theory andϕ a formula.
Then

1. T `i ϕ→ T �H ϕ 2. T `c ϕ→ T �H ϕ under LEM

Proof Similar to the proof of Theorem 3.23. The comprehension axiom is sound
since every Henkin model H satisfies H � Comprnϕ by definition. �

In the next chapters, we will show that ` is in fact complete, if we interpret it in
Henkin semantics.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#HenkinSoundnessIT
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Deduction.html#HenkinSoundnessCT

Chapter 7

Henkin Completeness:
Translation to First-Order Logic

The completeness theorem, originally due to Gödel [20] and simplified by Henkin
[25], is one of the hallmarks of first-order logic. It states that the natural deduction
system `1 is complete for first-order Tarski semantics. This theorem has already
been mechanized in Coq, for example Forster, Kirst, and Wehr [15] show:

Theorem 7.1 (Forster, Kirst and Wehr [15]: Completeness of `1) T �1 ϕ implies
T `1 ϕ for all T and ϕ under LEM.

In Chapter 6 we claimed that Henkin semantics allow for a similar result to be ob-
tained for second-order logic. While the usual Henkin style completeness proof
used for first-order logic can also be adapted to the second-order case [56], wewant
to follow a different strategy in this thesis. Interestingly, the switch to Henkin se-
mantics not only yields completeness, but also bringsmany of the other (in)famous
properties of first-order logic like compactness or the Löwenheim-Skolem theorems
with it [56]. As it turns out, second-order logic interpreted in Henkin semantics ac-
tually reduces to first-order logic [41, 64, 43]. By this we mean that given a second-
order formula ϕ, we can construct a first-order formula ϕ?, such that

1. ϕ is valid in Henkin semantics iff ϕ? is valid in first-order Tarski semantics.
We call this semantic reduction.

2. ϕ is provable in the second-order natural deduction system iff ϕ? is provable
in the first-order system. We call this deductive reduction.

This does not come as a surprise if we consider Lindström’s theorem [39] from
abstract model theory: First-order logic is the strongest logic that has both the
compactness property and the (downward) Löwenheim-Skolem theorem. Thus,
second-order logic with Henkin semantics cannot be more expressive than first-
order logic, which is exactly what is captured by this reduction.

48 Henkin Completeness: Translation to First-Order Logic

T �2 ϕ

T? �1 ϕ? T? `1 ϕ?

T `2 ϕ

(1)

Theorem 7.1

(2)

Figure 7.1: Outline of how completeness of `2 can be derived using the reduction.

As illustrated in Figure 7.1, we can use this reduction to transport the completeness
theorem from first-order logic to second-order logic.1 Note, that we write `2 and
�2 for the second-order natural deduction system and Henkin validity to make the
distinction between first- and second-order derivations and the different semantics
clearer.

This chapter will mostly focus on the intuition behind the reduction (Section 7.1)
and the definition of the actual translation function (Section 7.2). We verify the
semantic reduction property (1) in Chapter 8 and the deductive one (1) in Chap-
ter 9. Finally, we obtain completeness and further meta-theoretic properties in
Chapter 10.

7.1 Intuition
To begin with, we want to remark that there are different flavours of first-order
logic. For us, the distinction between mono-sorted and many-sorted first-order
logic is of particular interest. The version we introduced in Chapter 3 is the mono-
sorted one. That means that in formulas like ∀̇xy.ϕ the variables x and y always
range over the same universe of objects. On the other hand, many-sorted first-
order logic introduces the notion of sorts that are used to annotate the universes
the quantifiers range over. For example, in the many-sorted formula ∀̇xS1 .∀yS2 ϕ,
the variable x belongs to the sort S1 and y belongs to S2. Interestingly, this fea-
ture allows for a straightforward embedding of second-order logic, for example as
presented in [41]:

Example 7.2 (Reduction to Many-Sorted First-Order Logic) We use a sort I for in-
dividuals and sorts Pn for predicates of arity n. Then we can represent the second-order
formula ∀̇P. ∃̇Q. ∀x. P(x) ↔̇ ¬̇Q(x) as the many-sorted formula

∀̇PP1 . ∃̇QP1 . ∀̇xI.App1(P, x) ↔̇ ¬̇App1(Q, x)

We simply turned the quantifiers into first-order ones and annotated them with the correct

1The figure also shows that already the forwards direction of the semantic reduction (1) and the
backwards direction of (2) suffice to obtain completeness of `2. However, we will show both direc-
tions respectively.

7.1. Intuition 49

sort. Since first-order logic does not have a notion of predicate variable applications, we
added the custom symbol App to the signature that represents this operation.

In this examplewe used the fact that first-order sorts can capture the different kinds
of quantifiers we have in second-order logic. However, in this thesis we want to fo-
cus on the mono-sorted case because it is the more traditional formalism andmany
of its properties (including completeness [15]) have already been mechanized. On
top of that, the reduction to mono-sorted first-order logic represents the stronger
result. Luckily, it is also well known that the many-sorted case can be reduced to
the mono-sorted one [41]. The basic idea is that sorts can be simulated by custom
predicates that guard the quantifiers. But as it turns out, this folklore technique is
more difficult toworkwith than it might seem at first glance. For example, consider
Van Dalen’s approach, who uses this idea to extend the reduction from Example
7.2 to mono-sorted first-order logic [64]:

Example 7.3 (Van Dalen’s Reduction to Mono-Sorted First-Order Logic)
We can represent the formula from Example 7.2 as the following mono-sorted first-order
formula:

∀̇P. isPred1(P) →̇ ∃̇Q. isPred1(Q) ∧̇ ∀̇x. isIndi(x) →̇ (App1(P, x) ↔̇ ¬̇App1(Q, x))

The symbols isPred1 and isIndi assert that P and Q should be unary predicates and that x
should be an individual.

While proving the semantic reduction property for this translation is straightfor-
ward, showing the deductive part is challenging. Van Dalen mentions that there is
a “tedious but routine proof” [64], but he only gives a very brief sketch. Nour and
Raffalli investigated this claim and “were not able to end his proof” [43]. They point
out the problem, that this translation is not surjective. Thismeans that the formulas
occurring in a proof of ϕ? do not necessarily have the shape ψ?. Therefore, it is not
obvious how to translate such a proof in the first-order system to the second-order
one (at least we are not aware of any proposed solution to this problem and also
were not able to come up with one on our own).

Luckily, Nour and Raffalli suggest a slightly simpler reduction that avoids this issue
by staying closer to the original structure of the second-order formula [43]. Essen-
tially, they get rid of the isIndi and isPred symbols from the previous translation:

Example 7.4 (Nour and Raffalli’s Reduction to Mono-Sorted First-Order Logic)
Nour and Raffalli represent the formula from Example 7.2 as the following mono-sorted
first-order formula:

∀̇P. ∃̇Q. ∀̇x. (App1(P, x) ↔̇ ¬̇App1(Q, x))

50 Henkin Completeness: Translation to First-Order Logic

Here, P,Q, and x represent individuals and predicates of all all arities at the same time. The
semantics of the App symbol then interprets them differently based on their position in the
arguments: As P andQ are the first argument they are interpreted as predicates, whereas x
will be interpreted as an individual.

Importantly, Nour andRaffalliwork in a variant of second-order logicwithout func-
tion quantifiers. While the semantic reduction can be extended to also work in FF2,
doing the same for the deductive part is challenging and would be very difficult to
mechanize (see Remark 9.6). Thus, the mechanization and the following presenta-
tion on paper are both only concerned with the fragment F2.

7.2 Translation Function to First-Order Logic
The first step in formalizing the reduction is to define the translation function to
first-order logic described in Example 7.4. For this, we first fix a signature Σ in
which we will work for the remainder of this chapter. We also assume that Σ is
discrete and enumerable.

As illustrated in the previous examples, the translation requires us to replace appli-
cations of predicate variables with corresponding first-order primitives. Therefore,
we extend the signature with custom symbols that represents this operation:

Definition 7.5 (Extended Signature) We obtain the extended signature Σ+ by adding
(n + 1)-ary predicate symbols Appn for all n : N, representing the application of n-ary
predicate variables.

Notice that this leads to an infinite blow-up of the signature, however we keep dis-
creteness and enumerability:

Fact 7.6 Σ+ is discrete and enumerable.

Another important step that is not very evident in the example is how to turn the
second-order variables into first-order ones. This is crucial because individual and
predicate variables of different arities are completely independent from each other
in second-order logic. But now, we need to map all of them into the single variable
space provided by mono-sorted first-order logic. This was easy in our informal ex-
ample, since we only needed to choose a unique name for each variable. However,
implementing this idea in our de Bruijn encoding is more challenging. Essentially,
we need to keep track of which first-order de Bruijn index a given second-order
variable corresponds to. To achieve this, we use functions

πi : N→ N πp : N→ N→ N

that return the corresponding first-order index for each variable. An individual
variable xi then gets turned into the first-order variable πi i and a predicate variable

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#Sigma_p1_eq_dec
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#Sigma_p1_enumerable

7.2. Translation Function to First-Order Logic 51

pni gets turned into πp i n. We carry those functions throughout the whole transla-
tion process and update them on each quantifier. For example, when we turn an
individual quantifier into a first-order one, we want that the individual variable 0
is still bound to this quantifier. However, all other variables need to be shifted in
order to make space for the new one. We write this transformation as ↑i π. Simi-
larly, the transformation for a predicate quantifier of arity nwill be written as ↑np π.
The formal definition of those operations are given by

(↑i πi) 0 := 0
(↑i πi) (Sx) := S (πi x)
(↑i πp) xn := Sx

(↑np πi) x := Sx
(↑np πp) 0n := 0

(↑np πp) (Sx)n := S (πp xn)

(↑np πp) xm := m ifm 6= n

Now we have all ingredients to define our translation function:
Definition 7.7 (Translation) The translation function _?π : F2(Σ) → F1(Σ+) is recur-
sively defined by:

⊥?
π := ⊥

(pni v)
?
π := Appn(xπp in :: v?π)

(P v)?π := P v?π

(ϕ �̇ψ)?π := ϕ?
π �̇ψ

?
π

(∇̇ϕ)?π := ∇̇ϕ?
↑iπ

(∇̇np ϕ)?π := ∇̇ϕ?
↑npπ

where the _?π notation is extended to terms and vectors of terms by:

(xi)
?
π := xπi i (f v)?π := f v?π

The remaining question is what the initial values for π should be when we start
the translation. A first observation is that this initial choice only effects the free
variables in the formula since the ↑ operations fix the values for bound variables.
Therefore, the choice of π would not matter if we restricted ourselves to closed
formulas:
Lemma 7.8 ϕ?

π = ϕ?
π ′ for all closed formulas ϕ and arbitrary π and π ′.

Proof It suffices to show (∀x. sup (ϕ) 66 x → πi x = π ′i x) → (∀xn. supnp (ϕ) 66 x →
πp xn = π ′i xn)→ ϕ?

π = ϕ?
π ′ by induction on ϕ. �

However, since we also want to work with open formulas, choosing an arbitrary
function would not be adequate. For the translation to go through, we need to
make sure that each free individual and predicate variable getsmapped to a unique
first-order variable. We opt for using the natural pairing function to achieve this:
Definition 7.9 We define π0i x := 〈0, x〉 and π0p xn := 〈1, 〈x, n〉〉 and write ϕ? for ϕ?

π0
.

Now that the translation function is defined, we can continue with the verification
of the reduction.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLForm
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLForm_closed_ext
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLForm'

Chapter 8

Henkin Completeness:
Semantic Reduction Property

In this chapter, we verify the semantic part of the reduction. We want to show that
validity of a formula ϕ in Henkin semantics agrees with the validity of ϕ? in first-
order Tarski semantics. As discussed in the introduction of Chapter 7, it would
technically suffice to prove only one direction of this to obtain completeness. That
is, we need to be able to translate first-order models M into Henkin models M�.
Nour and Raffalli only proof this result. However, we are also interested in proving
the other direction, such that we end up with a “real” semantic reduction. That is,
we also want to translate Henkin models H into first-order models H?.

We begin with this latter direction in Section 8.1, as we believe it is instructive in
understanding the idea behind Nour and Raffali’s translation. In Section 8.2, we
show the converse direction and combine both results in Section 8.3.

8.1 Translating Henkin Models into First-Order Models
Suppose we have a Henkin model H that consists of a domain D, a predicate uni-
verse U and a symbol interpretation I. We also assume that H is not empty, i.e.
there is a d0 : D. By comprehension, we also get Pn0 : Dn → P with Un Pn0 for each
n.

Recall from the initial motivation that first-order variables represent individuals
and predicates at the same time. Therefore, the translated first-order domain D?

should contain both the individuals and the predicates of H:

Definition 8.1 We define D? as an inductive type by

fromIndi : D→ D? fromPredn : ∀P.Un P → D?

We will leave out the proof argument of fromPredn on paper.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#D1

54 Henkin Completeness: Semantic Reduction Property

The problem we face now is that an object in D? is either an individual or a pred-
icate, but not both at the same time like our reduction requires. Thankfully, the
Henkin model is not empty, so we can define that each predicate simultaneously
represents the dummy value d0 and each individual represents all the dummy
predicates Pn0 . To this end we define the following interpretation functions:

Definition 8.2 We define toIndi : D? → D and toPredn : D? → (Dn → P) by

toIndi (fromIndid) := d

toIndi (fromPredn _) := d0

toPredn (fromIndi _) := Pn0
toPredn (fromPredn P) := P

toPredn (fromPredm _) := Pn0 if n 6= m

Definition 8.3 The first-order symbol interpretation I? is given by

FI? v := fromIndi (FI (toIndi v))

PI? v := PI(toIndi v)

AppI
?

n (d :: v) := toPredn d (toIndi v)

The last step is to translateHenkin environments ρ into first-order environments ρ?.
Here, we need to make sure that ρ? maps the free variables in a translated formula
ϕ? to the same values as ρ does in ϕ. Recall that the free variables are translated
according to the initial π functions. Therefore, ρ? needs to reverse π0i and π0p as
defined in 7.7:

Definition 8.4 Let ρ be a Henkin environment. We define ρ? by

ρ? n :=

{
fromIndi (ρi x) if n = 〈0, x〉
fromPredm (ρp xm) if n = 〈S _, 〈x,m〉〉

Lemma 8.5 For all Henkin environments ρ it holds that

1. ∀x. toIndi (ρ? (π0i x)) = ρi x 2. ∀xn. toPredn(ρ? (π0p xn)) = ρp xn

Proof Immediate by the correctness of the pairing function. �

Now that we have all components of our translated model H?, we can show that it
agrees with the initial model H:

Lemma 8.6 For all Henkin environments ρ and second-order formulas ϕ it holds that

H?, ρ? �1 ϕ
? ↔ H, ρ �2 ϕ.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toIndi
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#I1
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLEnv
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLEnv_correct_i
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLEnv_correct_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLForm_correct_2To1'

8.1. Translating Henkin Models into First-Order Models 55

Proof We show the stronger claim

∀ρ1ρ2π. (∀x. toIndi (ρ1 (πi x)) = ρ2,i x)

→ (∀xn. toPredn (ρ1 (πp xn)) = ρ2,p xn)

→ (H?, ρ1 �1 ϕ
?
π ↔ H, ρ2 �2 ϕ)

by induction on ϕ, which suffices according to Lemma 8.5:

• Ifϕ = P v, we haveϕ?
π = P v?π and need to showPI (toIndi Jv?πKH

?

ρ1
) ↔ PI JvKHρ2 .

It suffices to prove

∀ρ1ρ2π. (∀x. toIndi (ρ1 (πi x)) = ρ2,i x)→ toIndi Jt?πKH
?

ρ1
= JtKHρ2

for all terms t by induction on t. This implies toIndi Jv?πKH
?

ρ1
= JvKHρ2 .

• If ϕ = pni v, we have ϕ?
π = Appn(xπp in :: v?π) and need to show

toPredn (ρ1(πp i n)) (toIndi Jv?πi,πpK
H?

ρ1
)↔ ρ2,p i n JvKHρ2 .

By assumptionwehave toPredn (ρ1(πp i n)) = ρ2,p i n and again toIndi Jv?πKH
?

ρ1
=

JvKHρ2 like in the previous case.

• If ϕ = ∀̇iψ, we have ϕ?
π = ∀̇ψ?

↑iπ and need to show(
∀a : D?.H?, a · ρ1 �1 ψ?

↑iπ
)
↔ (∀d : D.H, d · ρ2 �2 ψ)

→ Let d : D. From the assumption we getH?, (fromIndid) ·ρ1 �1 ψ?
↑iπwhich

is equivalent toH, d ·ρ2 �2 ψ by the inductive hypothesis. The precondi-
tions of the inductive hypothesis hold since the updated functions ↑i πi
and ↑i πp match the updated environments (fromIndid) · ρ1 and d · ρ2.

← Let a : D?. If a = fromIndid, then instantiate the assumption with d.
If a = fromPredn P then instantiate with d0. Conclude again using the
inductive hypothesis.

• If ϕ = ∀̇np ψ, we have ϕ?
π = ∀̇ψ?

↑npπ and need to show(
∀a : D?.H?, a · ρ1 �1 ψ?

↑npπ

)
↔ (∀P : Dn → P.Un P → H, P · ρ2 �2 ψ)

→ Let P : Dn → P. Instantiate the assumption with a := fromPredn P and
conclude using the inductive hypothesis.

← Let a : D?. If a = fromPredn P, then instantiate the assumption with P.
Since Un P, we can finish with the inductive hypothesis. If a = fromIndid
or a = fromPredm P with m 6= n, then instantiate with Pn0 and conclude
again with the inductive hypothesis as Un Pn0 by assumption.

The remaining cases are straightforward or are proven in a similar way. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLForm_correct_2To1
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLTerm_correct_2To1

56 Henkin Completeness: Semantic Reduction Property

8.2 Translating First-Order Models into Henkin Models
Next, we verify the converse direction. Suppose we have a first-order modelM that
consists of a domain D and a symbol interpretation I. Now, we want to turn this
into a Henkin model M�.

Since each object inD represents, among other things, an individual we can choose
the same domain for our Henkin model:

Definition 8.7 We set D� := D.

We also need to specify a predicate universe for the Henkin model. Here, we take
the set of predicates induced by the interpretation of the App symbol:

Definition 8.8 We set U�n P := ∃d : D. ∀v. P v↔ AppIn (d :: v).

In otherwords, a predicate is contained in theHenkinmodel ifM contains an object
whose application extensionally behaves the same as the predicate. At this point
we can also nicely see why the reduction would fail for full semantics. Recall that
we can interpret models in standard semantics as Henkin models that contain all
predicates. Therefore, U�n would need to accept every predicate, which is not al-
ways the case, since we have no guarantee that M actually contains all of them.

Another important point is that we want our Henkin model to fulfill comprehen-
sion. By looking at the definition ofU�n, we can see that this is only the case ifM has
comprehension through the App symbol. Unfortunately this is not always the case.
If we do not restrictM to have comprehension,M� will only yield a general model.
However, before tackling this problem, we first want to finish the translation.

For the symbol interpretation, we can simply reuse the interpretation from M:

Definition 8.9 The symbol interpretation I� is given by PI� v := PI v and FI� v := FI v.

Finally, we need to translate a first-order environment ρ into a second-order envi-
ronment ρ�:

Definition 8.10 Given a first-order environment ρ we define ρ� := (ρ�i , ρ
�
p) by

ρ�i x := ρ (π
0
i x) ρ�p xn := λv.AppIn(ρ (π

0
p xn) :: v)

Lemma 8.11 ρ� is a Henkin environment, i.e. U�n(ρ�p xn) for all x and n.

Proof We need to find an object d : D whose predicate application behaves the
same as ρ�p xn. Simply choose d = ρ (π0p xn). �

Now, we can prove the analogue of Lemma 8.6:

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#D2
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#preds
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#I2
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLEnv
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLEnv_henkin_env

8.2. Translating First-Order Models into Henkin Models 57

Lemma 8.12 For all first-order environments ρ and second-order formulas ϕ it holds that

M, ρ �1 ϕ
? ↔ M�, ρ� �2 ϕ.

Proof We show the stronger claim

∀ρ1ρ2π. (∀x. ρ2,i x = ρ1 (πi x))

→ (∀xnv. ρ2,p xn v↔ AppIn(ρ1(πp xn) :: v))

→ (M, ρ1 �1 ϕ
?
π ↔M�, ρ2 �2 ϕ)

by induction on ϕ, which trivially suffices:

• If ϕ = P v, we have ϕ?
π = P v? and need to show PI Jv?πKMρ1 ↔ PI JvKM�ρ2 . It

suffices to prove

∀ρ1ρ2π. (∀x. ρ2,i x = ρ1 (πi x))→ toIndi Jt?πKMρ1 = JtKM
�

ρ2

for all terms t by induction on t. This implies Jv?πKMρ1 = JvKM�ρ2 .

• If ϕ = pni v, we have ϕ?
π = Appn(xπp in :: v?) and need to show

AppIn (ρ1(πp i n) :: Jv?πKMρ1)↔ ρ2,p xn JvKM
�

ρ2
.

By assumption we have AppIn (ρ1(πp i n) :: Jv?πKMρ1)↔ ρ2,p i n Jv?πKMρ1 and again
Jv?πKMρ1 = JvKM�ρ2 like in the previous case.

• If ϕ = ∀̇iψ, we have ϕ?
π = ∀̇ψ?

↑iπ and need to show(
∀d : D.M, d · ρ1 �1 ψ?

↑iπi
)
↔ (∀d : D�.M�, d · ρ2 �2 ψ)

→ Let d : D�. Use the inductive hypothesis on the assumption instantiated
with d. The preconditions of the inductive hypothesis hold, since the
updated functions ↑i πi and ↑i πpmatch the updated environments d·ρ1
and d · ρ2.

← Let d : D. Conclude again using the inductive hypothesis.

• If ϕ = ∀̇np ψ, we have ϕ?
π = ∀̇ψ?

↑npπ and need to show(
∀d : D.M, d · ρ1 �1 ψ?

↑npπ

)
↔ (∀P : (D�)n → P.U�n P →M�, P · ρ2 �2 ψ)

→ Let P : (D�)n → P with U�n P. This means there is a d : D whose pred-
icate application behaves the same as P, i.e. P v ↔ AppIn (d :: v) for all
v. Instantiate the assumption with d and conclude with the inductive
hypothesis.

← Let d : D. Instantiate the assumption with P := λv.AppIn (d :: v). P is
trivially contained in U�n so that we can finish using the inductive hy-
pothesis.

The remaining cases are straightforward or follow in a similar way. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLForm_correct_1To2'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLForm_correct_1To2
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toFOLTerm_correct_1To2

58 Henkin Completeness: Semantic Reduction Property

8.3 Final Semantic Reduction
Nowwe can translateHenkinmodels into first-order ones and vice versa. However,
there is still the problem that the second translation only works for first-order mod-
els that have comprehension. To enforce this, we can define a theory that encodes
this property and then only consider first-order models that satisfy this theory.

Definition 8.13 Let C be the second-order theory that contains the formulas ∀̇Comprnϕ
for all n and ϕ, where the ∀̇ operation adds enough universal quantifiers such that the
resulting formula is closed.

Fact 8.14 C is enumerable if Σ is enumerable.

Proof Follows from the enumerability of formulas and numbers. �

Notice that C is a second-order theory. But if we translate it into a first-order one,
we get exactly the property we want:

Lemma 8.15 LetM by a first-order model and ρ1 a first-order environment withM, ρ �1
C?. Then M� �2 Comprnϕ for all n and ϕ.

Proof We get M�, ρ�1 �2 ∀̇Comprnϕ by Lemma 8.12. Given an arbitrary Henkin en-
vironment ρ2, we can instantiate the quantifiers with the first values from ρ2 and
replace ρ�1 with the remaining part of ρ2, yielding M�, ρ2 �2 Comprnϕ. �

This leads us to our final semantic reduction:

Theorem 8.16 (Semantic Reduction) For all second-order theories T and second-order
formulas ϕ it holds that

T �2 ϕ ↔ (T,C)? �1 ϕ
?.

Proof We show both directions separately:

→ Let M be a first-order model and ρ a first-order environment with M, ρ �1
(T,C)?. We need to prove M, ρ �1 ϕ?. By Lemma 8.12 it suffices to show
M�, ρ� �2 ϕ. Since ρ� is a Henkin environment according to Lemma 8.11 and
M� satisfies comprehension thanks to Lemma 8.15, we canuse the assumption
and only need to proveM�, ρ� �2 T. By Lemma 8.12 it suffices to showM, ρ �1
T? which holds by assumption.

← Let H be a Henkin model and ρ a Henkin environment with H, ρ �2 T. We
need to prove H, ρ � ϕ. H is not empty, since ρi contains values from the
domain. By Lemma 8.6 it therefore suffices to showH?, ρ? �1 ϕ?. Nowwe can
use the assumption and only need to prove H?, ρ? �1 (T,C)�. By Lemma 8.6
it again suffices to show H, ρ �2 T,C. Finally, H, ρ �2 T holds by assumption

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#C
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.FullSyntax.html#close
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#C_enumerable
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#constructed_henkin_model_comprehension
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#henkin_valid_iff_firstorder_valid

8.3. Final Semantic Reduction 59

and H, ρ �2 C holds because Henkin models satisfy comprehension in any
environment. �

Interestingly, if we were only interested in refuting the result from Chapter 5 for
Henkin semantics, that is to show that there exists a deduction system that is sound,
complete and enumerable, we would be finished at this point. Consider the follow-
ing deduction system:

Definition 8.17 We define T ` ′2 ϕ := (T,C)? `1 ϕ?.

Fact 8.18 ` ′2 is sound, complete and enumerable under LEM.

Proof Follows from soundness, completeness and enumerability of `1 with Theo-
rem 8.16. �

However, although fulfilling the requirements put forth in Chapter 5, ` ′2 can hardly
be considered a feasible deduction system. Themain goal of is still to show that the
natural deduction system `2 is complete. To achieve this using the reduction we
need to at least also show (T,C)? `1 ϕ? → T `2 ϕ. This will be addressed in the
next chapter.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#tprv2_derived
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#tprv2_derived_sound
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#tprv2_derived_complete
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#tprv2_derived_enumerable

Chapter 9

Henkin Completeness:
Deductive Reduction Property

After showing that second-order logic semantically reduces to first-order logic in
Chapter 8, we want to obtain the same property for the deduction system, that is

T `2 ϕ ↔ (T,C)? `1 ϕ?.

We begin with a brief overview of the proof strategy.

9.1 Overview
The backwards direction of the deductive reduction is the hardest part of the proof
and will require multiple intermediate steps. The forwards direction is easier and
again not strictly necessary to get completeness. While Nour and Raffalli show
T `2 ϕ → (T,C)? `1 ϕ? via an induction on the second-order derivation, it is also
possible to obtain this direction by soundness of `2 and completeness of `1:

Lemma 9.1 T `2 ϕ→ (T,C)? `1 ϕ? under LEM.

Proof Assume T `2 ϕ. By soundness, we have T �2 ϕ which is equivalent to
(T,C)? �1 ϕ? by Theorem 8.16. Completeness of `1 (Theorem 7.1) finally gives us
(T,C)? `1 ϕ? under LEM. �

Proving the converse direction (T,C)? `1 ϕ? → T `2 ϕ is more difficult. This is
also the point where the main idea of Nour and Raffalli comes in. They define a
backwards translation function _� : F1(Σ+)→ F2(Σ) that turns arbitrary first-order
formulas in the extended signature back into second-order formulas of the original
signature. Then, they prove the following results:

1. ϕ� turns first-order derivations into second-order ones (A `1 ϕ→ A� `2 ϕ�).

2. ϕ?� is logically equivalent to ϕ (`2 ϕ?� ↔̇ϕ).

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#first_order_prv_if_prv_C

62 Henkin Completeness: Deductive Reduction Property

Using (1) they can turn (T,C)? `1 ϕ? into (T,C)?� `1 ϕ?� which is equivalent to
T,C `2 ϕ according to (2). As `2 proves comprehension, they finally get T `2 ϕ.
This way they get around needing to do a direct induction on the initial derivation
(T,C)? `1 ϕ?, which might only work in a cut-free deduction system. Note that
their approach works, because their translation function _? keeps the structure of
the formulas unchanged, allowing for _� to be defined in a streamlined way. This is
unlike the folklore translation presented in Example 7.4, where the isIndi and isPred
symbols would be difficult to handle.

Wewill first define the backwards translation function in Section 9.2 and then show
a property similar to (1) in Section 9.3. After an intermediate step in Section 9.4,
we show property (2) in Section 9.5 and finish the deductive reduction.

9.2 Backwards Translation Function to Second-Order Logic
The difficulty in defining the backwards translation is that variables in our first-
order formulas represent individuals and predicates of all arities at the same time.
Therefore, a variable could technically be used for all of those things at once in the
same formula. Consider for example the following formula:

ϕ := ∀̇x.App0(x) ∧̇ App1(x, x)

Here, x is used as an individual as well as a nullary and unary predicate. Of course,
our forwards translation would never produce such formulas, but the backwards
translation needs to handle it nonetheless.

The intuitive idea to solve this, is to split up the different usages of x into an indi-
vidual variable x and predicate variables X0 and X1 that each get bound by their
own second-order quantifier. Then we can replace the App symbols with the actual
second-order atomic formulas:

ϕ� := ∀̇X1X0. ∀̇ x. X0 ∧̇ X1(x)

This always works, because there are only finitely many variables occurring in a
formula, so we can always add enough quantifiers such that all different usages of
them are bound.

Similarly to the forwards translation, we also need to think about how to imple-
ment _� in our de Bruijn encoding. Luckily, the usage of de Bruijn indices makes
the backwards translation actually easier to define. In our example formula ϕ, x
corresponds to the de Bruijn index 0. Since the translated variables x, X0, and X1
all live in their own scope and count de Bruijn indices independently of each other,
they all still correspond to the index 0. Therefore, xi can stay xi and Appn (xi :: v)

is turned into pni v. This also means that the backwards translation on terms is the
identity function.

9.2. Backwards Translation Function to Second-Order Logic 63

Remark 9.2 (Free Variables) A concern one might have at this point is that free vari-
ables, especially the ones translated by _?, might be treated incorrectly by this approach (see
Example 9.23). However, we will address this problem later on and present a solution to
extend the result to free variables (Section 9.5). Therefore we can pretend for now that all
of the formulas are closed.

So in general, in order to define (∀̇ϕ)� for some formulaϕ, we first calculateϕ� and
then need to add enough quantifiers such that all usages of the de Bruijn index 0 are
covered. An observation that eases themechanization is thatwe can always add the
individual quantifier ∀̇, even if the individual variable 0 is not used in ϕ�, because
unused quantified variables do not change the meaning of the formula. Similarly,
we can add arbitrarily many predicate quantifiers of increasing arity as long as
the ones that are actually used are present. Over-approximating this number of
quantifiers makes the mechanization simpler since we do not need to bother with
precisely finding out for which arities the index 0 is unbound in ϕ�. Instead, we
find a boundon the arities of predicate variables that occur anywhere in the formula
and simply add quantifiers for each arity below this bound:

Definition 9.3 (Arity Bounds) We say b is a bound on the arities occuring in ϕ, if all
predicate variables in ϕ have a smaller arity than b. We write this as sup |ϕ| 6 b which is
defined by sup |pni v| 6 b := n < b and the remaining cases being obvious.

We write sup |ϕ| for the lowest arity bound on phi. It is defined by sup |pni v| := Sb and
sup |P v| := 0. The remaining cases are defined in the obvious way.

Fact 9.4 sup |ϕ| is correct, i.e. it computes an arity bound for all ϕ.

Proof By induction on ϕ. �

Definition 9.5 (Predicate Closing Operation) We define ∀̇<np ϕ recursively by

∀̇<0p ϕ := ϕ ∀̇<Snp ϕ := ∀̇np ∀̇<np ϕ.

We also define ∃̇<np ϕ in the same way and write ∇̇<np as a placeholder for both cases.

Now, we can formally define (∀ϕ)� := ∀̇< sup |ϕ�|
p ∀̇ϕ�.

Remark 9.6 (Function Quantifiers) We want to illustrate why the approach of Nour
and Raffalli would not directly work for function quantifiers. If we look the at the formula

ψ := ∀̇x. funcApp1(x, x) ≡ y

we could similarly translate it to

ψ� := ∀̇ F1. ∀̇ x. F1(x) ≡ y.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#arity_bounded_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#find_arity_bound_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.SOL.html#find_arity_bound_p_correct
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#close_p

64 Henkin Completeness: Deductive Reduction Property

But in a derivation it could happen that y is substituted with funcApp2(x, x, x). In the
original formula, this would result in ∀x. funcApp1(x, x) ≡ funcApp2(x, x, x), in which all
occurrences of x are still bound to the single first-order quantifier at the beginning. How-
ever, if we correspondingly substituted y with F2(x, x, x) in ψ�, we would have that F2 is
unbound. So the problem with function quantifiers is that substitutions can introduce ap-
plications of function variables with arities that did not occur in the formula before and
therefore are not bound, which changes the meaning of the statement.

This problem could potentially be fixed by finding a bound on the arity of substitutions oc-
curring in the derivation A `1 ϕ we are interested in and adding quantifiers until all of
them are covered. But this approach would be very tedious to mechanize as it introduces a
dependency between the derivation and the translation function. Therefore, we only con-
sider F2 for the translation.

The only non-trivial case of the backwards translation still missing is what happens
if the first argument of App is not a variable, but an application F v of some func-
tion symbol F : FΣ. This case is generally problematic, as functions only return
individuals and their output should not be interpreted as a predicate. Nour and
Raffalli treat this as an error case and simply translate it into the formula ⊥̇. For
reasons discussed later (see Remark 9.17), we slightly diverge from their approach
and add a special predicate symbol ⊥̇n to the signature that represents falsity. We
then define (Appn(t :: v))� := ⊥̇n v�, if t is not a variable. This also means that
the backwards translation does not end up in the initial signature, but the initial
signature extended with those falsity symbols:

Definition 9.7 We obtain the extended signature Σ⊥ by adding n-ary predicate symbols
⊥̇n for each n : N.

In Section 9.4 we present a technique to go from Σ⊥ back to Σ.

Remark 9.8 (Choice of Error Representation) Onemightwonderwhywe botherwith
encoding the error cases in the formula itself. The usual approach would be to instead use
an option type for the backwards translation function and handle errors this way. However,
consider that erroneous formulas can appear in a proof `1 ϕ, even if ϕ itself is valid. This
would make it impossible to prove property (1) with an ordinary induction on the deriva-
tion. One possible solution might be to obtain a cut-free derivation, but we choose to stay
with the approach by Nour and Raffalli, such that ϕ� is defined on all formulas ϕ.

In summary, we define the backwards translation as follows:

Definition 9.9 (Backwards Translation Function) The backwards translation func-

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#ExtendedPreds
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLForm

9.3. Translating First-Order Derivations 65

tion _� : F1(Σ+)→ F2(Σ⊥) is recursively defined by

⊥� := ⊥̇
(Appn (xi :: v))

� := pni v

(Appn (F v :: _))� := ⊥̇n v

(P v)� := P v

(ϕ �̇ψ)� := ϕ� �̇ψ�

(∇̇ϕ)� := ∇̇< sup |ϕ|�

p ∇̇ϕ�

9.3 Translating First-Order Derivations
In this section we want to show that our backwards translation function allows us
to turn first-order derivations into second-order ones, that is

A `1 ϕ→ A� `⊥2 ϕ�.

Wewrite `⊥2 to highlight the fact that the backwards translation extends the signa-
ture with falsity symbols that can also occur in the derivation.1

The proof will be via an induction on the first-order derivation A `1 ϕ. While
most cases are trivial, the challenge lies in the quantifier rules. Since the proof is
fairly technical, we first want to give some intuition on how the quantifier cases are
handled:

Example 9.10 (All Elimination) Consider the first-order formula ∀̇x.ϕ with

ϕ := App1(x, y) ∧̇ App2(x, y, y) ∧̇ P (x).

The translation (∀̇x.ϕ)� is given by

(∀̇x.ϕ)� = ∀̇X2X1X0. ∀̇x. X1(y) ∧̇ X2(y, y) ∧̇ P(x).

Now, suppose a first-order derivation instantiates x with a term t, resulting in

ϕ[t] = App1(t, y)∧ App2(t, y, y)∧ P (t).

To simulate this in a second-order derivation, we would need to instantiate all variables x
got turned into by the translation, namely X2, X1, X0, and x, resulting in a substitution of
shape (ϕ�)[?]2p [?]1p [?]0p [?]. The key insight is, that we want those substitutions to fulfill

(ϕ�)[?]2p [?]1p [?]0p [?] = (ϕ[t])�

such that the inductive hypothesis can be used. Recall, that the formula (ϕ[t])� evaluates to
depends on the shape of t:

(ϕ[t])� = Z1(y) ∧̇ Z2(y, y) ∧̇ P (t
�) if t is a variable z

(ϕ[t])� = ⊥̇1(y) ∧̇ ⊥̇2(y, y) ∧̇ P (t�) if t is not a variable

Therefore, we should substitute Xi with Zi if t is a variable z, and with ⊥̇i otherwise. The
individual x should be replaced with t�. Performing those instantiations allows us to deduce
A� `⊥2 (ϕ[t])� from A� `⊥2 (∀x.ϕ)�.

1In Section 9.4 we develop a technique to remove those symbols.

66 Henkin Completeness: Deductive Reduction Property

Next, we want to transport this intuition from the example to our formal de Bruijn
encoding. We again start with a first-order formula ∀̇ϕ where the quantifier will
be instantiated with a term t. Translating ∀̇ϕwill split up the quantifier into many
different second-order quantifiers:

(∀̇ϕ)� = ∀̇<np ∀̇ϕ� = ∀̇n−1p ... ∀̇0p ∀̇ϕ� where n = sup |ϕ|

To simulate the instantiationwith t, we again apply the all elimination rulemultiple
times resulting in substitutions of shape

(ϕ�)[?]n−1p ... [?]0p [?]

To allow for more compact notation, we define an operation ϕ[σ]<np to combine
those substitutions:

Definition 9.11 (Combining Substitutions) We write ϕ[σ]<np for a predicate substi-
tution σ : N → ∀n.Pn that is simultaneously applied to all variables with arities smaller
thann. Similarly,ϕ[σ]>np describes a substitution that is applied to all variables with arities
greater or equal to n. Finally, we write ϕ[σ]p for a substitution that affects variables of all
arities.

This allows us to write (ϕ�)[?]<np [?]. To fill in the blanks, we can use the intuition
from the example and look at whether t is a variable or not. Tomake this more gen-
eral, we define the backwards translation of first-order substitutions into second-
order ones:

Definition 9.12 (Backwards Translation of Substitutions) We turn first-order sub-
stitutions σ : N→ T into a second-order individual substitutions σ�i : N→ T and predicate
substitutions σ�p : N→ ∀n.Pn with

σ�i x := (σx)� σ�p xn :=

{
pni if σx = xi
⊥̇n otherwise

Notice how σ�p effects predicates of all arities. Using this, we can turn the first-order
substitution of t into the second-order substitutions we were looking for:

(ϕ�)[(t)�p]
<n
p [(t)�i]

Finally, recall that n is an arity bound of ϕ. This means that ϕ does not contain
any predicate variables with arities greater or equal to n. Therefore, the bounded
substitution [·]<np effects all variables anyway, sowe can just aswell drop the bound:

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#subst_all_below_ar_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#subst_all_from_ar_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#subst_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLSub_i
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLSub_p

9.3. Translating First-Order Derivations 67

Fact 9.13 Let b be an arity bound of a formula ϕ. It holds that

1. ϕ[σ]<bp = ϕ[σ]p. 2. ϕ[σ]>bp = ϕ.

Proof It suffices to prove ∀στ. (∀xn. n < b → σxn = τ xn) → ϕ[σ]p = ϕ[τ]p by
induction on ϕ. �

Thus, we have (ϕ�)[(t)�p]<np [(t)�i] = (ϕ�)[(t)�p]p[(t)
�
i]. Themain task now is to verify

that this really simulates the substitution of t, in other words, we have to show

(ϕ[t])� = (ϕ�)[(t)�p]p [(t)
�
i],

as this allows us to use the inductive hypothesis. To achieve this, we will prove the
more general lemma ∀σ. (ϕ[σ])� = (ϕ�)[σ�p]p [σ

�
i], stating that we can move arbi-

trary substitutions out of the backwards translation by splitting it up into predicate
and individual substitutions.

But first, we need some additional lemmas to characterize the behaviour of the
predicate closing operation under substitutions:

Fact 9.14 (Substitution of Closing Operation) Writing p0 · ↑σ as notation for the
substitution λxn. (pn0 · ↑nσ) xn it holds that:

1. (∀̇<np ϕ)[σ] = ∀̇<np ϕ[σ]

2. (∀̇<np ϕ)[σ]p = ∀̇<np ϕ[p0 · ↑σ]<np [σ]>np

3. sup |ϕ| 6 b→ (∀̇<bp ϕ)[σ]p = ∀̇<bp ϕ[p0 · ↑σ]p

The same properties also hold for ∃̇<np .

Proof We show (1) and (2) by induction on nwith σ generalized. (3) follows from
(2) with Fact 9.13. �

Fact 9.15 (Arity Bounds of Substituted Formulas)

1. sup |ϕ[σ]| = sup |ϕ| 2. sup |ϕ[σ]p| = sup |ϕ|

Proof By induction on ϕwith σ generalized. �

Now, we can prove our substitution lemma:

Lemma 9.16 We canmove first-order substitutions out of the backwards translation func-
tion by splitting them up into an individual and a predicate substitution:

(ϕ[σ])� = (ϕ�)[σ�p]p[σ
�
i]

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#subst_all_below_ar_bounded
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#subst_all_from_ar_bounded
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#subst_ext_p_arity_bounded
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#close_p_subst_i
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#close_p_subst_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#close_p_subst_p_bounded
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#find_arity_bound_p_subst_i
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Subst.html#find_arity_bound_p_subst_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLForm_subst

68 Henkin Completeness: Deductive Reduction Property

Proof By induction onϕwith σ generalized. We only discuss the interesting cases:

• If ϕ = Appn (t :: v), the translation depends on whether t is a variable:

– If t is not a variable, the claim reduces to ⊥̇n v = ⊥̇n v.

– If t = xi then we have to show (Appn(σ i :: v[σ]))� = (σ�p i n) v which
again depends on whether σ i is a variable:

∗ If σ i is not a variable, we have (Appn(σ i :: v[σ]))� = ⊥̇n v, but also
σ�p i n = ⊥̇n.

∗ If σ i = xj, we have (Appn(σ i :: v[σ]))� = pnj v, but also σ�p i n = pnj .

We can see that the substitution σ�p matches the behaviour of _� with
regards to the falsity predicate.

• If ϕ = ∀̇ϕ, we have to show

∀̇< sup |ϕ[x0 ·↑σ]�|
p ∀̇ϕ[x0 · ↑σ]� =

(
∀̇< sup |ϕ�|
p ∀̇ϕ�

)
[σ�p]p [σ

�
i].

By Fact 9.14 we have(
∀̇< sup |ϕ�|
p ∀̇ϕ�

)
[σ�p]p [σ

�
i] = ∀̇

< sup |ϕ�|
p ∀̇ϕ�[p0 · ↑σ�p]p [x0 · ↑σ�i].

Also, sup |ϕ[x0 · ↑σ]�| = sup |ϕ�| by the inductive hypothesis and Fact 9.15. It
only remains to show ϕ[x0 · ↑σ]� = ϕ�[p0 · ↑σ�p]p [x0 · ↑σ�i]. By the inductive
hypothesis we haveϕ[x0 ·↑σ]� = ϕ�[(x0 ·↑σ)�p]p [(x0 ·↑σ)�i]which extensionally
behaves the same as the substitutions p0 · ↑σ�p and x0 · ↑σ�i . �

Remark 9.17 (Necessity of the Falsity Predicates) The App case in this proof illus-
trates why we do not use Nour and Raffalli’s approach of replacing invalid formulas with
⊥̇. Imagine that we have a formula ϕ := Appn (xi :: v). If we applied a substitution σ to
ϕ that replaces xi with a term that is not a variable, we would trigger the error case upon
translation. Nour and Raffalli would then set ϕ[σ]� = ⊥̇. However, if we first translated
ϕ to ϕ� = pni v we would have no chance to turn this into ⊥̇ through a second-order sub-
stitution: No matter what we substituted afterwards, we would still end up with an atomic
formula. Therefore, Lemma 9.16 can only be proven if we have an error value that can get
introduced by a substitution.

Nour and Raffalli solve this by allowing substitutions that replace whole atomic formulas.
They would write this as ϕ�[x := λv. ⊥̇] = ⊥̇. But since substitutions like this are not
available in our setting, this would not work directly. On the other hand, it is probably
possible to simulate those substitutions as

ψ[x := λv. P v] ∼ ∃̇P ′. (∀̇x1...xn. P ′(x1, ..., xn) ↔̇ P(x1, ..., xn)) ∧̇ψ[x := P
′]

9.3. Translating First-Order Derivations 69

and obtain P ′ through the comprehension rule. This is essentially an inlined version of the
argument we will use in Section 9.4 to remove the falsity symbols from derivations. The
benefit of splitting it up the way we did, is that it allows us to prove Lemma 9.16 in this
general way and slightly reduce the complexity of the main proof.

Next, we want to give some intuition on the treatment of the introduction of uni-
versal quantifiers:

Example 9.18 (All Introduction) Consider again the first-order formula ∀̇ϕ with

ϕ = App1(x, y) ∧̇ App1(x, y, y) ∧̇ P (x).

Recall that the translation (∀̇ϕ)� of is given by

(∀̇ϕ)� = ∀̇X2X1X0. ∀̇x. X1(y) ∧̇ X2(y, y) ∧̇ P(x).

While the first-order proof of ϕ introduces the single variable x, the second-order proof of
ϕ� needs to apply the introduction rule multiple times to introduce all quantified variables
x got turned into. The remaining obligation X1(y) ∧̇X2(y, y) ∧̇ P(x) should be handled by
the inductive hypothesis.

While this seems straightforward, performing the same argument in our de Bruijn encoding
is more tricky. There, introducing variables leads to shifts in the context, which can be
problematic. For example, after introducing the quantifiers, we would be left with

(A�)[↑]<3p [↑] `⊥2 ϕ�

However, the inductive hypothesis would be

(A[↑])� `⊥2 ϕ�.

Importantly, we have (A�)[↑]<3p [↑] 6= (A[↑])� since A can contain predicates with ari-
ties greater than 2. One possible solution would be to apply the substitution [↑]>3p using
WeakSp which would not effect ϕ�, but make (A�)[↑]<3p [↑] [↑]>3p = (↑ A)�.

Instead, we chose to use the named version of all introduction from Lemma 3.21 that does
not introduce shifts. We substitute the formula with a fresh index i and leave the context
untouched:

A `⊥2 (ϕ�)[pi]
<3
p [xi]

We can then finish the proof by bringing the inductive hypothesis in a similar shape.

The following fact shows how the predicate closing operation can be proven and
what can be derived from it. As discussed in the example, we use named variants
of all introduction and existential elimination:

70 Henkin Completeness: Deductive Reduction Property

Fact 9.19 (Derivations with Closing Operation) The following rules are admissible
for `2:

A ` ϕ[pi]p pi 6∈ A,ϕ sup |ϕ| 6 bAllI?p
A ` ∀̇<bp ϕ

A `2 ∀̇<bp sup |ϕ| 6 b
AllE?

p
A `2 ϕ[P]p

A `2 ϕ[P]p → A sup |ϕ| 6 bExI?p
A `2 ∃̇<bp ϕ

A `2 ∃̇<bp ϕ ϕ[pi]p :: A `2 ψ pi 6∈ A,ϕ,ψ sup |ϕ| 6 b
ExE?

p A `2 ψ

where P : ∀n.Pn is a family of predicates for each arity and pi inidcates the predicate family
λn. pni .

Proof We discuss the different rules separately.

1. Since b is an arity bound it suffices to show A `2 ϕ[pi]<bp → A `2 ∀̇<bp ϕ

according to Fact 9.13. We perform an induction on b with ϕ generalized. If
b = 0, we have ϕ[pi]<0p = ϕ. If b = Sn, we use the (AllI ′p) rule and have to
show A `2 (∀̇<np ϕ)[pi]p. Follows by Fact 9.14 and the inductive hypothesis.

2. Since b is an arity bound,we can assumeA `2 ϕ[P]<bp → A `2 ∀̇<bp ϕ according
to Fact 9.13. We perform an induction on b with ϕ generalized. If b = 0, we
have ϕ[P]<0p = ϕ. If b = Sn, we use the (AllEp) rule on the assumption to
obtain A `2 (∀̇<np ϕ)[P]p. Then A `2 ϕ[P]<Snp follows by Fact 9.14 and the
inductive hypothesis.

3. Similar to (2).

4. Similar to (1). �

Now, we can finally perform the translation of the first-order derivation:

Theorem 9.20 A `1 ϕ→ A� `⊥2 ϕ� for all A and ϕ.

Proof We perform an induction on the first-order derivation A `1 ϕ. We only
discuss the cases of all introduction and elimination. The existential quantifier rules
are similar and the remaining cases are trivial.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#close_p_AllI_nameless'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#close_p_AllE
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#close_p_ExI
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#close_p_ExE_nameless'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#prv1_to_prv2

9.4. Removing the Falsity Predicates 71

(AllI) In the case of all introduction we get the inductive hypothesis (A[↑])� `⊥2 ϕ�
and have to show A� `⊥2 (∀̇ϕ)�. We start by removing the shift from the
inductive hypothesis. For this we use (WeakSp) and (WeakS) which gives
us

(A[↑])�[(xi)�p]p [(xi)�i] `⊥2 (ϕ�)[(xi)
�
p]p [(xi)

�
i].

Using Lemma 9.16 we can simplify this to

A� `⊥2 (ϕ�)[(xi)
�
p]p [(xi)

�
i].

By definition, the goal reduces to A� `⊥2 ∀̇
< sup |ϕ|
p ∀̇ϕ�. Using (AllI?p) and

(AllI ′) it then suffices to show A� `⊥2 (ϕ�)[pi]p [xi] for an index i that is un-
used inA� andϕ�. Since (xi)�p corresponds to the substitution [pi]p, and (xi)

�
i

to substituting xi, we are finished.

(AllE) In the case of all elimination we get the inductive hypothesis A� `⊥2 (∀̇ϕ)�
and have to show A� `⊥2 (ϕ[t])�. If t is a variable xi, then set P := λn. pni .
Otherwise, set P := λn. ⊥̇n. Using (AllE?

p) with P := (t)�p as well as (AllE)
on the inductive hypothesis gives us A� `2 (ϕ�)[(t)�p]p [(t)

�
i] which is equal

to our goal by Lemma 9.16. �

9.4 Removing the Falsity Predicates
Next, we want to turn derivations `⊥2 in the signature Σ⊥ into derivations in the
initial signature Σ. The basic idea is to define a function _⊥ : F2(Σ⊥) → F2(Σ) that
replaces each application of a falsity predicate with the formula ⊥̇.

Definition 9.21 (Falsity Symbol Removal) We recursively define the function _⊥ :

F2(Σ⊥)→ F2(Σ) by

⊥⊥ := ⊥̇
(⊥̇nv)⊥ := ⊥̇
(P v)⊥ := P v

(ϕ �̇ψ)⊥ := ϕ⊥ �̇ψ⊥

(∀̇ϕ)⊥ := ∀̇ϕ⊥

(∀̇np ϕ)⊥ := ∀̇np ϕ⊥

Then, we can turnA `⊥2 ϕ into a derivationA⊥ `2 ϕ⊥ by replacing each occurrence
of the falsity symbol in the derivation with an application of the (Compr) rule.

Lemma 9.22 (Derivations without Falsity Symbol) For allϕ : F2(Σ⊥) and contexts
A it holds that

A `⊥2 ϕ→ A⊥ `2 ϕ⊥.

Proof By induction on the derivation A `⊥2 ϕ. We only discuss the case of predi-
cate all elimination. There we get a predicate P of arity n as well as the inductive
hypothesis A⊥ `2 ∀̇np ϕ⊥ and have to show A⊥ `2 (ϕ[P]np)⊥.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#removeFalsePred
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#prv_removeFalsePred

72 Henkin Completeness: Deductive Reduction Property

• If P is a variable or a symbol we can show that the goal is equivalent to A⊥ `2
(ϕ⊥)[P]np . This follows from the inductive hypothesis using the (AllEp) rule.

• If P = ⊥̇n, we obtain a variable pnf with

A⊥ `2 ∀̇x1, ..., xn. pnf (x1, ..., xn) ↔̇ ⊥̇

using the comprehension scheme and the nameless (ExE ′p) rule. We can show
`2 (ϕ[P]np)⊥ ↔̇(ϕ⊥)[pnf]

n
p such that it suffices to proveA⊥ `2 (ϕ⊥)[pnf]np which

again follows from the inductive hypothesis using the (AllEp) rule.

The remaining cases are proven in a similar way or are straightforward. �

9.5 Combining Forwards and Backwards Translation
In this section, we want to show that ϕ?�⊥ is equivalent to ϕ. To illustrate how the
different functions interact, we first want to look at an example:

Example 9.23 (Forwards and Backwards Translation) Consider the second-order for-
mula ϕ : F2(Σ) given by

ϕ := ∀̇x.Q(x, x) →̇ ∃̇P. P(x).

Translating this to first-order logic results in a formula ϕ? : F1(Σ+) that looks like

ϕ? = ∀̇x.App2(q, x, x) →̇ ∃̇p.App1(p, x).

Applying the backwards translation gives us the formula ϕ?� : F2(Σ⊥) with

ϕ?� = ∀̇X2X1X0. ∀̇x.Q(x, x) →̇ ∃̇P1P0. ∃̇p. P1(x).

A first observation is that the backwards translation did not trigger the error case. In fact,
we can convince ourselves that any formulaϕ? produced by the forwards translation is well-
formed, i.e. has variables as the first argument of the App symbol. Therefore, ϕ?�⊥ will look
exactly like ϕ?� except that it lives in the original signature, in other words ϕ?�⊥ : F2(Σ).

Also notice how the variable x got split up into multiple second-order variables but only
the original variable x is bound. Similarly, P got split up, but only the unary predicate
variable P1 is bound, corresponding to the original variable P in ϕ. We can see that in
effect, translating to first-order logic and back only adds a bunch of unused quantifiers.
Therefore it should be intuitive that the resulting formula is equivalent to ϕ.

One might even have hope to show ϕ?�⊥ = ϕ by more carefully defining _� such that
the number of quantifiers are not over-approximated. But besides being very unpleasant
to mechanize, Nour and Raffalli claim that this would not work in general. Consider the
formula ∀̇R3. ϕ and notice that the predicate variable R3 is not used inϕ. After turning this
into a first-order quantifier ∀̇r.ϕ?, the backwards translation has no way of knowing that

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#replace_FalsePred_subst

9.5. Combining Forwards and Backwards Translation 73

r was a ternary relation variable as it is unused. Thus we cannot end up with the initial
formula in general.

Finally, we need to point out that the translation with named binders above is not entirely
accurate. Notice how we translated the unbound variable Q into the first-order variable
q and then conveniently back into Q. In the actual translation, the situation is different.
There, Q is represented by some de Bruijn index i. The first-order translation uses its π0
functions to replace i with π0p i 2. Since the backwards translation preserves the indices,
what we end up with no longer represents the same variable. This is the issue hinted at
before in Remark 9.2. To solve it, we need to modify the backwards translation such that it
turns π0p i 2 back into i.

The key to solving the problems with free variables is the insight that we can sim-
ulate the initial choice of π functions with a substitution:

Lemma 9.24 (Simulate π through Substitutions) For all ϕ and π it holds that

1. (ϕ?
π)
� = (ϕ?

λx.x,πp
)�[λi. xπi i]

2. (ϕ?
π)
� = (ϕ?

πi,λxn.x
)�[λin. pnπp in]p

Proof Both properties are shown by induction on ϕ. We only discuss two cases of
(2) since the other ones are proven similarly or are straightforward:

• If ϕ = pni v, we have to show

pnπp in v
?
πi

= (pni v
?
πi
)[λxn. pnπp xn]p.

As the substitution replaces pni with pnπp in this holds trivially.

• If ϕ = ∀̇ψ, we have to show

∀̇
< sup |(ψ?

↑iπ
)�|

p ∀̇ (ψ?
↑iπ)

�

=(
∀̇
< sup |(ψ?

↑iπ,↑i(λxn.x)
)�|

p ∀̇ (ψ?
↑iπi,↑i(λxn.x))

�
)
[λxn. pnπp xn]p

Using Lemma 9.14 we move the substitution inwards, resulting in

∀̇
< sup |(ψ?

↑iπi,↑i(λxn.x)
)�|

p ∀̇ (ψ?
↑iπi,↑i(λxn.x))

�[p0 · ↑(λxn. pnπp xn)]p

Since sup |(ψ?
↑iπi,↑iπp)

�| = sup |(ψ?
↑iπi,↑i(λxn.x))

�|, we only need to show

(ψ?
↑iπi,↑iπp)

� = (ψ?
↑iπi,↑i(λxn.x))

�[p0 · ↑(λxn. pnπp xn)]p.

Using the inductive hypotheses, we can turn ↑i πp and ↑i (λxn.x) into sub-
stitutions. We can show that the resulting substitutions behave the same on
both sides. We refer to the Coq mechanization for further detail. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLForm_pos_i_to_subst
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLForm_pos_p_to_subst
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLForm_find_arity_bound_p

74 Henkin Completeness: Deductive Reduction Property

The fact that the initial π0 functions can be represented through a single substitu-
tion alsomeans thatwe can “undo” their effect by substituting the inverse functions
(π0i)

−1 and (π0p)
−1.

Definition 9.25 (Inverse π0 Functions) We define (π0i)−1, (π0p)−1 : N→ N by

(π0i)
−1 a := x for a = 〈_, x〉 (π0p)

−1 a := x for a = 〈_, 〈x, _〉〉

Fact 9.26 The inverse functions are correct:

1. ∀x. (π0i)−1 (π0i x) = x 2. ∀xn. (π0p)−1 (π0p xn) = x

Proof Immediate by the correctness of the natural pairing function. �

We modify the backwards translation function to apply this substitution:

Definition 9.27 (Extended Backwards Translation for Free Variables) We define
_ � : F1(Σ+)→ F2(Σ⊥) by

ϕ � := (ϕ�)[λxn. pn(π0p)−1 x
]p [λx. x(π0i)−1 x

].

Fact 9.28 ϕ? � = (ϕ?
λx.x,λxn.x)

� for all ϕ.

Proof Follows from Lemma 9.24 and Fact 9.25. �

Therefore, it suffices to show that (ϕ?
λx.x,λxn.x)

�⊥ is equivalent to ϕ:

Lemma 9.29 `2 (ϕ?
λx.x,λxn.x)

�⊥ ↔̇ϕ for all ϕ.

Proof We prove the stronger claim

∀πiπp. (∀x. πi x = x)→ (∀xn. πp xn = x)→ `2 (ϕ?
πi,πp

)�⊥ ↔ ϕ

by induction on ϕ:

• If ϕ = P v, we have to show `2 P v?πi ↔ P v. It suffices to prove ∀π. (∀x. πi x =

x)→ t?π = t for all t by induction on t.

• If ϕ = pni v, we have to show pnπp in v
?
π ↔ pni v. By assumption we have

pnπp in = pni and v?πi = v like in the previous case.

• If ϕ = ∀̇ψ, we have to show

`2
(
∀̇
< sup |(ψ?

↑iπ
)�|

p ∀̇ (ψ?
↑iπ)

�
)⊥
↔ ∀̇ψ.

We can show that the falsity translation can be moved inwards:

`2
(
∀̇
< sup |(ψ?

↑iπ
)�|

p ∀̇ (ψ?
↑iπ)

�⊥
)
↔ ∀̇ψ

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#initial_pos_i_inv
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#initial_pos_p_inv
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#initial_pos_i_inv_correct
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#initial_pos_p_inv_correct
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLForm'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLForm'_correct
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLForm_equiv
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLTerm_id
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLTerm_id
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#removeFalsePred_close_p

9.5. Combining Forwards and Backwards Translation 75

→ Recall from the intuition in Example 9.23 that all the quantified predi-
cate variables are unused and only the original individual quantifier is
bound. Here, we can also see why this is the case: The forwards transla-
tion in the assumption uses ↑i πp which shifts every predicate variable.
But this also means that no variable with index 0 can remain. Thus, the
predicate quantifiers are unused.

Therefore, we can instantiate them with an arbitrary value, for example
the index 0. This is done using (AllE?

p), which gives us ∀̇ (ψ?
↑iπ)

�⊥[p0]p,
which is equal to ∀̇ ((ψ?

↑iπ)
�[p0]p)

⊥.

But this substitution now “undoes” the predicate shifts. Using Lemma
9.24, we can easily show that

(ϕ?
↑iπ)

�[P]p = (ϕ?
(↑iπi),πp)

�.

This leaves us with ∀̇ (ψ?
(↑iπi),πp)

�⊥. Since πi x = x for all x implies ↑i
πi x = x, we can use the inductive hypothesis to show that this is equiv-
alent to ∀̇ψ.

← We can use (AllI?p) to introduce the predicate quantifiers, which leaves
us to prove ∀̇ (ψ?

↑iπ)
�⊥[pi]p for a fresh index i. Again, the substitution

reverts the shift so that it suffices to prove ∀̇ (ψ?
(↑iπi),πp)

�⊥, which by the
inductive hypothesis is equivalent to ∀̇ψ.

The cases for predicate and existential quantifiers are handled similarly The other
cases are straightforward. �

Corollary 9.30 `2 ϕ? �⊥ ↔ ϕ for all ϕ.

Proof Follows from Fact 9.28 and Lemma 9.29. �

Wecan also extend the result from section 9.3 to the updated backwards translation:

Corollary 9.31 A `1 ϕ→ A �⊥ `2 ϕ �⊥ for all ϕ and A.

Proof Follows from Lemma 9.22, (WeakS) and Theorem 9.20. �

This finally gives us the backwards direction of our deductive reduction:

Theorem 9.32 (Deductive Reduction) T `2 ϕ ↔ (T,C)? `1 ϕ? for all T and ϕ
under LEM.

Proof → This direction has been proven in Lemma 9.1.

← Assume (T,C)? `1 ϕ?. By Corollary 9.31 we get (T,C)? �⊥ `1 ϕ? �⊥ and obtain
(T,C) `2 ϕ by Corollary 9.30. Since `2 C, we get T `2 ϕ. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#removeFalsePred_subst_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLForm_pshift_subst_p
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#toSOLFOLForm_equiv'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#prv1_to_prv2'
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#prv_iff_firstorder_prv_C

76 Henkin Completeness: Deductive Reduction Property

T �2 ϕ

(T,C)? �1 ϕ?

(T,C)? `1 ϕ? (T,C)? � `⊥2 ϕ? � (T,C)? �⊥ `2 ϕ? �⊥

T,C `2 ϕ

T `2 ϕ

Theorem 8.16

Theorem 7.1
(LEM)

Corollary 9.31 Lemma 9.22

Corollary 9.30

`2 proves C

Theorem 6.4

Theorem 9.32
(LEM)

Figure 9.1: Summary of the reduction results.

9.6 Summary
Figure 9.1 summarizes the results regarding the reduction. While we focused on
completeness, it is also possible to interpret the reduction in the context of synthetic
computability theory. Since our translation _? is an ordinary function, we can view
Theorem 8.16 and Theorem 9.32 asmany-one reductions fromfirst- to second-order
validity (in Henkin semantics) and provability.

Overall, we believe that the semantic reduction in Chapter 8 is quite elegant and
concise, whereas the deductive part in this chapter is fairly complicated and sig-
nificantly more difficult to mechanize. If one would only be interested in obtaining
completeness, it would probably be easier to formalize the usual Henkin-style com-
pleteness proof. However, the reduction approach is more powerful as it gives us
the deeper insight that second-order logic with Henkin semantics is essentially the
same as first-order logic. Additionally, the reduction not only yields completeness,
but as we will see in the next chapter, it also allows us to transport many other
meta-theoretic properties from the first-order setting.

Chapter 10

Consequences of the Reduction

Now that the reduction is fully verifiedwe can use it to obtain second-orderHenkin
completeness from the first-order completeness theorem (Section 10.1). While the
focus of the previous chapters lied on completeness, it can also be used to trans-
port many other properties from first-order logic. As an example we will derive
the model existence properties for Henkin semantics that we refuted for standard
semantics in Chapter 4 (i.e. compactness in Section 10.2 and Löwenheim-Skolem
in Section 10.3).

10.1 Completeness
We derive the completeness of `2 from the completeness of `1:

Theorem 10.1 If `1 is complete, then so is `2 for Henkin semantics.

Proof Follows by Theorem 8.16 and Theorem 9.32. �

Using the mechanization of Forster, Kirst, and Wehr [15], we could then obtain
completeness. However, we have not merged the developments as part of this the-
sis. Therefore this corollary is not mechanized:

Corollary 10.2 (Completeness) `2 is complete under LEM.

10.2 Compactness
Compactness follows as a classical consequence of completeness:

Theorem 10.3 (Compactness by Completeness) If first-order logic is complete, then
second-order logic with Henkin semantics is compact under LEM.

Proof Let T be a second-order theory. Assume that all finite contexts A ⊆ T have
a model. Since we assume LEM we can argue classically. Suppose there were no
model of T. Then T �2 ⊥̇ and by completeness (Theorem 10.1) T `2 ⊥̇. Hence,
there is also a finite context A ⊆ T with A �2 ⊥̇ any by soundness A `2 ⊥̇. This is
not possible, since by assumption A ⊆ T has a model. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#Completeness
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#Compactness_by_Completeness

78 Consequences of the Reduction

This is essentially the same proof that allowed us to conclude infinitary incomplete-
ness in Theorem 4.13. However, we can also directly derive Henkin compactness
from first-order compactness, only requiring the semantic part of the reduction:

Lemma 10.4 (Model Existence Reduction) Let T be a second-order theory. Then

1. If T has a Henkin model then T? has a first-order model.

2. If (T ∪ C)? has a first-order model then T has a Henkin model.

Proof We discuss both properties:

1. Let H and ρ be a Henkin model and environment with H, ρ �2 T. Then
H?, ρ? �1 T? by Lemma 8.6.

2. Let M and ρ be a first-order model and environment with M, ρ �1 (T ∪ C)?.
Then M�, ρ� �2 T ∪ C by Lemma 8.12 and thus M�, ρ� �2 T.

Theorem 10.5 (Compactness by Reduction) If first-order logic is compact, then so is
second-order logic with Henkin semantics.

Proof Let T be a second-order theory. Assume that all finite contexts A ⊆ T have a
Henkin model. To show that T has a Henkin model it suffices to show that (T ∪ C)?
has a first-order model by Lemma 10.4. By first-order compactness it is enough to
verify that every finite A? ⊆ (T ∪ C)? has a first-order model. We split this context
intoA? = (AT)

?++(AC)
? withAT ⊆ T andAC ⊆ C. By assumption, we know thatAT

has a Henkin model H which gives us a first-order model H? using Lemma 10.4.
Since by construction, H? satisfies comprehension it is also a model of (AT)

? ++

(AC)
? = A?. �

10.3 Löwenheim-Skolem
Instead of separating the Löwenheim-Skolem theorems into an upward and down-
ward direction, we use a version that combines both of them into one statement.
That is, we say a logic has the Löwenheim-Skolem property if every theory with
an infinite model has models of every infinite cardinality. This is equivalent to the
more common upward and downward formulation.

Theorem 10.6 (Löwenheim-Skolem) If first-order logic has the Löwenheim-Skolem
property, then so does second-order logic with Henkin semantics.

Proof Let T be a second-order theory with an infinite Henkin model H. We need
to show that there is also a model for an arbitrary cardinality. It suffices to find a
first-order model M of (T ∪ C)? with this cardinality since the Henkin model M?

preserves this cardinality. Thus, by the first-order Löwenheim-Skolem property it
suffices to show that (T∪C)? has some infinite first-ordermodel. SinceH? is infinite
and also satisfies (T ∪ C)?, we are finished. �

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#theory_has_firstorder_model_if_theory_has_henkin_model
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#theory_has_henkin_model_if_theory_has_firstorder_model
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#Compactness
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL.html#3d3e9c32200cf714f3fac5f882992838

10.3. Löwenheim-Skolem 79

We used this combined statement since it allows for an easier proof. Showing the
upwards direction on its own using the reduction would be more complicated.
Turning a Henkin modelH into a first-order modelH? can increase the cardinality,
since the translated domain D? also contains the predicate universe U (see Defi-
nition 8.1). Thus, one might need to “go down” first in order to end up with the
desired cardinality. Our approach sidesteps this issue and produces a result just as
strong.

Finally, this result also indicates that PA2 is not categorical for Henkin semantics.
Also it becomes clear that Henkin semantics does no permit a categorical axioma-
tisation of the natural numbers in general.

Chapter 11

Discussion

We conclude this thesis with a brief summary of our results in Section 11.1 and
discuss related (Section 11.2) and future work (Section 11.3).

11.1 Summary
We have formalized various well-known results regarding two different semantics
of second-order logic that behave very differently on a meta-logical level. On the
one hand, we have the standard Tarski semantics that harnesses the full power of
the second-order quantifiers by allowing them to range over any property on the
domain of discourse. This results in enough expressive power to categorically ax-
iomatise the natural numbers as seen in Chapter 4. We showed that N is the only
model of second-order Peano arithmetic, demonstrating that second-order stan-
dard semantics is capable of uniquely describing infinite structures, unlike its first-
order counterpart. This lead us to conclude that second-order logic with standard
semantics is neither compact, nor does it satisfy the upward Löwenheim-Skolem
property. In Chapter 5, we used the categoricity result to show that any sound and
enumerable deduction systemmust be incomplete, including the natural deduction
system introduced in Chapter 3. We made use of a computability argument using
a reduction from the decidability of Diophantine equations which also yielded un-
decidability of satisfiability and validity in second-order logic and PA2.

On the opposite end of the spectrum lieHenkin semantics, where quantifiers do not
range over all properties, but only over a subset of them specified by the model. In
Chapters 7, 8, and 9we showed thatHenkin semanticsmake second-order logic col-
lapse to first-order logic. In particular, this means that completeness, compactness,
and the Löwenheim-Skolem theorems can be transported from first- to second-
order logic as seen in Chapter 10. The cost of obtaining those results is that Henkin
semantics sacrifice the expressivity of second-order quantification, no longer per-
mitting a categorical axiomatisation of the natural numbers.

Overall, we have seen that categoricity and completeness pull in different direc-

82 Discussion

tions; one cannot have both at the same time. Choosing standard semantics allows
for categorical axiomatizations of infinite structures at the cost of completeness and
meta-theoretic results, whereas Henkin semantics recover completeness and first-
order meta-theory at the cost of expressive power and categoricity.

We also investigated the role of function quantifiers in second-order logic. In the
classical set-theoretic meta-theory, they are simply a notational convenience and
can be reduced to predicates and vice versa. The situation is more interesting in
our setting of constructive type theory, where one must choose between interpret-
ing functions as type-theoretic functions or total and functional relations. The for-
mer approach is more natural and allows for easier mechanization, while the latter
is more faithful to the traditional set theoretic foundation. We observed that this
choice is indeed relevant as the isomorphism in Chapter 4 is not necessarily com-
putable, making the translation of type theoretic functions impossible. Of course,
altering the meta-theory by assuming unique choice would resolve those differ-
ences. All in all, we believe that while functions quantifiers are useful in certain
instances (for example see the discussion around embedding signatures into for-
mulas in Lemma 5.14), in particular the relational semantics make them difficult to
handle and complicate the development overall. Therefore, we chose not to focus
on them on paper in this thesis.

11.2 Related work
Mechanized first- and higher-order logic While we are not aware of any previ-
ous mechanizations of second-order logic, there have been many formalizations
concerned with first- or higher-order logics in various theorem provers like Is-
abelle/HOL [22, 23, 35], Mizar [4], Lean [65], and Coq [15, 32, 28, 3]. Our work
is largely based on the Coq formalization of first-order logic developed in [15] and
[32]. We adopted their major design decisions of using a syntax with de Bruijn
binders parametrized over an arbitrary signature. The second-order natural deduc-
tion introduced in Chapter 3 is also an extension of the first-order system presented
in [15]. We also want to point to the work by Kirst and Smolka [33, 34] in which
they investigate second-order ZF set theory in Coq, though not via an embedded
second-order logic, showing that the theory is categorical for equipotent models.

Synthetic computability theory The development of synthetic computability for
the type theory of Coq is due to Forster, Kirst, and Smolka [14]. Their work lays the
foundation for our synthetic analysis of incompleteness and undecidability carried
out in Chapter 5. Crucially, the synthetic undecidability of Hilbert’s tenth problem
has been verified by Larchey-Wendling and Forster [37] as part of the Coq Library
of Undecidability Proofs [12], which serves as the starting point for our own re-
ductions. The undecidability results mechanized in this thesis are also intended as
a contribution to this library.

11.3. Future Work 83

Incompleteness The synthetic account of Gödel’s incompleteness theorem used
in Chapter 5 was developed by Kirst and Hermes [31]. The initial reduction from
Hilbert’s tenth problem we use to establish undecidability of satisfiability in N is
drawn from their work. They also initially proposed the idea of using a synthetic
computability argument to obtain incompleteness results circumventing the more
tedious mechanization of explicit independent Gödel/Rosser sentences.

Sources Finally, thiswork is based on Shapiro’s [56] account of second-order logic
and the method used in Chapter 7 to reduce second- to first-order logic is due to
Nour and Raffalli [43].

11.3 Future Work
Throughout this thesis, we have used PA2 to demonstrate the ability of second-
order logic to characterize infinite structures. Wewant to remark that second-order
arithmetic and subsystems of it are also frequently used in the programme of re-
verse mathematics with some noteworthy connections to PA1. Restricting induc-
tion to first-order definable properties and comprehension to first-order properties
with second-order parameters results in a system called arithmetical comprehen-
sion (ACA0). Interestingly, ACA0 is a conservative extension of PA1, i.e. it proves
the same first-order statements as PA1 does [57]. Investigating those subsystems
and their conservativity properties would give further insight into the relationship
between first- and second-order Peano arithmetic.

Apart from the natural numbers, itwould also beworthwhile to explore other struc-
tures. For example, as Shapiro shows, the categoricity of PA2 can be used to prove
that second-order analysis is categorical [56]. This serves as an example of a theory
that only permits uncountablemodels, refuting the downward Löwenheim-Skolem
theorem. It would be interesting to investigate whether Shapiro’s construction also
works in our setting where the isomorphisms are not computable. Another ex-
ample of uncountable structures is second-order ZF set theory. Kirst and Smolka
already provide a mechanization of this fact in Coq [33] that could be transported
to our second-order logic backbone.

With regards to categoricity, there is also the notion of so called internal categoricity
due to Väänänen andWang [66, 68]. It draws from the idea that second-order logic
is able to express its own categoricity. Consider a theory T depending on a single
predicate symbol P. We can construct a second-order formula

Categ(T) := ∀̇D1D2P1P2.T(P1)D1 →̇ T(P2)
D2 →̇ ∃̇ ∼= . Iso(∼=, D1, D2, P1, P2)

where T(P1)
D1 replaces the symbol P with the variable P1 and guards all quan-

tifiers with the domain predicate D1. Then, T is categorical iff � Categ(T). The
remarkable insight is that this statement is provable in many cases (despite incom-
pleteness), for example we have ` Categ(PA2). This means that although being a

84 Discussion

meta-theoretical concept, categoricity can be written and proven at the object level,
without depending on any external set theory (or type theory in our case). Ad-
ditionally, we know that ` Categ(T) is equivalent to validity of Categ(T) in Henkin
semantics, yielding a notion of categoricity that holds for full models and inside
Henkin models. Väänänen interprets this as “a bridge between full semantics and
Henkin semantics” [67]. This would be a very interesting subject to tackle in a
future formalization.

On the mechanization side it would be useful to develop further tooling to assist
future formalization efforts in second-order logic. For example, while we did not
need to derive concrete statements in the deduction system, this would certainly
be necessary when verifying ` Categ(PA2). Constructing such derivation by hand
rule by rule would be very tedious and made even more complicated by the de
Bruijn encoding. This could be alleviated by extending the first-order proof mode
developed by Hostert, Koch and Kirst [29] to second-order logic.

While our mechanization is currently stand-alone we plan on making it compati-
ble with and integrating parts of it into the Coq Library of Undecidability Proofs.
In particular, this would make the reduction presented in Chapter 7 more acces-
sible. For example, a future mechanization of the first-order Löwenheim-Skolem
theorems based on the definitions in the library would immediately yield the same
property for second-order Henkin semantics via the argument in Chapter 10. We
believe that, in principle, the reduction can be used to transport similar first-order
properties that might be formalized in the future.

We also plan on merging the relevant first-order completeness proof by Forster,
Kirst, and Wehr [15] into our development to obtain a fully mechanized version of
Corollary 10.2. In their work, Forster, Kirst, andWehr analyse the constructiveness
of first-order completeness and particularly focus on the ∀̇, →̇, ⊥̇-fragment. While
the extension to full first-order logic used in this thesis requires LEM, they showed
that completeness for the restricted fragment is equivalent to Markov’s principle.
It might be worthwhile to investigate whether our treatment of second-order logic
and in particular the reduction to first-order logic can be altered to work in this
fragment. However, the dependency of comprehension on the existential quantifier
might serve as an obstacle for this task.

Finally, one could also investigate second-order intuitionistic Kripke models. Inter-
estingly, Nour and Raffalli [43] extend their reduction to Kripe models which al-
lows them to additionally transport intuitionistic completeness from second-order
logic. They claim that the resulting second-order Kripke models are similar to
Prawitz’s adaptation of Beth’s models [48].

Appendix A

Coq Mechanization

Working in a proof assistant turned out to be very helpful in the development of
this thesis, in particular with verifying the complex deductive reduction in Chap-
ter 9. We remark on some interesting aspects of the mechanization and give a brief
overview of its structure.

A.1 Remarks on the Mechanization
Themechanization is completely self-contained and follows the structure presented
in this thesis. We do not assume any global axioms. The usage of LEM and MP is
local to the theorems as remarked throughout the thesis. Thus, all results where
not stated otherwise are fully constructive.

Our formalization is closely related to the first-order design developed in [15] and
has similar features. As explained in Section 3.1, we parameterize the syntax over
a signature Σ. To avoid having to specify Σ for every formula, we define it as a
type class, allowing the appropriate signature to be automatically inferred based
on the context. We use an inductive type form for formulas and term for terms.
Those types also incorporate function quantifiers and variables such that most re-
sults and notions are directly formalized in terms of the FF2 and TF2 fragment. We
use predicates first_order and func_free to restrict to F1 and F2 when necessary.
The only exception is the first-order reduction. Here, we use the formalization of
first-order logic from the Coq Library of Undecidability proof in anticipation of
easing compatibility.

Coq is not able to derive a useful induction principle for terms because of the nested
occurrence of the inductive vector type. We manually prove the following induc-
tion scheme

∀P : TF2 → P. (∀i. P xi)→ (∀Fv. P v→ P (F v))→ (∀in. P v→ P (fni v))→ ∀t. P t

where P v denotes that P holds for all components of the vector v.

86 Coq Mechanization

Furthermore, the mechanization treats second-order substitution slightly different
than presented in Definition 3.7. Instead of annotating a substitution ϕ[σ]np with
an arity n and using σ : N → Pn which is more readable on paper, we employ
substitutions that affect variables of all arities at once. Hence, the formalization
uses σ : N→ ∀n.Pn. Restricting σ to a single arity can then be obtained by:

ϕ[σ]np := ϕ [λim. if pm = nq then σ im else pmi]p

This simplifies the definition of arity bounded substitution in Definition 9.11 to:

ϕ[σ]<np := ϕ [λim. if pm < nq then σ im else pmi]p

A.2 Structure of the Mechanization
We reuse some external code from the Coq Library of Undecidability proofs, in par-
ticular related to the definitions of synthetic computability presented in Chapter 2
and the formalization of first-order logic, amounting to 1157 lines of the prelimi-
naries overall. The table below summarizes the lines of code associated with each
chapter of this thesis.

Chapter Specification Proofs
2. Preliminaries 706 879
3. Syntax, Semantics & Deduction 1224 2424
4. Categoricity of PA2 554 1089
5. Incompleteness & Undecidability 185 399
6. Henkin Semantics 145 347
7. Completeness via Reduction 400 978
8. Consequences of Reduction 48 160
Total 3262 6276

Themechanization also contains an extension of the semantic reduction fromChap-
ter 8 to the full FF2 fragment, as well as the semantic part of Van Dalens reduction
from Example 7.3.

https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL_Funcs.html#lab55
https://www.ps.uni-saarland.de/~koch/bachelor/coq/SOL.Henkin2FOL_VanDalen.html#lab55

Bibliography

[1] The coq proof assistant. URL https://coq.inria.fr/. Accessed August 19
2021.

[2] Andrej Bauer. First steps in synthetic computability theory. Electronic Notes in
Theoretical Computer Science, 155:5–31, 2006. ISSN 1571-0661. Proceedings of
the 21st Annual Conference on Mathematical Foundations of Programming
Semantics (MFPS XXI).

[3] Chad E. Brown. A semantics for intuitionistic higher-order logic supporting
higher-order abstract syntax. 2014.

[4] Marco Caminati. Basic first-order model theory in mizar. Journal of Formalized
Reasoning, 3, 01 2010.

[5] Thierry Coquand and Gérard Huet. The calculus of constructions. PhD thesis,
INRIA, 1986.

[6] Thierry Coquand and Bassel Mannaa. The independence of markov’s princi-
ple in type theory. 02 2016.

[7] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-
Order Logic: A Language-Theoretic Approach. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 2012.

[8] Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the church-
rosser theorem. Indagationes Mathematicae (Proceedings), 75(5):381–392, 1972.
ISSN 1385-7258.

[9] Richard Dedekind. Was sind und was sollen die Zahlen? / von Richard Dedekind.
Vieweg, Braunschweig, 1888. doi: 10.24355/dbbs.084-200902200100-1.

[10] Andrej Dudenhefner. Undecidability of Semi-Unification on a Napkin. In
Zena M. Ariola, editor, 5th International Conference on Formal Structures for
Computation and Deduction (FSCD 2020), volume 167 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 9:1–9:16, Dagstuhl, Germany, 2020.

https://coq.inria.fr/

88 Bibliography

Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-95977-155-9.
doi: 10.4230/LIPIcs.FSCD.2020.9.

[11] Ronald Fagin. Generalized first-order spectra, and polynomial. time recog-
nizable sets. SIAM-AMS Proc., 7, 01 1974.

[12] Y. Forster, Dominique, Larchey-Wendling, Andrej, Dudenhefner, Edith
Heiter, Dominik Kirst, F. Kunze, and G. Smolka. A coq library of undecid-
able problems. 2019.

[13] Yannick Forster and Dominique Larchey-Wendling. Certified undecidability
of intuitionistic linear logic via binary stack machines and minsky machines.
CPP 2019, page 104–117, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450362221.

[14] Yannick Forster, DominikKirst, andGert Smolka. On synthetic undecidability
in coq, with an application to the entscheidungsproblem. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2019, page 38–51, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450362221.

[15] Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems
for first-order logic analysed in constructive type theory: Extended version.
Journal of Logic and Computation, 31(1):112–151, 01 2021. ISSN 0955-792X.

[16] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete formel-
sprache des reinen denkens. Halle: Verlag L. Nebart. Preface and Part, 1:47–78,
1879.

[17] Gottlob Frege. Grundlagen der Arithmetik: studienausgabe mit dem Text der Cen-
tenarausgabe, volume 366. Felix Meiner Verlag, 1988.

[18] Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathema-
tische Zeitschrift, 39:176–210, 1935.

[19] Gerhard Gentzen. Untersuchungen über das logische schließen. ii. Mathema-
tische Zeitschrift, 39:405–431, 1935.

[20] Kurt Gödel. Über die vollständigkeit des logikkalküls. na, 1929.

[21] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica
und verwandter systeme i. Monatshefte für mathematik und physik, 38(1):173–
198, 1931.

[22] John Harrison. Formalizing basic first order model theory. In Jim Grundy
and Malcolm Newey, editors, Theorem Proving in Higher Order Logics, pages

Bibliography 89

153–170, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-
540-49801-8.

[23] John Harrison. Towards self-verification of hol light. In Ulrich Furbach and
Natarajan Shankar, editors, Proceedings of the third International Joint Conference,
IJCAR 2006, volume 4130 of Lecture Notes in Computer Science, pages 177–191,
Seattle, WA, 2006. Springer-Verlag.

[24] JohnHarrison.Handbook of Practical Logic andAutomated Reasoning. Cambridge
University Press, 2009.

[25] Leon Henkin. The completeness of the first-order functional calculus. The
journal of symbolic logic, 14(3):159–166, 1949.

[26] Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81–91, 1950.

[27] Hugo Herbelin. An intuitionistic logic that proves markov’s principle. 2010
25th Annual IEEE Symposium on Logic in Computer Science, pages 50–56, 2010.

[28] Hugo Herberlin, Sunyoung Kim, and Gyesik Lee. Formalizing the meta-
theory of first-order predicate logic. Journal of the Korean Mathematical Society,
54:1521–1536, 01 2017.

[29] Johannes Hostert, Mark Koch, and Dominik Kirst. A toolbox for mechanised
first-order logic. The Coq Workshop, 2021.

[30] Neil Immerman. Descriptive complexity. Springer Science & Business Media,
2012.

[31] Dominik Kirst and Marc Hermes. Synthetic undecidability and incomplete-
ness of first-order axiom systems in coq. In ITP, 2021.

[32] Dominik Kirst and Dominique Larchey-Wendling. Trakhtenbrot’s theorem in
coq: A constructive approach to finite model theory. International Joint Confer-
ence on Automated Reasoning, 2020.

[33] Dominik Kirst and Gert Smolka. Categoricity results for second-order zf in
dependent type theory. In ITP, 2017.

[34] Dominik Kirst and Gert Smolka. Categoricity results and large model con-
structions for second-order zf in dependent type theory. Journal of Automated
Reasoning, 63:415–438, 2018.

[35] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. Self-
formalisation of higher-order logic. Journal of Automated Reasoning, 56(3):221–
259, 2016.

90 Bibliography

[36] Boris A. Kushner. Markov’s constructive analysis; a participant’s view. Theo-
retical Computer Science, 219(1):267–285, 1999. ISSN 0304-3975.

[37] Dominique Larchey-Wendling and Yannick Forster. Hilbert’s Tenth Problem
inCoq. InHermanGeuvers, editor, 4th International Conference on Formal Struc-
tures for Computation andDeduction (FSCD2019), volume 131 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 27:1–27:20, Dagstuhl, Germany,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-
107-8. doi: 10.4230/LIPIcs.FSCD.2019.27.

[38] Daniel Leivant. Higher order logic. 02 1994.

[39] Per Lindström. On extensions of elementary logic. Theoria, 35(1):1–11, 1969.

[40] Leopold Löwenheim. Über möglichkeiten im relativkalkül. Mathematische
Annalen, 76(4):447–470, 1915.

[41] Maria Manzano. Extensions of first-order logic, volume 19 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1996.

[42] Yuri Matiyasevich. Martin Davis and Hilbert’s Tenth Problem, pages 35–54.
Springer International Publishing, Cham, 2016. ISBN 978-3-319-41842-1.

[43] Karim Nour and Christophe Raffalli. Simple proof of the completeness the-
orem for second-order classical and intuitionistic logic by reduction to first-
order mono-sorted logic. Theoretical computer science, 308(1-3):227–237, 2003.

[44] Russell O’Connor. Essential incompleteness of arithmetic verified by coq.
In Proceedings of the 18th International Conference on Theorem Proving in Higher
Order Logics, TPHOLs’05, page 245–260, Berlin, Heidelberg, 2005. Springer-
Verlag. ISBN 3540283722.

[45] Christine Paulin-Mohring. Inductive definitions in the system coq rules and
properties. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda Cal-
culi and Applications, pages 328–345, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg. ISBN 978-3-540-47586-6.

[46] Lawrence C. Paulson. A mechanised proof of gödel’s incompleteness theo-
rems using nominal isabelle. Journal of Automated Reasoning, 55:1–37, 2015.

[47] Giuseppe Peano. Arithmetices principia: Nova methodo exposita. Fratres Bocca,
1889.

[48] Dag Prawitz. Some results for intuitionistic logic with second order quan-
tification rules. In A. Kino, J. Myhill, and R.E. Vesley, editors, Intuitionism
and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968, vol-

Bibliography 91

ume 60 of Studies in Logic and the Foundations of Mathematics, pages 259–269.
Elsevier, 1970.

[49] Willard V. Quine. Philosophy of logic. Harvard University Press, 1986.

[50] StephenRead. Completeness and categoricity: Frege, gödel andmodel theory.
History and Philosophy of Logic, 18(2):79–93, 1997.

[51] Fred Richman. Church’s thesis without tears. The Journal of Symbolic Logic, 48
(3):797–803, 1983.

[52] Marcus Rossberg. First-order logic , second-order logic , and completeness.
2004.

[53] Barkley Rosser. Extensions of some theorems of gödel and church. Journal of
Symbolic Logic, 1(3):87–91, 1936.

[54] BertrandRussell andAlfredN.Whitehead. Principiamathematica vol. i. 1910.

[55] Natarajan Shankar. Metamathematics, Machines and Gödel’s Proof. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1994.

[56] Stewart Shapiro. Foundations without foundationalism: A case for second-order
logic, volume 17. Clarendon Press, 1991.

[57] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in
Logic. Cambridge University Press, 2 edition, 2009.

[58] Gert Smolka. Computational type theory and interactive theorem prov-
ingwith coq. https://www.ps.uni-saarland.de/~smolka/drafts/icl2020.
pdf, 2020. Accessed July 30 2021.

[59] Simon Spies and Yannick Forster. Undecidability of higher-order unification
formalised in coq. CPP 2020, page 143–157, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery. ISBN 9781450370974.

[60] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: Reasoning
with multi-sorted de bruijn terms and vector substitutions. CPP 2019, page
166–180, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362221.

[61] Alfred Tarski. The semantic conception of truth: and the foundations of se-
mantics. Philosophy and Phenomenological Research, 4(3):341–376, 1944.

[62] Alfred Tarski and Robert L. Vaught. Arithmetical extensions of relational sys-
tems. Compositio Mathematica, 13:81–102, 1958.

[63] Amin Timany and Matthieu Sozeau. Cumulative Inductive Types In Coq.
In Hélène Kirchner, editor, 3rd International Conference on Formal Structures for

https://www.ps.uni-saarland.de/~smolka/drafts/icl2020.pdf
https://www.ps.uni-saarland.de/~smolka/drafts/icl2020.pdf

92 Bibliography

Computation and Deduction (FSCD 2018), volume 108 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 29:1–29:16, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-077-4.

[64] Dirk Van Dalen. Logic and structure, volume 3. Springer, 1994.

[65] Luiz Viana. Proving the consistency of logic in lean. pages 1–8, 08 2020.

[66] Jouko Väänänen. Second-order logic and set theory. Philosophy Compass, 10
(7):463–478, 2015.

[67] Jouko Väänänen. Second-order and higher-order logic. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stan-
ford University, Fall 2021 edition, 2021.

[68] Jouko Väänänen and Tong Wang. Internal categoricity in arithmetic and set
theory. Notre Dame Journal of Formal Logic, 56, 01 2012.

[69] Ernst Zermelo. Über grenzzahlen und mengenbereiche: Neue untersuchun-
gen über die grundlagen dermengenlehre. Fundamenta mathematicae, 16, 1930.

	Abstract
	Introduction
	Contributions
	Overview

	Preliminaries
	Type Theory
	Synthetic Computability Theory
	Basic Definitions
	Post's Theorem and Markov's Principle

	Reductions

	Second-Order Syntax, Standard Semantics, and Natural Deduction
	Syntax
	First-Order Syntax
	Second-Order Syntax
	Properties of the Syntax

	Semantics
	Standard Tarski Semantics
	Extension to Function Quantifiers

	Natural Deduction

	Categoricity of Second-Order Peano Arithmetic
	Second-Order Peano Arithmetic
	Categoricity
	Consequences of Categoricity

	Incompleteness and Undecidability of Standard Semantics
	Overview
	Undecidability via Reduction from Hilbert's Tenth Problem
	Incompleteness
	Extending Incompleteness to Arbitrary Signatures
	Further Undecidability Results

	Henkin Semantics
	Definition of Henkin Semantics
	Soundness of the Deduction System

	Henkin Completeness: Translation to First-Order Logic
	Intuition
	Translation Function to First-Order Logic

	Henkin Completeness: Semantic Reduction Property
	Translating Henkin Models into First-Order Models
	Translating First-Order Models into Henkin Models
	Final Semantic Reduction

	Henkin Completeness: Deductive Reduction Property
	Overview
	Backwards Translation Function to Second-Order Logic
	Translating First-Order Derivations
	Removing the Falsity Predicates
	Combining Forwards and Backwards Translation
	Summary

	Consequences of the Reduction
	Completeness
	Compactness
	Löwenheim-Skolem

	Discussion
	Summary
	Related work
	Future Work

	Coq Mechanization
	Remarks on the Mechanization
	Structure of the Mechanization

	Bibliography

