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Motivation

@ Turing machines build traditional foundation of the theory of
computation and complexity

@ simple (but not quite simplistic)
@ many different models

@ usually not formally verified
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Overview: Abstraction Levels

@ Level 0: multi-tape Turing machines

e unstructured; non-compositional; huge amount of states;
low-level ®

o Level 1: labelled Turing machines

e semantical predicates for correctness & time complexity
o ‘“label” all internal states

@ Level 2: control-flow & lifting operators

e imperative language; structured; compositional
@ no need to refer to internal states

Level 3: generalised register machine

e imperative language with values
e use each tape as a register for an arbitrary encodable type

Level 4: call-by-value A-calculus
o functional language ®
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o Tapey: Type of tapes over alphabet ¥
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Level 0: Multi-Tape Turing Machines

o Tapey: Type of tapes over alphabet >

e TMg: Type of n-tape Turing machines over finite alphabet X

finite type of states @

initial state /init : Q

final states halt : Q — B

transition function § : Q x (O(X))" — Q x (O(X) x Move)"

o M(t) ¥ (g,t'): M terminates in k steps in the configuration
(g, t'), given the input tapes t

[A. Asperti, W. Ricciotti, 2015]
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Level 1: Labelled Turing Machines

@ M : TMg(L): pair of a machine and a state labelling function:
(M":TME, lab: Qu — L)

e Correctness predicate: Let M : TMg (L) and
R C Tapey x (L x Tapey).

MER = Vtqt. M(t)>" (q,t') = Rt (laby q,t)

Lemma (Monotonicity)
If ME R and R' C R, then M E R.

(There is also a notion for running time)
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Primitive Machines

Machines that terminate after 0 or 1 transitions, e.g.:
o Write(s) : TML(1), s.t.
Write(s) E (At (-, t). t'[0] = wr (¥'[0]) s)
@ Read : TML(O(X)), s.t.
Read F (At (¢,t'). t' =t A £ = current(t[0]))
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Level 2: Control-Flow

Sequential composition:
Let My : TMg(L1) and My : TM¢(L2), then My; My : TMy(Lo).
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If M]_ ': R]_ and M2 ': R2, then with R|y := Ax z. R x (y, z)

My; Mz E ] (Rile o Ro)
0Ly

Conditional:
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If My Then My Else M3 : TMg(L).
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Level 2: Control-Flow

Sequential composition:
Let My : TM%(Ll) and Mo : TM%(LQ), then My; M5 : TM%(L2).

If M]_ i: R]_ and M2 ': R2, then with R|y := Ax z. R x (y, z)

My; My = | (Rule o Ro)
0Ly

Conditional:
Let My : TMg(B) and Mo, M3 : TMg(L), then
If My Then My Else M3 : TMg(L).

If Mi E Ry, Mb E Ry, and M3 E R3, then

If My Then My Else M3 E (Riltrue © R2) U (Rilfaise © R3)




Control-Flow
0000

Level 2: Control-Flow

“Do-While” Loop:
Let M : TM$(O(L)), then While M : TMg(L).
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Level 2: Control-Flow

“Do-While” Loop:
Let M : TM$(O(L)), then While M : TMg(L).

Lemma (Correctness of While M)

If M E R, then While M £ WhileRel R, which is defined
inductively:
Rt ([4],t) Rt (0,t) WhileRel R t' (¢,t")
WhileRel R t (¢, t') WhileRel R t (¢,t")
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Level 2: Lifting

@ Problem: How to combine machines with different number of
tapes and alphabets?

My : TMg(Ly) M, : TM$(Ly)
My; My - TMg (L)
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Level 2: Lifting

@ Problem: How to combine machines with different number of
tapes and alphabets?

My : TMg(Ly) M, : TM$(Ly)
My; My - TMg (L)

@ Solution: Two lifting operators:
o Tapes-lift (increase the number of tapes)
o Alphabet-lift (increase the alphabet)
o Lift all sub-machines to the same number of tapes and
alphabet, before applying the control-flow operators
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Tapes-lift

o Let M: TMF(L) and | : Fp, — .
@ Then f; M : TMg.
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Tapes-lift

o Let M: TMF(L) and | : Fp, — .
@ Then f; M : TMg.

If M E R, then 1) M E ft R with

MR = A (L) RULt)(L,I7LE)A
(Vi ¢ img I. t'[i] = t[]])

10
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Level 3: Encoding Values

@ Idea: think of tapes as registers, that

e may contain a value of an arbitrary encodable type,

e or contain no value
@ A type X is encodable on ¥, if there is a function
encode : X — L(X).
o For example, encode(n) :=S" 4 [O]
e Obvious problem: ambiguity
@ Inductive types > x to minimally encode X on, e.g.
e Xy:=S|0
4 Zx+y = INL ‘ INR ‘ (X ZX) | (y : Z)/)

(if X is mlnlmally encodable on £y and Y on Yy)

11
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Level 3: Value-Containment

Let X be encodable on X.
Definition (XT)

S+ ::= START | STOP | UNKNOWN | (x : £x)

Definition (tape-containment)

Let t: Tapey+ and x : X.

t~x = dls. t =(Is ST@RT encode(x) STOP)
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Level 3: Value-Containment

Let X be encodable on X.
Definition (XT)

S+ ::= START | STOP | UNKNOWN | (x : £x)

Definition (tape-containment)

Let t: Tapey+ and x : X.

t~x = dls. t =(Is ST@RT encode(x) STOP)

We write t ~¢ x if X is minimally encodable on X x and
f: ZX — 2.

Definition (right tape)

isRight(t) := 3sIs. t = (Is %)

12
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Level 3: Value-Manipulating Machines

13
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Level 3: Value-Manipulating Machines

Auxiliary Machines
@ Reset: TMi(1), s.t. Reset = (At (L, t'). Vx. t[0] = x — isRight t'[0])
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Level 3: Value-Manipulating Machines

Auxiliary Machines
@ Reset: TMi(1), s.t. Reset = (At (L, t'). Vx. t[0] = x — isRight t'[0])
@ Copy: TM2(1), s.t.
Copy E (At (-, t'). ¥x. t[0] ~ x — isRight t[1] — t/[0] ~ x A t'[1] == x)

@ Translate f1 £ : TMIZ(I) for fi,fh: Lx — X, s.t.
Translate i f F (At (-, t'). Vx. t[0] 25 x — t'[0] ~, x)

Constructors & Deconstructors
@ ConstrO F (At (-, t’). isRight t[0] — t'[0] ~ 0)
@ ConstrS E (At (., t'). Vn. t[0] ~ n — t'[0] ~ S n)
@ CaseNat : TM)1:N (B)

13
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Towards A Call-By-Value A-Calculus Interpreter

@ Goal: build a Turing machine that simulates the weak
call-by-value A-calculus with De Bruijn terms (aka. “L")

[F. Kunze, Y. Forster, G. Smolka, 2018]
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Towards A Call-By-Value A-Calculus Interpreter

@ Goal: build a Turing machine that simulates the weak
call-by-value A-calculus with De Bruijn terms (aka. “L")

@ Intermediate abstract machine: instead of 3-substitution,
manage closures (variable bindings & term)

@ Bindings: implemented as a linked list of closures (“heap”)

Com
Pro
Clos
Heap

[F. Kunze, Y. Forster, G. Smolka,

= VAR(n:N) | APP | LAM | RET
= L(Com)

= N x Pro

= L(O(Clos x N))
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Towards A Call-By-Value A-Calculus Interpreter

@ Goal: build a Turing machine that simulates the weak
call-by-value A-calculus with De Bruijn terms (aka. “L")

@ Intermediate abstract machine: instead of 3-substitution,
manage closures (variable bindings & term)

@ Bindings: implemented as a linked list of closures (“heap”)

Com := VAR(n:N) | APP | LAM | RET
Pro = L(Com)
Clos = N x Pro

Heap := L(O(Clos x N))

e Configurations (T, V, H): control closure stack T, argument
closure stack V/, heap H

[F. Kunze, Y. Forster, G. Smolka, 2018] 14
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Heap Machine: APP Rule

If the first control closure is (a, APP :: P):
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Heap Machine: APP Rule

If the first control closure is (a, APP :: P):

@ pop two closures from the argument stack: g and (b, Q)
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Heap Machine: APP Rule

If the first control closure is (a, APP :: P):
@ pop two closures from the argument stack: g and (b, Q)

@ push new closure (g, b) to the heap
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Heap Machine: APP Rule

If the first control closure is (a, APP :: P):
@ pop two closures from the argument stack: g and (b, Q)
@ push new closure (g, b) to the heap

@ push (c, Q) to the control stack (c is the address to the new
heap entry)

15
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Heap Machine Simulator: Step

Step : TMs% (O(1)) simulates single steps of heap machines:

Lemma (Correctness of Step)

Step F StepRel with

StepRel :=
At (I,t)). VT V H. t[0] = T — t[1] ~ V — t[2] >~ H — (¥(i : Fg). isRight t[3 + i]) —
if | =0 then 3T V' H' . (T,V,H) = (T',V',H') A

YO~ T At~ V A2~ H A (V(i . Fg). isRight t'[3 + i])

else halt(T, V, H)
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Heap Machine Simulator: Step

Step : TMs% (O(1)) simulates single steps of heap machines:

Lemma (Correctness of Step)

Step F StepRel with

StepRel :=
At (I,t)). VT V H. t[0] = T — t[1] ~ V — t[2] >~ H — (¥(i : Fg). isRight t[3 + i]) —
if | =0 then 3T V' H' . (T,V,H) = (T',V',H') A

YO~ T At~ V A2~ H A (V(i . Fg). isRight t'[3 + i])

else halt(T, V, H)

(We also have a running time relation for Step.)

16
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Heap Machine Simulator: Loop

Define Loop := While Step.

Lemma (Correctness of Loop)

Loop E LoopRel with

LoopRel := At (-, t'). VT V H. t[0] =~ T — t[1] & V — t[2] ~ H — (V(i : Fg). isRight t[3 + i]) —
3TV H . (T, V,H) ™ (T, V', H)
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Heap Machine Simulator: Loop

Define Loop := While Step.

Lemma (Correctness of Loop)

Loop E LoopRel with

LoopRel := At (-, t'). VT V H. t[0] =~ T — t[1] & V — t[2] ~ H — (V(i : Fg). isRight t[3 + i]) —
3TV H . (T, V,H) ™ (T, V', H)

(We also have a running time relation for Loop.)
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Heap Machine: Halting Problem

Theorem (Halting problem reduction)

The halting problem of heap machines reduces to the halting
problem of multi-tape Turing machines.

18
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Conclusion

@ We have a framework for programming and verifying
multi-tape Turing machines in Coq

@ We made programming structural and compositional

@ The notion of value-containment gives the advantages of
register machines (but we are not restricted to natural numbers)

@ As a case-study, we programmed a simulator for the heap
machine

19
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Future Work

@ Show that the running time function of Loop is polynomial in
the size of the encoding of the initial state

@ Enrich correctness relations with commitments over
space-usage
o Formalise reduction from multi-tape Turing machines to

single-tape Turing machines and to Turing machines with
binary alphabet

21
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Future Work

@ Show that the running time function of Loop is polynomial in
the size of the encoding of the initial state

@ Enrich correctness relations with commitments over
space-usage

o Formalise reduction from multi-tape Turing machines to
single-tape Turing machines and to Turing machines with
binary alphabet

Thank youl!

Project home page:
https://www.ps.uni-saarland.de/~wuttke/bachelor/

21


https://www.ps.uni-saarland.de/~wuttke/bachelor/

Backup Slides
@000

Code Complexity 1

Module Spec | Proof
Preliminary (incl. loop and relations) 176 84
Definition of Turing machines 430 194
Primitive Machines 122 34
Control-flow operators 425 383
Lifting 362 193
Simple Machines 380 278
Value containment 394 119
Copying and writing values 411 288
Alphabet-Lift with values 133 147
Deconstructors and constructors 486 482
Notations and tactics for compound or pro- 165 15
grammed machines

MapSum 47 110
Addition and Multiplication machines 181 298
List functions machines 326 456
Heap machine simulator 981 | 1040
Total | 5019 [ 4121
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Code Complexity 2

Library code lines: 153 spec and 2638 proof.
@ discrete & finite types
@ retractions (injective function with partial inverse function)

@ inhabited types

Loop has:
@ 30 symbols
@ 11537 states

23
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A Relational Notion For Time Complexity

Let M: TMg and T C Tapey x N.

MIT :=Vtk Ttk—3c. M(t)vkc
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A Relational Notion For Time Complexity

Let M: TMg and T C Tapey x N.

MIT :=Vtk Ttk—3c. M(t)vkc

Lemma (Anti-monotonicity)
IfFM | T and TC T, then M | T.

24
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Some Running Time Relations

Lemma (Running time of My; M»)
If M1 E Ry, My | T1, and My | T,, then

Ml;MQl,()\t k.3dky ko. Ti t ki AN 14+ ki +ko <k A vt 4. Ry t(f,tl)—>T2 t/ kz)
v

Lemma (Running time of While M)
If ME R and M | T, then While M | WhileT R T, which is defined co-inductively:
Tthk Vet Rt (|4],t)— k <k

V' Rt (0,t') — 3ko. WhileT R T t ko A1+ ki + ko < k
WhileT R T t k

A
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