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Abstract

We describe our formalisation of a solution to Post’s Problem using the priority method
in synthetic computability theory. Compared to a usual, analytic approach employing ex-
plicit models of computation, a synthetic approach axiomatically considers all functions
N→N to be computable. We work in the Calculus of Inductive Constructions and mecha-
nise all proofs in the Coq proof assistant.

Background Posed by Emil Post in 1944 [16], Post’s problem asks whether there are semi-
decidable, yet undecidable predicates that are not Turing-reducible from the halting problem.
Post’s problem has been a crucial open question driving research in computability theory until
a breakthrough came with the positive solution by Friedberg and Muchnik [9, 14] in 1956/57.
They introduced independently what is now known as the priority method, in order to show that
there exist two semi-decidable, Turing-reduction incomparable degrees. The priority method
has since become a cornerstone in the field of computability theory, essential for exploring and
understanding the structure of computability degrees [12, 13, 20].

Today, virtually every textbook on computability theory (e.g. [23, 18, 22, 15]) discusses
Post’s problem and the use of the priority method. From the perspective of machine-checked
proofs, the interactive theorem proving community has successfully formalised cutting-edge
mathematics in several proof assistants, however, formalising computability theory remains a
challenge. A main intricacy is the use of models of computation for formal proofs [8], due to
the level of uninteresting details involved that stay invisible on paper.

A solution is proposed by synthetic computability [17, 1], which exploits constructive math-
ematics as its foundation. In a synthetic approach to computability theory, every function is
considered computable. For instance, the decidability of a predicate P : X → P is now defined
as ∃f : X → B. P x ↔ f x = true, which eliminates the need to show f computable in a model.

Since the Calculus of Inductive Constructions (CIC) is a constructive system where the law
of excluded middle stays consistent even when assuming axioms for synthetic computability, it
is natural to ask questions of constructive reverse analysis. The formalisation and constructive
analysis of synthetic computability have received attention in recent years, encompassing the
study of many-one reduction, Post’s theorem, the arithmetic hierarchy, and Turing computabil-
ity [3, 4, 7, 5, 11]. In 2021, Andrej Bauer has posed the challenge to “give a synthetic proof of
Friedberg-Mucnik theorem” [2].

Due to the historic importance of Post’s problem, we consider the successful completion of
this challenge a milestone in synthetic computability and the formalisation of computability
theory. Notably, the necessity for the priority method will play a crucial role in the further
development of machine-checked synthetic computability.

Low Simple Predicate Soare’s solution to Post’s problem [21] constructs a so-called low
simple predicate directly, rather than proving the full Friedberg-Muchnik theorem constructing
two incomparable predicates. Since a synthetic notion of simple predicates has been defined in
previous work [4], we here focus on the aspect of lowness. A predicate P is low if its Turing
jump P ′ is reducible to the halting problem H, ie. P ′ ⪯T H.
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This leaves us with three key questions: 1) What is the simplest technique to establish that
a predicate is reducible to the halting problem? 2) How can we formalise the priority method
synthetically? 3) How can we instantiate the method to obtain a low simple predicate? We
address these questions within the framework of synthetic computability, following Soare [23].

1) Limit computablility We conjecture that the simplest way to give a reduction to
the halting problem in our case is by using the notion of limit computability [19, 10]. It is
equivalent to being reducible to the halting problem, but easier to establish. We use the notion
of the characteristic relation P̂ : X → B → P of a predicate P , where P̂ x true ↔ P x and
P̂ x false ↔ ¬P x. We call P : X → P limit-computable if there is a function f : X → N → B
such that

∀x b. P̂ (x, b) ↔ ∃n. ∀m > n. f(x,m) = b.

Based on this definition and the previously developed Turing computability in synthetic
computability [6], we have already verified the limit lemma, which states that a predicate P is
limit-computable if and only if P is reducible to H.

This brings us to the position that we just need to prove limit computability of P ′ to prove
lowness of the to-be-constructed simple predicate P .

2) The finite injury priority method The priority method can be used to construct
semi-decidable predicates P satisfying an infinite set of requirements Re. In order to construct
P , the following inductive predicate computably binds a list L to each stage n, where then
P x := ∃n L. n⇝ L ∧ x ∈ L. The predicate is parameterized by an extension γ : N∗ → N →
N → P, which is used to determine whether an element can enter the predicate at step n + 1
and can recursively depend on L that fulfils n⇝ L.

0⇝ [ ]

n⇝ L γL
n x

n+ 1⇝ x :: L

n⇝ L ∀x. ¬ γL
n x

n+ 1⇝ L

In this work, we consider the simplest form of the priority method, the finite injury priority
method, as originally developed by Friedberg and Muchnik, which is sufficient for constructing
low simple predicates. The term ”finite injury” refers to the possibility that some of the
requirements in Re on P might be broken during the construction of P due to the satisfaction
of others, also known as ”injury”. However, because the injury is finite, P will ultimately satisfy
all Re as required.

3) Instantiation to a low simple predicate To construct a low simple predicate, γ is
instantiated to an appropriate extension.

We took advantage of formalised proof to achieve this goal by constructing the proof in a
modular way. First, we considered an extension γ, ensuring that some requirements Re are
met, which implies P is a simple predicate.

In the second step, we observed that certain conditions in γ can be abstracted to any
convergent function ω. According to Soare’s construction, we refined the results in oracle
computability, providing a suitable definition to concretize this function ω, so that some re-
quirements Ne will be finitely injured at some stages, but are eventually satisfied, which entail
that this predicate is low.

Future work Currently, on top of a typical formulation of Church’s thesis for synthetic
computability [1], we assume the law of excluded middle for all proofs, i.e. full classical logic.
As a next step, we plan to weaken this assumptions as much as possible, e.g. by restricting the
logical complexity of propositions in axioms, and then perform a constructive reverse analysis.
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