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We present a normalization by evaluation style method of cut-elimination for a frag-
ment of intuitionistic first-order logic using Kripke models based on prior work by Her-
belin and Lee [[1]]. The results have been fully verified using the Coq proof assistant.

1 Preliminaries

Following [2,3], we consider a simple predicate logic with falsity, implication, and uni-
versal quantification. The connectives of the object logic are marked with a dot, such as
—, so they can be easily distinguished from their meta-logical counterparts. The terms
consist of a unary function f as well as variables and constants ranging over N. While
the cut-elimination procedure generalizes easily to other term languages, this selection is
exemplary for the features usually found in formulations of first-order logic. As we em-
ploy de Buijn style binders, the universal quantifier does not explicitly introduce a binding
variable. As usual in intuitionistic systems, we will write ¢ for ¢ — L.
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We follow Herbelin and Lee [1] by employing a Kripke semantics. However, we ad-
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mit our models to have exploding nodes [4], which allows for a fully constructive com-
pleteness proof. An interpretation I on domain D is characterized by (¢! : N — D,
f':D — D — D). Together with an assignment p : N — D, it gives rise to a term in-
terpretation - Ly . T — D as defined below. AXKripke modelonD K = (LW, <,P,, L,)
consists of an interpretation I on D, a collection of worlds W, a preorder < on W and
interpretations P. : W — D — D — P, L. : W — P which are monotonic with regards to
<. We define formula satisfaction in a world u via an embedding into our meta-logic
Fu: (N> D) > F > P. Wewrite Ar ¢ if (V) € A. pF, ¥) — p Ey @ in all nodes u of all
Kripke models K and under all assignments p.
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As we are going to eliminate cuts, we first need a way of representing derivations
that have cuts. For this purpose we use a standard intuitionistic natural deduction
system which we denote with +yp : L(F) — F — P. Additionally, we use the cut-free
intuitionistic sequent calculus L] : L(F) —» O(F) — F — P to represent the proofs
after cut-elimination, which is given below. We write A+p; o for LJAO® pand A;¢ Frj ¥
for L] A ¢° . Note that a proof in LJ can be turned back into a cut-free proof in ND in a
straightforward manner. Here ¢[¢] denotes the de Bruijn substitution of ¢ into ¢, TA the
shifting of all de Bruijn indices in A by 1 and A, ¢ the context A extended with ¢.
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There are multiple ways of formalizing the AR rule: the approach taken here is called
“de Bruijn”, a popular alternative is named “locally nameless”. De Bruijn allows for pleas-
ant weakening proofs while locally nameless will prove very useful during the complete-
ness proof. The following lemma allows us to freely switch between the two representa-
tions.

Theorem 1 (De Bruijn and locally nameless equivalence) Let A be a context and ¢
be a formula. Further, let x be a variable that is not bound in A or ¢. Then

MArrye iff Arpy elx] TArnp ¢ iff  Arnp @[x]

Proof By applying the correct substitutions to the proofs. -



2 Semantic cut-elimination

We mostly follow the approach of Herbelin and Lee [1]]. It employs the well known nor-
malization by evaluation method of cut-elimination [5,|6]. Given a language L, one
defines three functions: the interpretation [-] : L — 9 which translates terms into a
computational denotational semantics and the mutually recursive reflect T: L — D and
reify |: © — L" which translate the denotational semantics back into normal terms. A
term ¢ can then be normalized by reifying its interpretation | [¢].

In the case of this proof, we will use Kripke models for the semantics, a soundness
proof as the interpretation function and the reification will be performed by a completeness
proof. We will make use of a special Kripke model, known as the universal model, during
the completeness proof.

Theorem 2 (Soundness) Let A be a context and ¢ a formula. Then A Fnp ¢ — A E .

Proof By induction on A +xp ¢. -

Definition 3 (The universal model) The universal Kripke model U is given by the
quintuple (I, L(F), C, Pa, L 4), where

« Idenotes the identity interpretation with t“# = t[p] for all terms ¢ and substitutions p
« L(F) describes the collection of all contexts

o Cis the subset relation on contexts

+ wechoose Pyst:=AtpyPstand Ly :=Arpy L

Theorem 4 (Reify and Reflect) Let A be a context, ¢ a formula and p a substitution.
Within the universal model U
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Proof Simultaneous proof by induction on the formula ¢ of the generalized statements
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We only cover the cases of V and -, the rest is straightforward.

Case ¢ = Vo: (i) Assuming Vt. p,t k4 ¢, we have to show A rr; Vo. By AR, it suffices
to show TA r1; ¢[1p] which by Theorem [1]is equivalent to A +1; ¢[p, x] for a free
variable x. This holds per our initial assumption and inductive hypothesis (i).

(ii) Assuming VB y. A € B — B;(¥9)lp] r1; x — B rr; x, we have to show
p,t Ea ¢ for every term t. Per inductive hypothesis (ii) it suffices to show
VB y.ACB— B;¢|p,t]rrj x = Bty x. Using our assumption, we still have
to deduce B ;(V¢)[p] Fr; x from these premises, which can be achieved via AL.



Case 9 = ¢ >y: (i) Assuming VB. A C B — p kg ¢ — p Ep ¥, we have to show
A rry (@ = ¢)[p]. Per IR and inductive hypothesis (i) for ¢ it suffices to show
P EA,g[p] V- Using the inductive hypothesis (ii) for ¢ and our assumption, it suffices
to show VB y. A, ¢[p] € B — B;¢lp] Fr; x — B rr; x, which holds per Ax.

(i) Assuming VB y. A € B — B;(¢ = ¥)[p] tr;y x — B +1j x we have to show
VB.AC B — p Eg ¢ — p Ep . Because of the inductive hypothesis (ii) for ¢/
it suffices to show VC y. B C C — C;y[p] 1y x — C Fry x, which, using our
assumption, turns into C ;(¢ = ¢)[p] +ry y. This follows using IL and inductive
hypothesis (i) for ¢. -

Corollary 5 (Completeness) Let Abe a contextand ¢ aformula. ThenAE ¢ — Arpg .

Corollary 6 (Cut-elimination) For any context A and formula ¢, A+xp ¢ — A kg @.
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