

A Synthetic Definition of the Turing Jump

Second Bachelor Seminar Talk

Niklas Mück

Advisors: Yannick Forster and Dominik Kirst Supervisor: Prof. Gert Smolka

Programming Systems Lab, Saarland University

March 14, 2022

What if we could solve the Halting Problem?

Halting Problem [Turing, 1936]

"Does a Turing machine halt on a given input?"

Image: The halting problem is undecidable.

Oracle Machine [Turing (PhD thesis), 1939]

"A Turing machine having a black box for solving a given problem"

Turing reducibility [Turing (PhD thesis), 1939] [Post, 1944]

 $P \leq_T Q := "P$ can be solved by an oracle machine for Q"

What if we could solve the Halting Problem?

Oracle Machine [Turing (PhD thesis), 1939]

"A Turing machine having a black box for solving a given problem"

Turing jump [Post, 1948][Kleene and Post, 1954]

Q' := "halting problem of oracle machines with an oracle for Q"

 $\square Q'$ is undecidable by oracle machines with an oracle for Q. $\square Repeated$ jumping gives rise to a hierarchy of unsolvability. Last time: Arithmetical Hierarchy [Kleene, 1943][Mostowski, 1947]

UNIVERSITÄT

h(M, i, s) := "Turing machine M halts on input i after $\leq s$ steps"

Halting Problem	$H(M,i):=\exists s.\;h(M,i,s)$	$\in \sum_{1}$
$\overset{L}{\swarrow}$		
Totality	$Tot(M) := \forall i. \ \exists s. \ h(M, i, s)$	$\in \prod_2$
Cofiniteness	$Cof(M) := \exists n. \ \forall i \geq n. \ \exists s. \ h(M, i, s)$	$\in \sum_3$

INSERT IN Post's Theorem [Post, 1948]: Connection between quantifier prefix and the Turing jump

Synthetic Computability Halting Problem Turing Reduction

My Work

- Oracle Semi-decidability Turing Jump
- Formulation of Post's Theorem

Synthetic Computability

Observation

In Coq only computable functions can be defined

 ${}^{\hbox{\tiny \mbox{\tiny loss}}}$ treat all functions $\mathbb{N}\to\mathbb{N}$ as computable

- Image: Image: Non-Section with a concrete model of computation
- \bowtie partial functions $\mathbb{N} \rightharpoonup \mathbb{N}$ instead of diverging Turing machines

Approach by [Richman, 1983] [Bridges-Richman, 1987] [Bauer, 2006]

In constructive type theory by [Forster Kirst Smolka, 2019] [Forster (PhD), 2021]

Synthetic Computability – Halting Problem "Does a partial function output a value?"

Problem: (Partial) functions are not associated with their source code © Gödel encoding cannot be constructed

Axiom: Enumerability of Partial Functions [Richman, 1983][Forster, 2020]

 $\mathsf{EPF} := \Sigma \theta : \mathbb{N} \to (\mathbb{N} \rightharpoonup \mathbb{N}). \ \forall f : \mathbb{N} \rightharpoonup \mathbb{N}. \ \exists c : \mathbb{N}. \ \theta_c \equiv f$

 $\theta_c x \triangleright y \triangleq$ "function with code c terminates on x with output y"

Self-halting problem $\mathcal{K}c := \exists y. \ \theta_c \ c \triangleright y$

Synthetic Computability – Turing Reduction

Problem: All (partial) functions are computable Functional relations $\mathbb{N} \rightsquigarrow \mathbb{B}$ are the uncomputable counterpart

Turing Reduction [Forster (PhD), 2021] joint work with Kirst, idea by Bauer

- Functional relation transformer:
- Computational core:

$$r: (\mathbb{N} \rightsquigarrow \mathbb{B}) \to (\mathbb{N} \rightsquigarrow \mathbb{B})$$
$$r': (\mathbb{N} \rightarrow \mathbb{B}) \to (\mathbb{N} \rightarrow \mathbb{B})$$

• Computable up to oracle:

 $\forall R \ f. \ f \ \text{computes} \ R \rightarrow (r' \ f) \ \text{computes} \ (r \ R)$

• Continuity (i.e. termination \rightarrow only finitely many oracle queries)

My Work

Oracle Semi-decidability

Oracle Machines for semi-decision \mathbb{M}

- Halting relation:
- Computational core:
- Computable up to oracle:

 $\forall R \ f. \ f \ \text{computes} \ R \rightarrow (M_{\text{core}} \ f) \ \text{computes} \ (M_{\text{halts}} \ R)$

 $M_{\text{halts}} : (\mathbb{N} \rightsquigarrow \mathbb{B}) \rightarrow (\mathbb{N} \rightsquigarrow \mathbb{1})$

 $M_{\text{core}} : (\mathbb{N} \to \mathbb{B}) \to (\mathbb{N} \to \mathbb{1})$

• Continuity (i.e. termination \rightarrow only finitely many oracle queries)

P is semi-decidable relative to Q:

$$\mathcal{S}_Q(P) := \exists M: \mathbb{M} . \; \forall x. \; x \in P \leftrightarrow M_{\mathsf{halts}} \; Q \; x$$

Turing Jump – "Halting Problem of Oracle Machines"

Lemma ("oracle machines with the same core behave the same")

$$\forall M \ M'. \ M_{\text{core}} = M'_{\text{core}} \rightarrow \neg M_{\text{halts}} \rightarrow \neg M'_{\text{halts}}$$

enumerating computational cores is sufficient

We assume an enumerator

$$\zeta:\mathbb{N}\to ((\mathbb{N}\rightharpoonup\mathbb{B})\to(\mathbb{N}\rightharpoonup\mathbb{1}))$$

Turing Jump

$$Q' := \{ c \in \mathbb{N} \mid \exists M : \mathbb{M}. \ M_{\mathsf{core}} = \zeta c \ \land \ M_{\mathsf{halts}} \ Q \ c \}$$

Turing Jump – Results

We assume an enumerator

$$\zeta:\mathbb{N}\to((\mathbb{N}\rightharpoonup\mathbb{B})\to(\mathbb{N}\rightharpoonup\mathbb{1}))$$

Lemma

$$\forall c. \; \exists M : \mathbb{M} \, . \; M_{\mathsf{core}} = \zeta c$$

Theorem (Turing jump is oracle semi-decidable)

$$\mathcal{S}_Q(Q')$$

Theorem (Complement of Turing jump is **not** oracle semi-decidable)

 $\neg \mathcal{S}_Q(\overline{Q'})$

All proofs in appendix and Coq

Formulation of Post's Theorem

Post's Theorem

•
$$P \in \sum_{n+1} \leftrightarrow \exists Q. \ \mathcal{S}_Q(P) \land Q \in \prod_n$$

• $\emptyset^{(n+1)} \in \sum_{n+1}$
• $P \in \sum_{n+1} \rightarrow P \preceq_m \emptyset^{(n+1)}$

•
$$P \in \sum_{n+1} \leftrightarrow \mathcal{S}_{\emptyset^{(n)}}(P)$$

Overview of my work

- Model arithmetical hierarchy in Coq
 - ${\scriptstyle \bullet}$ in Peano arithmetic and in meta-theory \checkmark
 - prove interesting properties
- ${\ }$ ${\ }$ Synthetic definition of oracle machines and Turing jump \checkmark
 - prove interesting results \checkmark
- Post's theorem 🖄
 - formulation \checkmark
 - proof 🖾
- Isolate the weakest set of assumptions ?

References I

Alan Mathison Turing.

On computable numbers, with an application to the entscheidungsproblem.

J. of Math, 58:345-363, 1936.

Alan Mathison Turing.

Systems of logic based on ordinals.

Proceedings of the London mathematical society, 2(1):161–228, 1939.

Emil L Post.

Recursively enumerable sets of positive integers and their decision problems.

bulletin of the American Mathematical Society, 50(5):284-316, 1944.

References II

Stephen Cole Kleene.

Recursive predicates and quantifiers.

Transactions of the American Mathematical Society, 53(1):41–73, 1943.

Andrzej Mostowski.

On definable sets of positive integers.

Fundamenta Mathematicae, 34(1):81–112, 1947.

Emil L Post.

Degrees of recursive unsolvability-preliminary report.

In *Bulletin of the American Mathematical Society*, volume 54, pages 641–642. AMER MATHEMATICAL SOC 201 CHARLES ST, PROVIDENCE, RI 02940-2213, 1948.

References III

Stephen C Kleene and Emil L Post.

The upper semi-lattice of degrees of recursive unsolvability.

Annals of mathematics, pages 379-407, 1954.

Fred Richman.

Church's thesis without tears.

J. Symb. Log., 48(3):797-803, 1983.

Douglas Bridges, Fred Richman, et al.

Varieties of constructive mathematics, volume 97.

Cambridge University Press, 1987.

Andrej Bauer.

First steps in synthetic computability theory.

Electronic Notes in Theoretical Computer Science, 155:5–31, 2006.

Yannick Forster, Dominik Kirst, and Gert Smolka.

On synthetic undecidability in coq, with an application to the entscheidungsproblem.

In Assia Mahboubi and Magnus O. Myreen, editors, *Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019*, pages 38–51. ACM, 2019.

References V

Yannick Forster.

Computability in Constructive Type Theory. PhD thesis, PhD thesis. Saarland University, 2021.: https: //ps.uni-saarland.de/~forster/thesis/phd-thesis-yforster-printblack.pdf.

Yannick Forster.

Church's thesis and related axioms in coq's type theory.

In Christel Baier and Jean Goubault-Larrecq, editors, *29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference)*, volume 183 of *LIPIcs*, pages 21:1–21:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

Andrej Bauer.

Synthetic mathematics with an excursion into computability theory (slide set).

University of Wisconsin Logic seminar, 2020.

http:

//math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf.

Synthetic Computability – Turing Reduction

Problem: All (partial) functions are computable Functional relations $\mathbb{N} \rightsquigarrow \mathbb{B}$ are the uncomputable counterpart

Turing Reduction [Forster (PhD), 2021] joint work with Kirst, idea by Bauer

- Functional relation transformer
- Computational core
- Computable up to oracle

 $r: (\mathbb{N} \rightsquigarrow \mathbb{B}) \to (\mathbb{N} \rightsquigarrow \mathbb{B})$ $r': (\mathbb{N} \rightharpoonup \mathbb{B}) \to (\mathbb{N} \rightharpoonup \mathbb{B})$

 $\forall R \ f. \ f \ \text{computes} \ R \to (r' \ f) \ \text{computes} \ (r \ R)$

- Continuous (i.e. termination \rightarrow only finitely many oracle queries) $\forall Rx. \neg \neg \exists L. \forall R'. (\forall yb. y \in L \rightarrow R y b \rightarrow R' y b) \rightarrow \forall b. r R x b \rightarrow r R' x b$
- Monotonic

 $\forall RR'.(\forall y \ b. \ R \ y \ b \rightarrow R' \ y \ b) \rightarrow \forall x \ b. \ r \ R \ x \ b \rightarrow r \ R' \ x \ b$

Oracle Semi-decidability

Oracle Machines for semi-decision $\ensuremath{\mathbb{M}}$

- Halting relation:
- Computational core:
- Computable up to oracle:

$$\begin{split} M_{\text{halts}} &: (\mathbb{N} \rightsquigarrow \mathbb{B}) \to (\mathbb{N} \rightsquigarrow \mathbb{1}) \\ M_{\text{core}} &: (\mathbb{N} \rightharpoonup \mathbb{B}) \to (\mathbb{N} \rightharpoonup \mathbb{1}) \end{split}$$

 $\forall R \ f. \ f \ \text{computes} \ R \to (M_{\text{core}} \ f) \ \text{computes} \ (M_{\text{halts}} \ R)$

• Continuous (i.e. termination \rightarrow only finitely many oracle queries) $\forall Rx. \neg \neg \exists L. \forall R'. (\forall yb. y \in L \rightarrow R y b \rightarrow R' y b) \rightarrow M_{halts} Rx \star \rightarrow M_{halts} R'x \star$

Monotonic

 $\forall RR'.(\forall y \; b. \; R \; y \; b \to R' \; y \; b) \to \forall x. \; M_{\mathsf{halts}} \; R \; x \star \to M_{\mathsf{halts}} \; R' \; x \star$

P is semi-decidable relative to Q:

$$\mathcal{S}_Q(P) := \exists M : \mathbb{M} . \ \forall x. \ x \in P \leftrightarrow M_{\mathsf{halts}} \ Q \ x$$

Lemma 1

We assume an enumerator

$$\zeta:\mathbb{N}\to ((\mathbb{N}\rightharpoonup\mathbb{B})\to(\mathbb{N}\rightharpoonup\mathbb{1}))$$

and ζc continuous:

 $\forall c \ f \ x. \ \exists L. \ \forall f'. \ (\forall y \ b. \ y \in L \to f \ y \rhd b \to f' \ y \rhd b) \to \zeta c \ f \ x \to \zeta c \ f' \ x \to \zeta c$

Lemma 1

$$\forall c. \; \exists M : \mathbb{M} \; . \; M_{\mathsf{core}} = \zeta c$$

Proof.

- Choose: $M_{\text{halts}}R \ x := \exists L. \forall f. (\forall y \ b. \ y \in L \to R \ y \ b \to f \ y \rhd b) \to \zeta c \ f \ x$
- To show: f computes $R \to M_{halts}R \ x \leftrightarrow \zeta c \ f \ x$

ightarrow easy

 \leftarrow needs ζc continuous

Turing jump is oracle semi-decidable

Theorem (Turing jump is oracle semi-decidable)

$$\mathcal{S}_Q(Q') \equiv \mathcal{S}_Q(\{c \in \mathbb{N} \mid \exists M' : \mathbb{M}. \ M'_{\text{core}} = \zeta c \ \land \ M'_{\text{halts}} \ Q \ c\})$$

Proof.

- Need to construct $M:\mathbb{M}$ such that $M_{\mathsf{halts}}Q\; c\leftrightarrow c\in Q'$
- Choose: $M_{halts}R_o c := \exists M'. M'_{core} = \zeta c \wedge M'_{halts}R_o c$
- Choose: $M_{\text{core}} f_o c := \zeta c f_o c$
- To show: f computes $R \to \forall c. (\exists M'. M'_{core} = \zeta c \land M'_{halts} R c) \leftrightarrow \zeta c f c$ \rightarrow We get M' such that M'_{halts} and $M'_{core} = \zeta c$. Follows by core spec of M'
- $\leftarrow \text{Lemma 1 gives us } M' \text{ with } M'_{\text{core}} = \zeta c. \text{ Core spec gives } M'_{\text{halts}} R c \qquad \Box$

Lemma 2 ("oracle machines with the same core behave the same")

$$\forall M \ M'. \ M_{\text{core}} = M'_{\text{core}} \rightarrow \forall R \ x. \ \neg M_{\text{halts}} R \ x \rightarrow \neg M'_{\text{halts}} R \ x$$

Proof.

- Equal cores $\triangleq M$ and M' behave the same when oracle is computable

- Continuity gives a list L where oracle is queried by M^\prime for given R and x
- Claim is stable, we can "classically" construct a function that computes R on L, we call the corresponding computational relation f

$$-M'_{\text{halts}}R \ x \xrightarrow{cont.} M'_{\text{halts}}f \ x \xrightarrow{f \ comp.,eq. \ cores}} M_{\text{halts}}f \ x \xrightarrow{mono.} M_{\text{halts}}R \ x \xrightarrow{mono.}$$

Complement of Turing jump is **not** oracle semi-decidable

Theorem (Complement of Turing jump is **not** oracle semi-decidable)

$$\neg \mathcal{S}_Q(\overline{Q'}) \equiv \mathcal{S}_Q(\{c \in \mathbb{N} \mid \neg \exists M' : \mathbb{M}. \ M'_{\mathsf{core}} = \zeta c \ \land \ M'_{\mathsf{halts}} \ Q \ c\}) \to \bot$$

Proof.

- Assuming $\mathcal{S}_Q(\overline{Q'})$ gives M such that $M_{\text{halts}} \: Q \: c \leftrightarrow c \notin Q'$
- Let c be code of $M_{\rm core}=\zeta c$
- Showing $c \notin Q' \leftrightarrow \neg M_{\rm halts} Q \; c$ gives a contradiction
- \rightarrow Assume $c \notin Q'$ and $M_{halts}Q c$. But $M_{core} = \zeta c \wedge M_{halts}Q c$ means $c \in Q'$
- $\leftarrow \text{Assume } \neg M_{\text{halts}}Q \ c \text{ and } c \in Q' \equiv \exists M' : \mathbb{M}. \ M'_{\text{core}} = \zeta c \ \land \ M'_{\text{halts}} \ Q \ c$
 - But if M doesn't halt, all M' with same core also don't halt by Lemma 2