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Abstract. We develop synthetic notions of oracle computability an
Turing reducibility in the Calculus of Inductive Constructions (CIC)
the constructive type theory underlying the Coq proof assistant. As usua
in synthetic approaches, we employ a definition of oracle computation
based on meta-level functions rather than object-level models of compu
tation, relying on the fact that in constructive systems such as CIC al
definable functions are computable by construction. Such an approac
lends itself well to machine-checked proofs, which we carry out in Coq.

There is a tension in finding a good synthetic rendering of the higher
order notion of oracle computability. On the one hand, it has to be in
formative enough to prove central results, ensuring that all notions ar
faithfully captured. On the other hand, it has to be restricted enoug]
to benefit from axioms for synthetic computability, which usually con
cern first-order objects. Drawing inspiration from a definition by Andre
Bauer based on continuous functions in the effective topos, we use a ng
tion of sequential continuity to characterise valid oracle computations.

As main technical results, we show that Turing reducibility forms ai
upper semilattice, transports decidability, and is strictly more expressiv
than truth-table reducibility, and prove that whenever both a predicat
p and its complement are semi-decidable relative to an oracle g, then |
Turing-reduces to gq.
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1 Introduction

The founding moment of “computability theory” deserving of the suffix “theory” was n
Emil L. Post’s 1944 paper [25]. Post introduced the concepts of one-one, many-on€
truth-table reducibility and identified and answered important questions on the struy
of the reducibility degrees induced by these relations. Centrally, Post was interested |
question whether there are enumerable but undecidable degrees such that an undecidé
proof cannot be done by reduction from the halting problem. For many-one and truth
reducibility, Post was able to construct such degrees by introducing simple and hypers
sets, which are still taught in modern textbook presentations of the field. The qu¢
whether an enumerable, undecidable problem which is not Turing-reducible from the h
problem exists became known as Post’s problem, and we reuse the terminology for |
problem for many-one reducibility (<m) and Post’s problem for truth-table reducibility
Early in his paper, Post remarks ‘That mathematicians generally are oblivious |
importance of this work of Gédel, Church, Turing, Kleene, Rosser and others as it affed
subject of their own interest is in part due to the forbidding, diverse and alien formalis
(oI |iconced undor Creative Gommons License CC-BY 40
31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 16; pp. 16:1-16:21
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—— Abstract

The Kleene-Post theorem and Post’s theorem are two central and historically important results in the
development of oracle computability theory, clarifying the structure of Turing reducibility degrees.
They state, respectively, that there are incomparable Turing degrees and that the arithmetical
hierarchy is connected to the relativised form of the halting problem defined via Turing jumps.

We study these two results in the calculus of inductive constructions (CIC), the constructive type
theory underlying the Coq proof assistant. CIC constitutes an ideal foundation for the formalisation
of computability theory for two reasons: First, like in other constructive foundations, computable
functions can be treated via axioms as a purely synthetic notion rather than being defined in terms
of a concrete analytic model of computation such as Turing machines. Furthermore and uniquely,
CIC allows consistently assuming classical logic via the law of excluded middle or weaker variants
on top of axioms for synthetic computability, enabling both fully classical developments and taking
the perspective of constructive reverse mathematics on computability theory.

In the present paper, we give a fully constructive construction of two Turing-incomparable
degrees a la Kleene-Post and observe that the classical content of Post’s theorem seems to be related
to the arithmetical hierarchy of the law of excluded middle due to Akama et. al. Technically, we base
our investigation on a previously studied notion of synthetic oracle computability and contribute
the first consistency proof of a suitable enumeration axiom. All results discussed in the paper are
mechanised and contributed to the Coq library of synthetic computability.
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1 Introduction

We study two well-known results in computability theory from the perspective of synthetic
mathematics: the Kleene-Post theorem [30], stating that there are incomparable Turing
degrees] and Post’s theorem [39], establishing a close link between Turing jumps and the

! The seminal 1954 paper by Kleene and Post establishes various other results besides this one. In

DY L P T P T Y T R T T . . 2 o . P T T T P T P LS BN



Maln ReSUIt [Muchnik 1956] [Friedberg 1957] [Lerman and Soare 1980] [Nemoto 2024]

Corollary 6.55 Assuming ¥1-LEM, there exists a low simple predicate.

We mechanise a solution to Post’s problem
in synthetic computability



Background



Synthetic COmPUtability [Richman 1983] [Bauer 2006]

PisDecidable: df: X - B.P x & f x = true -A—f—iseomputable-

What is computable ?

Turing Machine A-Calculus Synthetic Computability

fix F:= \x. fixX fix F «
fix . =Af,F.F (\z. f f F x)




Synthetic Computability

A predicate P : X — [Prop is

Decidable df:X->B.Px <« fx=true

Semi-decidable df: X—>N->B.Px < dn. fx n = true

Forany P : X — Propand QO : Y = Prop

Many-one Reduction

P< Q= 3dAf: X->Y.Vx.Pxo QO (fx)



Church’s Thesis

There is an enumerator @ : N — (N — N) for all partial functions:

Vi:N—=N. de.Vzv. fealv< 0,20

“Does a Turing machine halt

on a given input?” Halting Problem Hx := 6, x|

Why CIC? CIC + CT 4+ LEM is(believed to be) consistent



Post’s Problem

H Semi-decidable
“Is there an undecidable, Predicates
semi-decidable predicate D
that is strictly easier than the Halting ?
problem?” Decidable
Predicates

- Post, 1944



Easier than Halting Problem?

Semi-decidable
: : H Predicates
P is reducible to QO
Many-one Reduction: H=, P
Decidable
Turing Reduction: H=<,P Predicates

Consider reductions in a more general sense, i.e.,
Turing reduction, which is also the problem Post left
open in his paper [post 1944].

6



Oracle C()mplltability in synthetic computability

Synthetic notation of Oracle Computable

(0. C.):
/611 4 493 ---

\ by modulus continuity [Bauer 2021]

| a dp ds ... e A series definitions of oracle computability
Oracle Machine

O.C. is capturing by some underlying
computable object:

e The first definition of oracle computability

In CIC [Forster 2021][Kirst, Muck & Forster 2022] [Forster, Kirst &
Miuck 2023]
e Oracle modalities [swan 2024]




The First Challenge

Oracle computability is non-trivial in synthetic computability

But,

[Forster, Kirst & Muck 2023]

We need to consider oracle
machines that can be “executed”

(Other frameworks are similar)

Definition 3.22 (Step-Indexed Oracle Machines) For any given datatype T, a func-
tiond: (N — N*—~N+T) = (N —= Prop) = N = N — T’ iscalleda step-indexed oracle

machine, if it meets the following requirement for any oracle machine e with a semi-decidable
oracle p : N — Prop:

Vxb.Ze pxb— lim Definition 3.30 (Use Functions) Given a step-indexed oracle machine ¢, a use func-
e tionu: N — (N — Prop) - N — N — N is a function that satisfies the following

where we abbreviate $2™ x nas ¢F (x) . properties: Let w = ud (x)[nl,

Pd(x)N] L = Vp.p=w Gn = Ze P e, (3.1)
8 ¢2 (x)[n] | — dn+1 =w qn — (bg (x)n+1] 4, (32)
dd(x)Ml L = gnt1 =w gn 2 ud(X)+ 1] =w, (3.3)



Solutions to Post’s Problem

Finite extension Semi-decidable
Simple Predicate - H -
method [post 1944] P Predicates
... After 12 years |
Decidable
Predicates

Friedberg—Muchnik Theorem

Method Low Simple Predicate
[Lerman & Soare 1980] [Soare 199N




Solutions to Post’s Problem in synthetic computability

in synthetic

] . H Semi-decidable
computability Simple Predicate - Dredicates
[Forster & Jahn 2023]

Decidable
Predicates

in synthetic

computability Low Simple Predicate
now \




The Priority Method

Low simple predicates

Not Turing-reducible from the halting problem _ . .
semi-decidable, yet undecidable

10



Low Simple Predicate

S (w) is a dow-detigie predicate

12



The Priority Method

Yy : N —= N — N — Prop

n~L vyrx n~L Vx.—vy:x
0~ [] n+1~~x:L n+1~L

Sy x = dnL.(n~L)A(x € L)

Y is computable and functional :

| S, is semi-decidable
(Extension)

13



Simple Extension

x(w), ex = x € Wen] /\w%(e) < X
W)k e = L# W.[n] A Ix. oc(w)TL1 e X
)L

vk x = Je.e<nAeispe. B(w): e Axis pux. a(w): ex

P.(S) = =LW,) > W.NS #)

Pl < P2 < P3< P4 < P5< P6 o o o

w greater than 2e and : IS .
, ~(w) is simple
convergent (wall functions)

14



Use Function

fals rue
N
undef o ask 1 t
Oracle Machine undef iy ask 2
alse true
// \
undef out true

ud (x)[n] := max( List of questions ) + 1

The modulus of continuity

15



Low Wall

U(e)in] = max(uf(e/)n)
wTLL(e) — max(2- e, Ug(e)[n])

The Limit Lemma $ S (w) is Low

16



Classical AXioms o200

LEM = Vp:Prop.pV—p

2, — LEM = VK. Vp : N* = Prop. Z,p > W.pvV—pv

2n = {p|Vx.px ¢ Jy; VY2 y3 Yys ... R(x,y1,...,Yyn) AD(R)}

>, —LEM = %, | -LEM = +¢e = 3, - LEM = 3 - LEM = X, - LEM

|

LPO = Vf:N — B. (In. f n = true) V (Vn. f n = false)

17
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Classical Axioms

[Zeng, Forster, and Kirst 2024]

¥, — LEM : 15 .S is a low simple predicate

TYPES 2024

Logic Colloquium 2024 [Nemoto 2024] A paper proof in analytic computability

LC >, — LEM : 45 .S is a low simple predicate

We mechanise this result in

Synthetic CQmputa b|||ty CCC 2024 Post’s Problem in Constructive Mathematics

Haoyi Zeng!, Yannick Forster?, Dominik Kirst?, and Takako Nemoto®

[Zeng, Forster, Kirst, and Nemoto 2024]

! Saarland University, Germany
2 Inria Paris, France
® Tohoku University, Japan



Formalisation in Coq

Low Simple Predicates

Lines of code: ~ 1200 Sirr.iple Limit Computability
Predicates
Lines of code: ~ 1000 Step-Indexed Oracle Machines

Lines of code: ~ 400 The Priority

Method Oracle Computability

Synthetic Computability



Contribution

This thesis makes the following contributions:

® A definition of synthetic step-indexed oracle
machines and use functions

® A synthetic notion of limit computability and
the limit lemma

® The first synthetic and mechanised solution
to Post’s problem

20

Future Work

Friedberg-Muchnik Theorem
Low Basis Theorem

Use of 2, — LEM
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Appendix A

Oracle Computable
Based on a notion of computability of functionals F': (0 - A - P) - (I - O — P), The argument

R : (0 — A — Pistoberead as the oracle relating questions g : J toanswersa : A, 1 : lis the input to

the computation, and o : O is the output, such an F'is considered (oracle)-computable if there is an
underlying computationtreet : [ - A* —= (0O + O):

VRxb.FRxb < dgsas.tx;RFgs,as ANt x as> out b

where the interrogation relation o; R = gs; as is inductively defined foro : A* = QO + O as:

oc.,RFqgs;as ocas>ask g R(qg,a)
o ,RFqgs@|qg];as@|a]

o ;R [];1]



Turing redUCible in synthetic computability

Synthetic notation of Oracle Computable

(0. C.):
/611 4 493 ---

Fis O.C. is capturing by some underlying
computable object [Forster, Kirst & Miick 2023]

7 Properties of Turing Reducibility

Oracle Computability and Turing Reducibility
We continue with similarly standard properties of Turing reducibility. Again,

. . . *
in the Calculus of Inductive Constructions all proofs are concise but precise. As a preparation, we first note that Turing
reducibility can be characterised without the relational layer.

. 00028676 Lemma 20. p <7 g if and only if there is T such that for all & and b we have
Yannick FOK'SY/CI'I[ODDB 00028676 9819]’

Dominik Kirst2-3(0000-0003-4126-6975] ' anq pab <> Igsas. T ; g gs ; as A Tz asbout b,
Niklas Miick3[0009-0006-9622-0762]

Now to begin, we show that Turing reducibility is a preorder.

1 Inria, LS2N, Université Nantes, France
yannick.forster@inria.fr

Theorem 21. Turing reducibility is refleive and transitive.

2 Ben-Gurion University of the Negev, Beer-Sheva, Israel Proof. Reflexivity follows directly by the identity functional being computable
kirstGcs.bgu.ac.il via Lemma 4. Transitivity follows with Lemma 8. o
3 S . .
Saarland University and MPI-SWS, Saarland Informatics Campus, Saarbriicker In fact, Turing reducibility is an upper semilattice:
Germany
s8nimuec@stud.uni-saarland.de Theorem 22. Let p: X—P and ¢:Y 5P. Then there is_a lowest upper bound
p+g: X +YP wrt 21 Let (p+q ‘We define oracle computability by observing that a terminating computation
P+ q is the join of p and g w.rt <1 ith les h ial form: i Fth b )
p=rr and g=<1r then p+ q=1r. with oracles has a sequential form: in any step of the sequence, the oracle compu-
tation can ask a question to the oracle, return an output, or diverge. Informally,
. . . Proof. The first two claims follow by nf h tial behavi b P that t inati
Abstract. We develop synthetic notions of oracle computability and let F, reduce p to r and be computed Wwe can enlorce such sequential behaviour Dy requiring that every terminating
Turing reducibility in the Calculus of Inductive Constructions (CIC), 2. Define computation FRio can be described by (finite, possibly empty) lists gs: @* and
the constructive type theory underlying the Coq proof assistant. As usual . as: A* such that from the input 7 the output o is eventually obtained after a
in synthetic approaches, we employ a definition of oracle computations FiRzo ifz=inlz . . . . B
. . FRzo:= . X finite sequence of steps, during which the questions in gs are asked to the oracle
based on meta-level functions rather than object-level models of compu- FRzo ifz=inry T 4 A : . :
tation, relying on the fact that in constructive systems such as CIC all one-by-one, yielding corresponding answers in as. This computational data can
definable functions are computable by construction. Such an approach 7 computes F, and F reduces p + ¢ tf be captured by a partial® function of type I—A*—Q + O, called the (compu-
lends itself well to f"“h‘“_e'ChEd‘ed proofs, which we carry out in Cog. We continue by establishing pro tation) tree of F, that on some input and list of previous answers either returns
There is a tension in finding a good synthetic rendering of the higher- oracle semi-decidability discussed in the next question to the oracle, returns the final output, or diverges.

order notion of oracle computability. On the one hand, it has to be in-
formative enough to prove central results, ensuring that all notions are So more formally, we call F: (Q—A—P)—(I—0—P) an (oracle-)computable

a a ° ° ° faithfully captured. On the other hand, it has to be restricted enough functional if there is a tree 7: I—+A*—Q + O such that
to benefit from axioms for synthetic computability, which usually con-

the non-relativised notion of decidabi

cern first-order objects. Drawing inspiration from a definition by Andrej VRio. FRio <+ 3gs as. 7i; RFgs;as A Tiasbout o
Bauer based on continuous functions in the effective topos, we use a no-

i f ial inui h: i lid 1 ions. . . . . . . .
tion of sequential continuity to characterise valid oracle computations with the interrogation relation o; R I- gs; as being defined inductively by

]
r I M h I n As main technical results, we show that Turing reducibility forms an
upper ilattice, transports decidability, and is strictly more expressive . .
than truth-table reducibility, and prove that whenever both a predicate o;Rbgs;as oasbask ¢ Rqa

p and its complement are semi-decidable relative to an oracle g, then p o R[] o ; R-gs+t[q] ; as++[a
Turing-reduces to g.

where A* is the type of lists over a, [+’ is list concatenation, where we use the
suggestive shorthands ask ¢ and out o for the respective injections into the sum
type Q@ + O, and where o: A*—Q + O denotes a tree at a fixed input 4.

* Yannick Forster received funding from the European Union’s Horizon 2020 research To provide some further intuition and visualise the usage of the word “tree”,

and innovation programme under the Marie Sktodowska-Curie grant No. we discuss the following example functional in more detail:
101024493. Dominik Kirst is supported by a Minerva Fellowship of the Minerva

Stiftung Gesellschaft fuer die Forschung mbH. F : (N 5B ]P) N (N 5B IP’)
FRio := o=true AVq <i.Rqtrue

Keywords: Type theory - Logical foundations - Synthetic bility
theory - Coq proof assistant

Pxo FQxtt

Turing reduction P< 0O :=3F. FisO.C. A A
g <0 Vx.ﬂPXHFQXﬁA
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Appendix B

Step index function

We insert this oracle O into our Turing machine by fixing a n, and subsequently run 7. Based on
this effectively computable oracle, we can define a total function ® as follows:

“out o™ if (T x []) ~»jouto
HOM) . 7 Task g if (Tx []) ~»jaskgand i =0
Xij = -
‘ / @S@E)T;an]xi’j if (Tx []) ~»jaskgand i =S 7
none otherwise

Given that P is Turing reducible to &, we obtain the

computable tree 7. Building upon the step-index xp(s,x) = {b if ¢¥(x) s|="b"
function described above, we define the following tt otherwise
function:




Low Simple Predicate 1

undecidable predicate
Simple predicate: >
If a predicate P is simple, then P is semi-decidable and —(P < @)

Turing jump of P:
P’ x & x-th oracle machine with oracle P halts on x

30



Low Simple Predicate 2

Low predicate: A predicate P is low, if the Turing jump of P is reducible to K
P'< K= ~(K < P)

Low Simple predicate: @ < P < K, whereP<Q:=P<QA-(P<0Q)

\_

Showing a predicate is reducible to K is difficult!

A positive solution to Post’s Problem

31



Use Function

Let k = o(e)[n]
PP(e)n| ="x1"—=>Vq. ¢ = pln] — = § e *

oP(x)|n] =k = pnl =L pn+1] - L(z)n+1] =k

32



