Verified Programming of Turing Machines In Coq Final Bachelor Talk

Maxi Wuttke

Saarland University

Programming Systems Lab

September 14, 2018

Advisor: Yannick Forster

Supervisor: Prof. Dr. Gert Smolka

Motivation

- Turing machines build traditional foundation of the theory of computation and complexity
- simple (but not quite simplistic)
- many different models
- usually not formally verified

- Level 0: multi-tape Turing machines
 - unstructured; non-compositional; huge amount of states; low-level ©

- Level 0: multi-tape Turing machines
 - unstructured; non-compositional; huge amount of states; low-level ®
- Level 1: labelled Turing machines
 - semantical predicates for correctness & time complexity
 - "label" all internal states

- Level 0: multi-tape Turing machines
 - unstructured; non-compositional; huge amount of states; low-level ©
- Level 1: labelled Turing machines
 - semantical predicates for correctness & time complexity
 - "label" all internal states
- Level 2: control-flow & lifting operators
 - imperative language; structured; compositional
 - no need to refer to internal states

- Level 0: multi-tape Turing machines
 - unstructured; non-compositional; huge amount of states; low-level ©
- Level 1: labelled Turing machines
 - semantical predicates for correctness & time complexity
 - "label" all internal states
- Level 2: control-flow & lifting operators
 - imperative language; structured; compositional
 - no need to refer to internal states
- Level 3: generalised register machine
 - imperative language with values
 - use each tape as a register for an arbitrary encodable type

- Level 0: multi-tape Turing machines
 - unstructured; non-compositional; huge amount of states; low-level ©
- Level 1: labelled Turing machines
 - semantical predicates for correctness & time complexity
 - "label" all internal states
- Level 2: control-flow & lifting operators
 - imperative language; structured; compositional
 - no need to refer to internal states
- Level 3: generalised register machine
 - imperative language with values
 - use each tape as a register for an arbitrary encodable type
- Level 4: call-by-value λ -calculus
 - functional language ©

Level 0: Multi-Tape Turing Machines

• Tape $_{\Sigma}$: Type of tapes over alphabet Σ

Level 0: Multi-Tape Turing Machines

- Tape_{Σ}: Type of tapes over alphabet Σ
- TM^n_Σ : Type of *n*-tape Turing machines over finite alphabet Σ
 - finite type of states Q
 - initial state init : Q
 - ullet final states $\mathit{halt}: Q o \mathbb{B}$
 - transition function $\delta: Q \times (\mathcal{O}(\Sigma))^n \to Q \times (\mathcal{O}(\Sigma) \times \mathsf{Move})^n$

Level 0: Multi-Tape Turing Machines

- Tape $_{\Sigma}$: Type of tapes over alphabet Σ
- TM^n_Σ : Type of *n*-tape Turing machines over finite alphabet Σ
 - finite type of states Q
 - initial state init : Q
 - ullet final states $\mathit{halt}: Q o \mathbb{B}$
 - transition function $\delta: Q \times (\mathcal{O}(\Sigma))^n \to Q \times (\mathcal{O}(\Sigma) \times \mathsf{Move})^n$
- $M(t) \triangleright^k (q, t')$: M terminates in k steps in the configuration (q, t'), given the input tapes t

• $M : \mathsf{TM}^n_\Sigma(L)$: pair of a machine and a state labelling function:

$$(M':\mathsf{TM}^n_\Sigma,\ \mathit{lab}:Q_{M'}\to L)$$

• $M : \mathsf{TM}^n_\Sigma(L)$: pair of a machine and a state labelling function:

$$(M':\mathsf{TM}^n_\Sigma,\ \mathit{lab}:Q_{M'}\to L)$$

• Correctness predicate: Let $M : \mathsf{TM}^n_\Sigma(L)$ and $R \subseteq \mathsf{Tape}^n_\Sigma \times (L \times \mathsf{Tape}^n_\Sigma)$.

$$M \vDash R := \forall t \ q \ t'. \ M(t) \rhd^* (q, t') \rightarrow R \ t \ (lab_M \ q, t')$$

• $M : TM_{\Sigma}^{n}(L)$: pair of a machine and a state labelling function:

$$(M':\mathsf{TM}^n_\Sigma,\ \mathit{lab}:Q_{M'}\to L)$$

• Correctness predicate: Let $M : \mathsf{TM}^n_\Sigma(L)$ and $R \subseteq \mathsf{Tape}^n_\Sigma \times (L \times \mathsf{Tape}^n_\Sigma)$.

$$M \vDash R := \forall t \ q \ t'. \ M(t) \rhd^* (q,t') \rightarrow R \ t \ (lab_M \ q,t')$$

Lemma (Monotonicity)

If $M \vDash R'$ and $R' \subseteq R$, then $M \vDash R$.

• $M : \mathsf{TM}^n_\Sigma(L)$: pair of a machine and a state labelling function:

$$(M':\mathsf{TM}^n_\Sigma,\ \mathit{lab}:Q_{M'}\to L)$$

• Correctness predicate: Let $M : \mathsf{TM}^n_\Sigma(L)$ and $R \subseteq \mathsf{Tape}^n_\Sigma \times (L \times \mathsf{Tape}^n_\Sigma)$.

$$M \vDash R := \forall t \ q \ t'. \ M(t) \rhd^* (q, t') \rightarrow R \ t \ (lab_M \ q, t')$$

Lemma (Monotonicity)

If $M \vDash R'$ and $R' \subseteq R$, then $M \vDash R$.

(There is also a notion for running time)

Primitive Machines

Machines that terminate after 0 or 1 transitions, e.g.:

- Write(s): $TM_{\Sigma}^{1}(1)$, s.t. Write(s) $\vDash (\lambda t (_{-}, t'). t'[0] = wr (t'[0]) s)$
- Read : $\mathsf{TM}^1_\Sigma(\mathcal{O}(\Sigma))$, s.t. Read $\vDash (\lambda t \ (\ell, t'). \ t' = t \ \land \ \ell = \mathsf{current}(t[0]))$

Sequential composition:

Let $M_1 : \mathsf{TM}^n_\Sigma(L_1)$ and $M_2 : \mathsf{TM}^n_\Sigma(L_2)$, then $M_1; M_2 : \mathsf{TM}^n_\Sigma(L_2)$.

Sequential composition:

Let $M_1 : \mathsf{TM}^n_\Sigma(L_1)$ and $M_2 : \mathsf{TM}^n_\Sigma(L_2)$, then $M_1; M_2 : \mathsf{TM}^n_\Sigma(L_2)$.

Lemma

If
$$M_1 \vDash R_1$$
 and $M_2 \vDash R_2$, then

with
$$R|_{y} := \lambda x z \cdot R \times (y, z)$$

$$M_1; M_2 \vDash \bigcup_{\ell:L_1} (R_1|_{\ell} \circ R_2)$$

Sequential composition:

Let $M_1 : \mathsf{TM}^n_\Sigma(L_1)$ and $M_2 : \mathsf{TM}^n_\Sigma(L_2)$, then $M_1; M_2 : \mathsf{TM}^n_\Sigma(L_2)$.

Lemma

If
$$M_1 \vDash R_1$$
 and $M_2 \vDash R_2$, then

with
$$R|_{y} := \lambda x z \cdot R \times (y, z)$$

$$M_1; M_2 \vDash \bigcup_{\ell:L_1} (R_1|_{\ell} \circ R_2)$$

Conditional:

Let $M_1 : \mathsf{TM}^n_\Sigma(\mathbb{B})$ and $M_2, M_3 : \mathsf{TM}^n_\Sigma(L)$, then If M_1 Then M_2 Else $M_3 : \mathsf{TM}^n_\Sigma(L)$.

Sequential composition:

Let $M_1 : TM_{\Sigma}^n(L_1)$ and $M_2 : TM_{\Sigma}^n(L_2)$, then $M_1; M_2 : TM_{\Sigma}^n(L_2)$.

Lemma

If
$$M_1 \vDash R_1$$
 and $M_2 \vDash R_2$, then

with
$$R|_{y} := \lambda x z. R x (y, z)$$

$$M_1; M_2 \vDash \bigcup_{\ell:L_1} (R_1|_{\ell} \circ R_2)$$

Conditional:

Let $M_1: \mathsf{TM}^n_{\Sigma}(\mathbb{B})$ and $M_2, M_3: \mathsf{TM}^n_{\Sigma}(L)$, then If M_1 Then M_2 Else M_3 : $TM_{\Sigma}^n(L)$.

Lemma

If
$$M_1 \models R_1$$
, $M_2 \models R_2$, and $M_3 \models R_3$, then

If M_1 Then M_2 Else $M_3 \models (R_1|_{\text{true}} \circ R_2) \cup (R_1|_{\text{false}} \circ R_3)$

"Do-While" Loop:

Let $M : \mathsf{TM}^n_\Sigma(\mathcal{O}(L))$, then While $M : \mathsf{TM}^n_\Sigma(L)$.

"Do-While" Loop:

Let $M : \mathsf{TM}^n_\Sigma(\mathcal{O}(L))$, then While $M : \mathsf{TM}^n_\Sigma(L)$.

Lemma (Correctness of While M)

If $M \models R$, then While $M \models WhileRel\ R$, which is defined inductively:

$$\frac{R \ t \ (\lfloor \ell \rfloor \ , t')}{\textit{WhileRel R} \ t \ (\ell, t')} \quad \frac{R \ t \ (\emptyset, t') \quad \textit{WhileRel R} \ t \ (\ell, t'')}{\textit{WhileRel R} \ t \ (\ell, t'')}$$

Level 2: Lifting

Problem: How to combine machines with different number of tapes and alphabets?

$$\frac{M_1: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_1) \qquad M_2: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_2)}{M_1; M_2: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_2)}$$

Level 2: Lifting

 Problem: How to combine machines with different number of tapes and alphabets?

$$\frac{M_1: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_1) \qquad M_2: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_2)}{M_1; M_2: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_2)}$$

- Solution: Two **lifting** operators:
 - Tapes-lift (increase the number of tapes)
 - Alphabet-lift (increase the alphabet)

Level 2: Lifting

 Problem: How to combine machines with different number of tapes and alphabets?

$$\frac{M_1: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_1) \qquad M_2: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_2)}{M_1; M_2: \mathsf{TM}^{\underline{n}}_{\Sigma}(L_2)}$$

- Solution: Two lifting operators:
 - Tapes-lift (increase the number of tapes)
 - Alphabet-lift (increase the alphabet)
 - Lift all sub-machines to the same number of tapes and alphabet, before applying the control-flow operators

Tapes-lift

- Let $M: \mathsf{TM}^m_\Sigma(L)$ and $I: \mathbb{F}_m \hookrightarrow \mathbb{F}_n$.
- Then $\uparrow_I M : \mathsf{TM}^n_{\Sigma}$.

Tapes-lift

- Let $M : \mathsf{TM}^m_\Sigma(L)$ and $I : \mathbb{F}_m \hookrightarrow \mathbb{F}_n$.
- Then $\uparrow_I M : \mathsf{TM}^n_{\Sigma}$.

Lemma

If $M \models R$, then $\uparrow_I M \models \uparrow_I R$ with

$$\uparrow_I R := \lambda t \ (I, t'). \ R \ (I^{-1} \ t) \ (I, I^{-1} \ t') \land
(\forall i \notin \text{img } I. \ t'[i] = t[i])$$

- Idea: think of tapes as registers, that
 - may contain a value of an arbitrary encodable type,
 - or contain no value

- Idea: think of tapes as registers, that
 - may contain a value of an arbitrary encodable type,
 - or contain no value
- A type X is encodable on Σ , if there is a function encode : $X \to \mathcal{L}(\Sigma)$.
 - For example, $encode(n) := S^n + [O]$

- Idea: think of tapes as registers, that
 - may contain a value of an arbitrary encodable type,
 - or contain no value
- A type X is encodable on Σ , if there is a function encode : $X \to \mathcal{L}(\Sigma)$.
 - For example, $encode(n) := S^n + [O]$
 - Obvious problem: ambiguity

- Idea: think of tapes as registers, that
 - may contain a value of an arbitrary encodable type,
 - or contain no value
- A type X is encodable on Σ , if there is a function encode : $X \to \mathcal{L}(\Sigma)$.
 - For example, $encode(n) := S^n + [O]$
 - Obvious problem: ambiguity
- Inductive types Σ_X to minimally encode X on, e.g.
 - $\Sigma_{\mathbb{N}} ::= S \mid O$
 - $\bullet \quad \sum_{X+Y} ::= \underset{\text{(if X is minimally encodable on Σ_X and Y on Σ_Y)}}{\mathsf{INR}} \left(x : \sum_X \right) \left| \ (y : \sum_Y \right)$

Level 3: Value-Containment

Let X be encodable on Σ .

Definition (Σ^+)

 $\Sigma^+ ::= \mathsf{START} \mid \mathsf{STOP} \mid \mathsf{UNKNOWN} \mid (x : \Sigma_X)$

Definition (tape-containment)

Let $t : \mathsf{Tape}_{\Sigma^+} \text{ and } x : X$.

$$t \simeq x := \exists ls. \ t = (ls \ \mathsf{START} \ encode(x) \ \mathsf{STOP})$$

Level 3: Value-Containment

Let X be encodable on Σ .

Definition (Σ^+)

 $\Sigma^+ ::= \mathsf{START} \mid \mathsf{STOP} \mid \mathsf{UNKNOWN} \mid (x : \Sigma_X)$

Definition (tape-containment)

Let t: Tape $_{\Sigma^+}$ and x: X.

$$t \simeq x := \exists ls. \ t = (ls \ \mathsf{START} \ encode(x) \ \mathsf{STOP})$$

We write $t \simeq_f x$ if X is minimally encodable on Σ_X and $f: \Sigma_X \hookrightarrow \Sigma$.

Level 3: Value-Containment

Let X be encodable on Σ .

Definition (Σ^+)

$$\Sigma^+ ::= \mathsf{START} \mid \mathsf{STOP} \mid \mathsf{UNKNOWN} \mid (x : \Sigma_X)$$

Definition (tape-containment)

Let $t : \mathsf{Tape}_{\Sigma^+} \text{ and } x : X$.

$$t \simeq x := \exists ls. \ t = (ls \ \mathsf{START} \ encode(x) \ \mathsf{STOP})$$

We write $t \simeq_f x$ if X is minimally encodable on Σ_X and $f : \Sigma_X \hookrightarrow \Sigma$.

Definition (right tape)

$$isRight(t) := \exists s \ ls. \ t = (ls \ s)$$

Level 3: Value-Manipulating Machines

Level 3: Value-Manipulating Machines

Auxiliary Machines

• Reset : $\mathsf{TM}^1_\Sigma(1)$, s.t. Reset $\vDash (\lambda t \ (_, t'). \ \forall x. \ t[0] \simeq x \to \textit{isRight} \ t'[0])$

Level 3: Value-Manipulating Machines

Auxiliary Machines

- $\bullet \ \ \mathsf{Reset} : \mathsf{TM}^1_\Sigma(1), \ \mathsf{s.t.} \ \ \mathsf{Reset} \vDash \big(\lambda t \ (\underline{\ },t'). \ \forall x. \ t[0] \simeq x \to \mathit{isRight} \ t'[0]\big)$
- Copy : $\mathsf{TM}^2_\Sigma(1)$, s.t. Copy $\vDash (\lambda t\ (_, t').\ \forall x.\ t[0] \simeq x \to isRight\ t[1] \to t'[0] \simeq x \land t'[1] \simeq x)$

Level 3: Value-Manipulating Machines

Auxiliary Machines

- Reset : $\mathsf{TM}^1_{\Sigma}(1)$, s.t. Reset $\vDash (\lambda t \ (_, t'). \ \forall x. \ t[0] \simeq x \to \mathsf{isRight} \ t'[0])$
- Copy : $\mathsf{TM}^2_\Sigma(1)$, s.t. Copy $\vDash (\lambda t \ (_, t'). \ \forall x. \ t[0] \simeq x \to isRight \ t[1] \to t'[0] \simeq x \land t'[1] \simeq x)$
- Translate f_1 $f_2: \mathsf{TM}^1_\Sigma(1)$ for $f_1, f_2: \Sigma_X \hookrightarrow \Sigma$, s.t. Translate f_1 $f_2 \vDash \left(\lambda t \; (., t'). \; \forall x. \; t[0] \simeq_{f_1} x \to t'[0] \simeq_{f_2} x\right)$

Level 3: Value-Manipulating Machines

Auxiliary Machines

- Reset : $\mathsf{TM}^1_\Sigma(1)$, s.t. Reset $\vDash (\lambda t \ (_, t'). \ \forall x. \ t[0] \simeq x \to isRight \ t'[0])$
- Copy : $\mathsf{TM}^2_{\Sigma}(1)$, s.t. Copy $\vDash (\lambda t\ (_, t'). \ \forall x. \ t[0] \simeq x \to isRight \ t[1] \to t'[0] \simeq x \land t'[1] \simeq x)$
- Translate f_1 f_2 : $\mathsf{TM}^1_\Sigma(1)$ for $f_1, f_2 : \Sigma_X \hookrightarrow \Sigma$, s.t. Translate f_1 $f_2 \vDash (\lambda t \ (-, t'). \ \forall x. \ t[0] \simeq_{f_1} x \to t'[0] \simeq_{f_2} x)$

Constructors & Deconstructors

- ConstrO \vDash (λt (_, t'). isRight $t[0] \rightarrow t'[0] \simeq 0$)
- ConstrS \vDash (λt ($_$, t'). $\forall n$. $t[0] \simeq n \rightarrow t'[0] \simeq S n$)
- CaseNat : $\mathsf{TM}^1_{\Sigma_\mathbb{N}}(\mathbb{B})$

• Goal: build a Turing machine that simulates the weak call-by-value λ -calculus with De Bruijn terms (aka. "L")

- Goal: build a Turing machine that simulates the weak call-by-value λ -calculus with De Bruijn terms (aka. "L")
- Intermediate abstract machine: instead of β -substitution, manage *closures* (variable bindings & term)

- Goal: build a Turing machine that simulates the weak call-by-value λ -calculus with De Bruijn terms (aka. "L")
- Intermediate abstract machine: instead of β -substitution, manage *closures* (variable bindings & term)
- Bindings: implemented as a linked list of closures ("heap")

```
Com ::= VAR(n : \mathbb{N}) \mid APP \mid LAM \mid RET

Pro := \mathcal{L}(Com)

Clos := \mathbb{N} \times Pro

Heap := \mathcal{L}(\mathcal{O}(Clos \times \mathbb{N}))
```

- Goal: build a Turing machine that simulates the weak call-by-value λ -calculus with De Bruijn terms (aka. "L")
- Intermediate abstract machine: instead of β -substitution, manage *closures* (variable bindings & term)
- Bindings: implemented as a linked list of closures ("heap")

```
Com ::= VAR(n : \mathbb{N}) \mid APP \mid LAM \mid RET
Pro := \mathcal{L}(Com)
Clos := \mathbb{N} \times Pro
Heap := \mathcal{L}(\mathcal{O}(Clos \times \mathbb{N}))
```

 Configurations (T, V, H): control closure stack T, argument closure stack V, heap H

If the first control closure is (a, APP :: P):

If the first control closure is (a, APP :: P):

• pop two closures from the argument stack: g and (b, Q)

If the first control closure is (a, APP :: P):

- pop two closures from the argument stack: g and (b, Q)
- push new closure (g, b) to the heap

If the first control closure is (a, APP :: P):

- ullet pop two closures from the argument stack: g and (b,Q)
- push new closure (g, b) to the heap
- push (c, Q) to the control stack (c is the address to the new heap entry)

Heap Machine Simulator: Step

Step : $\mathsf{TM}^{11}_{\Sigma^+}(\mathcal{O}(1))$ simulates single steps of heap machines:

Heap Machine Simulator: Step

Step : $\mathsf{TM}^{11}_{\Sigma^+}(\mathcal{O}(1))$ simulates single steps of heap machines:

```
Lemma (Correctness of Step)
Step \vDash StepRel \ with
StepRel := \lambda t \ (I, t'). \ \forall T \ V \ H. \ t[0] \simeq T \rightarrow t[1] \simeq V \rightarrow t[2] \simeq H \rightarrow (\forall (i:\mathbb{F}_8). \ isRight \ t[3+i]) \rightarrow if \ I = \emptyset \ then \ \exists T' \ V' \ H'. \ (T, V, H) \succ (T', V', H') \ \land t'[0] \simeq T' \land t'[1] \simeq V' \land t'[2] \simeq H' \land \Big(\forall (i:\mathbb{F}_8). \ isRight \ t'[3+i]\Big)
else \ halt(T, V, H)
```

(We also have a running time relation for Step.)

Heap Machine Simulator: Loop

Define Loop := While Step.

Lemma (Correctness of Loop)

 $Loop \models LoopRel with$

$$LoopRel := \lambda t (_, t'). \ \forall T \ V \ H. \ t[0] \simeq T \rightarrow t[1] \simeq V \rightarrow t[2] \simeq H \rightarrow (\forall (i: \mathbb{F}_8). \ isRight \ t[3+i]) \rightarrow \exists T' \ V' \ H'. \ (T, V, H) \rhd^* (T', V', H')$$

Heap Machine Simulator: Loop

Define Loop := While Step.

Lemma (Correctness of Loop)

Loop ⊨ *LoopRel* with

$$LoopRel := \lambda t (_, t'). \ \forall T \ V \ H. \ t[0] \simeq T \rightarrow t[1] \simeq V \rightarrow t[2] \simeq H \rightarrow (\forall (i : \mathbb{F}_8). \ isRight \ t[3 + i]) \rightarrow \exists T' \ V' \ H'. \ (T, V, H) \rhd^* (T', V', H')$$

(We also have a running time relation for Loop.)

Heap Machine: Halting Problem

Theorem (Halting problem reduction)

The halting problem of heap machines reduces to the halting problem of multi-tape Turing machines.

Conclusion

- We have a framework for programming and verifying multi-tape Turing machines in Coq
- We made programming structural and compositional
- The notion of value-containment gives the advantages of register machines (but we are not restricted to natural numbers)
- As a case-study, we programmed a simulator for the heap machine

Related Work

A. Asperti, W. Ricciotti
Formalizing Turing Machines
WollIC 2012

A. Asperti, W. Ricciotti

A formalization of multi-tape Turing machines Theoretical Computer Science. 2015

Xu, Jian and Zhang, Xingyuan and Urban, Christian Mechanising Turing Machines and Computability Theory in Isabelle/HOL ITP 2013

Alberto Ciaffaglione
Towards Turing computability via coinduction

Science of Computer Programming, 2016

F. Kunze, Y. Forster, G. Smolka

Formal Small-step Verification of a Call-by-value Lambda Calculus Machine arXiv preprint, 2018

Future Work

- Show that the running time function of Loop is polynomial in the size of the encoding of the initial state
- Enrich correctness relations with commitments over space-usage
- Formalise reduction from multi-tape Turing machines to single-tape Turing machines and to Turing machines with binary alphabet

Future Work

- Show that the running time function of Loop is polynomial in the size of the encoding of the initial state
- Enrich correctness relations with commitments over space-usage
- Formalise reduction from multi-tape Turing machines to single-tape Turing machines and to Turing machines with binary alphabet

Thank you!

Project home page:

https://www.ps.uni-saarland.de/~wuttke/bachelor/

Code Complexity 1

Module	Spec	Proof
Preliminary (incl. loop and relations)	176	84
Definition of Turing machines	430	194
Primitive Machines	122	34
Control-flow operators	425	383
Lifting	362	193
Simple Machines	380	278
Value containment	394	119
Copying and writing values	411	288
Alphabet-Lift with values	133	147
Deconstructors and constructors	486	482
Notations and tactics for compound or pro-	165	15
grammed machines		
MapSum	47	110
Addition and Multiplication machines	181	298
List functions machines	326	456
Heap machine simulator	981	1040
Total	5019	4121

Code Complexity 2

Library code lines: 153 spec and 2638 proof.

- discrete & finite types
- retractions (injective function with partial inverse function)
- inhabited types

Loop has:

- 30 symbols
- 11537 states

A Relational Notion For Time Complexity

Let $M: \mathsf{TM}^n_\Sigma$ and $T \subseteq \mathsf{Tape}^n_\Sigma \times \mathbb{N}$.

$$M \downarrow T := \forall t \ k. \ T \ t \ k \rightarrow \exists c. \ M(t) \triangleright^k c$$

A Relational Notion For Time Complexity

Let $M: \mathsf{TM}^n_\Sigma$ and $T \subseteq \mathsf{Tape}^n_\Sigma \times \mathbb{N}$.

$$M \downarrow T := \forall t \ k. \ T \ t \ k \rightarrow \exists c. \ M(t) \triangleright^k c$$

Lemma (Anti-monotonicity)

If $M \downarrow T'$ and $T \subseteq T'$, then $M \downarrow T$.

Some Running Time Relations

Lemma (Running time of M_1 ; M_2)

If $M_1 \models R_1$, $M_1 \downarrow T_1$, and $M_2 \downarrow T_2$, then

 $\textit{M}_{1}; \textit{M}_{2} \downarrow \left(\lambda t \ \textit{k.} \ \exists \textit{k}_{1} \ \textit{k}_{2}. \ \textit{T}_{1} \ t \ \textit{k}_{1} \ \land \ 1 + \textit{k}_{1} + \textit{k}_{2} \leq \textit{k} \ \land \ \forall t' \ \textit{\ell.} \ \textit{R}_{1} \ t \ (\textit{\ell}, t') \rightarrow \textit{T}_{2} \ t' \ \textit{k}_{2} \right)$

Lemma (Running time of While M)

If $M \models R$ and $M \downarrow T$, then While $M \downarrow WhileT$ R T, which is defined co-inductively:

$$\frac{\forall t'. \ R \ t \ (\lfloor \ell \rfloor, t') \to k_1 \leq k}{\forall t'. \ R \ t \ (\emptyset, t') \to \exists k_2. \ While T \ R \ T \ t' \ k_2 \land 1 + k_1 + k_2 \leq k}{While T \ R \ T \ t \ k}$$