
Generating Case Analysis
Principles for Inductive
Types using MetaCoq

Marcel Ullrich — s8maullr@stud.uni-saarland.de

November 1, 2019

Given an inductive type, Coq can generate and prove case analysis and
induction principles using the Scheme command implemented in OCaml.
�e principles and proofs follow the structure of the inductive type. Our
goal is to replace the OCaml code with MetaCoq programs. MetaCoq is
a meta-programming framework that allows writing Coq plugins in Gal-
lina instead of OCaml. We want to write a program transforming inductive
types into principles and the corresponding proofs. Because the programs
are wri�en in Gallina, we can verify the correctness of the principle genera-
tion plugin. In this se�ing, correctness just means that the plugin produces
a well-typed term for every inductive type given as input. �erefore the
plugin can never fail to generate a principle.

1 Case analysis principles
Every inductive type has a case analysis principle that scrutinizes an instance of
the inductive type and allows proving statements for each way to construct the
instance instead of a general unknown instance.

A case analysis principle is used to perform case analysis on elements of induc-
tive types. �is corresponds to the destruct tactic in a proof. If we want to prove
a statement over a natural number n we can perform case analysis and prove the



statement for 0 and for S m withm : N. �e same strategy applies for inductively
de�ned proposition like ∧, ∨ and ≤.

An example is the case analysis principle for natural numbers (example 1.1.1):

EN : ∀(p : N→ T),p O → (∀m,p(S m)) → ∀x,p x

�e proof of a case analysis principle or induction principle is called the elim-
inator. �e eliminator for induction principle is recursive.

Every inductive datatype has a case analysis principle similar to the induction
lemma without inductive hypotheses and therefore without recursion in the elim-
inator.

A way to generate the case analysis principle in Coq is the Scheme command
which generates a proof for the case analysis principle of an inductive type T.

Scheme T_case := Elimination for T Sort U.
Wewant to generate proof terms for the case analysis principles given a repre-

sentation of an inductive type. For the generation, we use theMetaCoq framework.
MetaCoq is a meta-programming framework which allows us to write plugins di-
rectly in Gallina. �erefore we can prove correctness properties of the generated
principles. In this se�ing, correctness means that the plugin produces well-typed
terms for the inductive type given as input. Our main goal is to replicate the case
analysis scheme command:

MetaCoq Run Scheme T_case := Elimination for T Sort U.
�e case analysis principle has to handle the replacement and instantiation of

indices, quanti�cation of variables like them above and additional hypothesis as
would be the case for ≤ (example 1.1.3).

1.1 Application and examples
Below are some examples to show the constructed lemmas and some features in
use.

1.1.1 Natural numbers

N : T
n : N ::= O | S n

EN : ∀(p : N→ T),p O → (∀m,p(S m)) → ∀x,p x

For natural numbers our case analysis principle, also called non recursive elimina-
tor, is quite simple: We have one constructor without arguments and a second one
with a natural number as argument. We don’t have any parameters or indices.

2



1.1.2 Disjunction

∨ : P→ P→ P
L : ∀(A : P)(B : P),A→ A ∨ B

R : ∀(A : P)(B : P),B → A ∨ B

Disjunction is an inductive type with two parameters A and B de�ning a proposi-
tion.

A L
A ∨ B

B R
A ∨ B

E∨ : ∀A B,∀(p : A ∨ B → P),
(∀(a : A), p(L A B a)) →

(∀(b : B), p(R A B b)) →

∀(x : A ∨ B), p x

�e two parameters A and B are quanti�ed at the beginning and are applied to
each constructor. In both cases the proof of either sides is quanti�ed and provided
when using the lemma.

1.1.3 Less or equal

le : ∀(n : N),N→ P

Less or equal has one parameter, the �rst argument, and one index, the second
argument.

le n
le n n

le n m
le S

le n (Sm)

E≤ : ∀(n : N),∀(p : ∀m, n ≤ m → P),
p n (le n n) →

(∀m (h : le n m), p (S m) (le S n m h)) →

∀m (x : le n m), p m x

In the �rst case the index is instantiated with the parameter n and the constructor
has no additional arguments. In the second case the constructor takes a natural
numberm and the statement n ≤ m as arguments. �e index is instantiated with
S m and the all arguments are provided to the constructor. �e indices are taken
directly from the constructor.

3



1.2 Structure
LetT be an inductive Type. In general the case analysis principle ofT applies to a
statement p x where x is an instance of T . By applying the case analysis principle
x gets instantiated with a concrete application of the constructors. �is generates
one case for each constructor.

T can have arguments like disjunction (example 1.1.2) or less or equal (exam-
ple 1.1.3). An argument is called parameter if the instantiation is the same across
all calls to T in the constructors and index if the instantiation varies.

Parameters are quanti�ed in front of the principle (example 1.2.2). In order
to deal with the indices p does not only take the instance but also the indices
(example 1.2.4) as arguments.

1.2.1 Parameter-free types

T : T
ET : ∀(p : T → P),p c0 → . . .→ (∀a0 . . . an,p (cm a0 . . . an)) → ∀(x : T ),p x

An example for a parameter-free type are natural numbers (example 1.1.1).
If the inductive type T does not have any parameters and indices then the

case analysis principle ET has one case for each constructor with quanti�cation
over all arguments of the constructor. In this example the constructor c0 takes no
argument, like O for natural numbers, and cm takes n arguments called a0 to an.

�e result of ET is the statement that p holds for every instance x ofT if it holds
in each possible way to construct x . �e result type of p depends on T and can be
T if T allows large elimination.

An inductive instance of a proposition can be eliminated over T (perform large
elimination) if the inductive type for the proposition or predicate has at most one
proof constructor and every non-parametric argument of the constructor is a proof
itself.

1.2.2 Index-free types

T : TP0 → . . .→ TPk → T

ET : ∀P0 . . . Pk,∀(p : T P0 . . . Pk → P),

p (c0 P0 . . . Pk) → . . .→ (∀a0 . . . an,p (cm P0 . . . Pk a0 . . . an)) →

∀(x : T P0 . . . Pk),p x

4



TPi is the type of the ith parameter.
An example for an index-free type is the disjunction (example 1.1.2).
If the inductive type T has parameters P0, . . . Pk but no indices some quanti�-

cation has to be added. As the parameters are the same across the whole lemma,
they are quanti�ed �rst. For typing the parameters need to be applied to the con-
structors.

1.2.3 Non-uniform parameter types
Non-uniform parameters are parameters which can have di�erent instantiations
in recursive occurrences of T . �ey are handled like normal parameters.

1.2.4 Indexed types

T : TP0 → . . .→ TPk → TI0 → . . .→ TIk → T

ET : ∀P0 . . . Pk,∀(p : ∀I0 . . . Il ,T P0 . . . Pk I0 . . . Il → P),

p i0 . . . il (c0 P0 . . . Pk) → . . .→

(∀a0 . . . an,p i0 . . . il (cm P0 . . . Pk a0 . . . an)) →

∀I0 . . . Il ,∀(x : T P0 . . . Pk I0 . . . Il ),p I0 . . . Il x

TIi is the type of the ith index.
An example for an indexed type is less or equal (example 1.1.3).
In the most general case T can have parameters P0, . . . Pk and indices I0, . . . Il

as well. As the indices can change in each case they need to be provided to p and
therefore p quanti�es over indices and the instance of T .

In each case the indices are instantiated with i0 . . . il as they were in the con-
structor case. Here i0 . . . il can be some constants, depend on the parameters or on
the arguments a0 . . . an of the case.

�e conclusion is that p holds for every instance x ofT with the indices I0 to Il
if it holds for every way to construct instances of T .

5



E≤ := fun ( n : N )
( p : ∀ m : N, n ≤ m→ Prop )
( Hle n : p n (le_n n ) )
( Hle S : ∀ (m : N ) ( H : n ≤ m ), p ( S m ) ( le_S n m H ) ) ⇒
fix f ( m : N ) ( x : n ≤ m ) {struct x} : p m x :=
match x as y in ( _ ≤ m ) return ( p m y ) with
| @le_n _ ⇒ Hle n

| @le_S _ m x ⇒ Hle S m x

end

Listing 1: fully annotated case analysis principle proof term for ≤

1.3 Proof

ET := λP0 . . . Pk . (1)
λ(p : ∀I0 . . . Il ,T P0 . . . Pk I0 . . . Il → P). (2)
λH0 . . .Hm . (3)
�x f I0 . . . Il (x : T P0 . . . Pk I0 . . . Il ). (4)
match x return p I0 . . . Il x with (5)

ci a0 . . . an ⇒ Hi a0 . . . an (6)
. . . (7)

�e proof of the case analysis principles is automated using a general scheme
which strictly follows the type of the case analysis principle (compare Listing 1).
To construct the case analysis principle, it is enough to construct the proof term
and infer the type.

Parameters, p and the cases for the constructors are dealt with λ abstractions
(1-3), an intro call in proof scripts.

�e quanti�cation over the indices and the instance is handled by a �xpoint
declaration (4) as this allows us to use recursion later on. Currently, this is not
necessary because case analysis does not use inductive hypotheses.

�e main proof is done using a match on the instance x (5) with application of
the corresponding case in each constructor case (6). �e arguments are forwarded
from the constructor to the case.

Using type inference it su�ces to provide the type of p, x and the return type
of the match.

6



fold ( fun t param ⇒ lambda param.name param. type t ) params

Listing 2: Pseudocode of parameter quanti�cation

1.4 Implementation
�e implementation follows the strategy outlined in Section 1.3 except the type
inference of arguments which can’t be used.

First the mutual inductive body and the one inductive body of the spe-
ci�c type T are extracted. �e mutual inductive body contains the parameters
and the inductive types, which can be more than one in case of a mutual inductive
de�nition. �e one inductive body contains the name, type, elimination possi-
bilities and constructors of T . Each constructor is represented by the number of
arguments, the name and the type.

�en some information for later implementation is gathered like the types of
the indices, the number of constructors and indices and some preparation on the
type is done.

Step (1): �e parameters are taken using fold over the parameter list. For
each parameter a λ abstraction is nested around the proof term starting with the
remaining proof (see Listing 2). �e parameter list needs to be reversed as it is
stored in reverse order in the inductive body.

Step (2): �e next step is to take p. We can directly adopt the index quanti�-
cation inside the type of the predicate from the inductive type without parameter
quanti�cation.

Step (3): Next the cases for the constructors are taken. �emain problem in this
step is to construct the type according to the constructor type, remove parameter
and construct the corresponding call to p with the constructor at the end. �e
instantiation of the indices is acquired from the original term by replacingT withp,
removing the parameters in the application and appending a call of the constructor
with all arguments to construct an element of T for p.

Step (4): �e main step happens in the �xpoint declaration. For the type of
the �xpoint all indices and the instance are quanti�ed as they are in the type of p.
�e quanti�cation is changed to λ abstractions for the body of the �xpoint to take
each argument. Here we need to li� each parameter access additionally by one in
comparison to the type as we have a de bruijn index for f in front.

Step (5): �e same λ abstractions are needed inside the return type of the match
for the indices and match instance. Our result is again the application to p as it
was in the result of our �xpoint.

7



Step (6): Finally, the match cases are generated where each constructor ci calls
the corresponding case hypothesis Hi and provide the arguments a from the con-
structor. �is is done with a mapping on the constructor types and is nearly the
same as in the cases above with di�erent li�ing for the parameters and application
of the case instead of p.

�e program to generate a case analysis principle for typeT can be called using
the command MetaCoq Run Scheme T_case := Case for T Sort U.

8


	Case analysis principles
	Application and examples
	Natural numbers
	Disjunction
	Less or equal

	Structure
	Parameter-free types
	Index-free types
	Non-uniform parameter types
	Indexed types

	Proof
	Implementation


