
Saarland University
Faculty ofMathematics and Computer Science

Bachelor’s Thesis

Post’s Problem and the
PriorityMethod in

Synthetic Computability

Author
Haoyi Zeng

Supervisor
Prof. Dr. Gert Smolka

Advisors
Dr. Yannick Forster
Dr. Dominik Kirst

Reviewers
Prof. Dr. Gert Smolka
Dr. Dominik Kirst

Submitted: 20th August 2024





iii

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.
Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Erklärung
Ich erkläre hiermit, dass die vorliegende Arbeit mit der elektronischen Version
ü̈bereinstimmt.
Statement
I hereby confirm the congruence of the contents of the printed data and the elec-
tronic version of the thesis.

Saarbrücken, 20th August, 2024



Life begins after the bachelor’s thesis.
Prof. Gert Smolka



Abstract

Post’s problem, posed by Post in 1944, has been a crucial question driving research
in computability theory for more than a decade. It asks whether semi-decidable
yet undecidable predicates exist that cannot be proven undecidable via Turing re-
duction from the halting problem. This problem remained open until Friedberg
and Muchnik achieved a breakthrough independently in 1956/57 with a positive
solution by developing the priority method.
In this thesis, we mechanise a solution to Post’s problem within synthetic com-
putability using the proof assistant Coq. The synthetic approach to computability
is grounded in constructive mathematics, where every function can axiomatically
be considered computable. Therefore, it eliminates the need to prove that a func-
tion is computable within a model of computation, such as Turing machines or
the λ-calculus.
Using the prioritymethod, ourmechanisation follows Lerman and Soare’s solution
to Post’s problem by constructing low simple predicates. This approach is more ac-
cessible compared to Friedberg and Muchnik’s construction. To achieve this, we
define step-indexing and use functions for oracle machines based on Forster, Kirst,
and Mück’s definition of synthetic oracle computability. Furthermore, we mecha-
nise Nemoto’s result that the limited principle of omniscience is sufficient to show
the existence of low simple predicates.



Let me show you some magic.
Dominik Kirst



Acknowledgements

First, my deepest gratitude goes to Prof. Smolka for offering me a thesis at his chair
and his passionate lectures that mademe decide to study computer science at Saar-
land. Equal thanks are due to my two excellent advisors, Yannick and Dominik,
without whom I can’t imagine how I would have completed this project. In par-
ticular, I benefited from Yannick’s intuition, both for synthetic computability and
navigating the way to the hotel. Dominik, I am immensely grateful for showingme
the magic in your office three years ago - Curry-Howard correspondence; although
I was not yet a student then, this guided me towards constructive type theory.
I am deeply grateful for the support and help I received from my friends while
writing this thesis. Over the past three years in Saarland, they have been my class-
mates, colleagues, students, tutors, and advisors, and their company has been a
significant part of my bachelor’s journey. Vielen Danke! Special thanks to Aaron,
Janis, Fabian, Johannes, Nils, Niklas, Benjamin and Simon.
I extend my gratitude to Prof. Derek Dreyer and Prof. Jan Reineke, who provided
valuable feedback onmy thesis. Additionally, I amgrateful for their generous fund-
ing, which allowed me to present this project at the TYPES conference in Copen-
hagen.
I’d like to thank my family’s endless support, as well as the support from the cat
support team, Baloo and Virgo. Also, thanks to Dize’s assistance, which allowed
me to submit this thesis from Lausanne.
Finally, I give heartfelt thanks to Zheyuan, without whom I would not be where I
am today.





Contents

Abstract v

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7
2.1 The Calculus of Inductive Constructions . . . . . . . . . . . . . . . . . 7

2.1.1 Basic Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Partial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Synthetic Computability . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Church’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Classical Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Oracle Computability 13
3.1 Synthetic Oracle Computability . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Oracle Computability . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Turing Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Turing Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Step-Indexed Oracle Machines . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Step-Indexed Execution . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Use Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Limit Computability 29
4.1 Arithmetical Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Synthetic Limit Computability . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Limit Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



x Contents

5 Post’s Problem 37
5.1 Post’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Many-One Degrees . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Truth-Table Degrees . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Turing Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Friedberg-Muchnik Theorem . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Lerman and Soare’s Construction . . . . . . . . . . . . . . . . . . . . . 42

6 Low Simple Predicates 45
6.1 The Priority Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.2 Concrete Example: The Halting Problem . . . . . . . . . . . . 48

6.2 Simple Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 LowWall Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1 Wall Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.2 Lowness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.4 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.5 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion 63
7.1 Mechanisation in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 69



Chapter 1

Introduction

"As a result we are left completely on the
fence as to whether there exists a
recursively enumerable set of positive
integers of absolutely lower degree of
unsolvability than the complete set K, ..."

EMIL L. POST

In this thesis, we mechanise a solution to Post’s problem [52] within synthetic
computability using the Coq proof assistant. Based on Forster, Kirst, and Mück’s
definition of synthetic oracle computability [18, 21], we introduce the definition
of step-indexing and use functions for oracle machines, the priority method, and
limit computability in synthetic computability. A synthetic solution to Post’s prob-
lem is then provided by constructing low simple predicates, following Lerman and
Soare’s approach [44].

H

?
decidable

reducible from H

semi-decidable

Figure 1.1: Post’s problem is whether the shaded area is inhabitated.



2 Introduction

In this introductory section, wewill informally outline the key concepts involved in
our discussion. The central topic is Post’s problem, which was posed by Emil Post
in 1944 [52]. This problem is about whether semi-decidable predicates exist that
cannot be proved undecidable by Turing reduction from the halting problem H.
As shown in Figure 1.1, the existence of solutions to Post’s problem would imply
a rich order structure of predicates up to Turing reduction. This problem has been
a long-standing open problem driving research in computability theory for over a
decade, until a breakthrough came with a new method by Friedberg and Muchnik
independently in 1956 and 1957 [27, 46]. With this newmethod, they proved what
is nowknown as the Friedberg-Muchnik theorem,which implies a positive solution
to Post’s problem. The method they introduced, called the priority method, has
since become a cornerstone in computability theory, essential for exploring and
understanding the degrees of undecidability [42, 44, 59]. Post’s problem and the
use of the priority method are discussed in virtually every textbook on advanced
computability theory (e.g. [62, 54, 61, 49]).
From the perspective of machine-checked proofs, the interactive theorem proving
community has successfullymechanised cutting-edgemathematics in several proof
assistants. However, as will be discussed later, mechanising computability theory
presents unique challenges.

Synthetic Computability In the mechanisation of computability theory, a main
intricacy is the use of models of computation (e.g. Turing machines, λ-calculus) for
formal proofs [23, 25, 40, 26, 24]. For instance, the usual (also known as analytic)
approach defines decidability of a predicate P as

∃f : N → B. f is computable∧ ∀n. n ∈ P ↔ f(n) = true.

Based on this definition, proving decidability requires showing that the Boolean
function f is computable within a model of computation. In a mechanised setting,
this requires a tedious amount of proofs about uninteresting details that usually
stay invisible on paper. This slowed progress immensely, and ultimately lead to-
wards the development of synthetic computability theory, which avoids much of
the tedium. In order to avoid these difficulties arising from any specific model,
synthetic computability is proposed as a solution, pioneered by Richman, Bridges,
and Bauer [6, 53, 3], which exploits constructive mathematics as its foundation.
In a synthetic approach to computability theory, every function is considered com-
putable axiomatically. It is possible since only classical logic introduces non-com-
putable functions. Thus, the decidability of a predicate P is now defined as ∃f :

N → B. ∀n. n ∈ P ↔ f(n) = true, which eliminates the need to prove that f is
computable within a model. With this, one can focus on the mathematical essence
behind computability theory and no longer needs to rely on any model of com-



3

putation. This approach has proven successful: Many topics have been developed
synthetically [18, 16, 21, 19, 34].
While synthetic computability significantly reduces efforts of mechanisation by
treating computability as a primitive concept. Advanced computability theory in-
volves concepts like oracle machines and Turing reductions, which necessitate an
understanding of oracle computability. This concept, however, is not straightfor-
ward in the context of synthetic computability. The first definition is proposed by
Bauer [4], with subsequent variations by Forster, Kirst, and Mück. [21, 20], and
work on oracle modalities by Swan [64].

Constructive Reverse Mathematics Through the calculus of inductive construc-
tions (CIC) [12, 11, 50], the underlying theory behind the Coq proof assistant,
synthetic computability becomes usable in Coq [16, 22]. This is achieved by as-
suming axioms common in synthetic computability, such as Church’s thesis (CT)
and its variants [38, 17, 15], which internalise the fact that all functions are com-
putable. Moreover, since CIC is a constructive system where the law of excluded
middle (LEM) remains consistent even when assuming axioms (e.g. CT) for syn-
thetic computability [15], it is natural to study the equivalence between different
strengths of classical logic axioms, such as LEM, and theorems in computability
theory. In full generality, this line of research is known as constructive reverse
mathematics [32, 14]. For instance, Post’s theorem1 is equivalent to Markov’s prin-
ciple [65, 22], a principle that is strictly weaker than LEM. Further, early work sug-
gests there might be rich connections between various theorems in computability
and respective classical axioms expressible in constructive mathematics [16, 18, 21,
19, 34, 48]; the study of this connection is left as further work.

Goals of this Thesis In 2021, Andrej Bauer posed the challenge [4]:
“give a synthetic proof of Friedberg-Muchnik theorem”.

The goal of this thesis is to solve this challenge. Due to the historical importance of
Post’s problem, successfullymechanising a solutionwithin synthetic computability
is considered a milestone. Furthermore, Achieving this could further set the stage
for a later investigation of Post’s problem from the perspective of constructive re-
verse mathematics.

OurApproach Historically, Friedberg andMuchnik solved Post’s problembyfirst
introducing the priority method to construct two semi-decidable predicates that
are not Turing-reducible to each other, implying a predicate solving Post’s problem

1Post’s theorem, which states that a predicate is decidable if and only if it and its complement are
both semi-decidable, is entirely different from Post’s problem.



4 Introduction

exists [27, 46]. Later, as a byproduct of Lerman and Soare’s work [44], low simple
predicates, which are semi-decidable yet undecidable predicates that are not Turing
reducible from the halting problem, are constructed. This is considered the easiest
solution to Post’s problem [62, 29]. Based on this approach, Nemoto proves that the
limited principle of omniscience is sufficient to show the existence of low simple
predicates within an analytic framework [48].
To mechanise a solution to Post’s problem, we follow Lehmann and Soare’s con-
struction alongside Nemoto’s proof. We introduce step-indexing and use functions
for oracle computability based on the definition of synthetic oracle computability
by Forster, Kirst, and Mück. Additionally, we incorporate Forster and Jahn’s syn-
thetic notion of simple predicates [18].
Since Turing reductions are defined by oracle computability, constructing specific
Turing reductions is rather complicated due to the difficulty of using oracle com-
putability. Therefore, in the construction of low simple predicates, we employ the
notion of limit computability, following Soare’s approach [62]. This concept, inde-
pendently developed by Gold and Shoenfield [28, 57], is defined by computable
functions, and can demonstrate that a predicate is Turing reducible to the halting
problem without referring to a concrete reduction.

1.1 Contributions
This thesis makes the following contributions:

• We give the first synthetic solution to Post’s problem following Lerman and
Soare’s construction [44], which has been mentioned as challenging future
work in several publications [18, 21, 20]. In particular, we mechanise the ex-
istence of low simple predicates in synthetic computability.

• We introduce a general framework to formalise arguments based on the prior-
ity method in synthetic computability. Within this framework, the construc-
tion of low simple predicates is proven modularly.

• We define step-indexing and use functions for oracle machines (see Defi-
nitions 3.22 and 3.30) built upon the definition of oracle computability by
Forster, Kirst, and Mück [20, 21]. These notions are central to the construc-
tion of solutions for Post’s problem.

• We introduce a synthetic notion of limit computability to enable the construc-
tion of low simple predicates, alongwith a synthetic proof of the limit lemma,
based on the synthetic arithmetical hierarchy and Post’s theorem [21].

• We adapt Nemoto’s analytic proof [48] that the limited principle of omni-



1.2. Outline 5

science is sufficient to show the existence of low simple predicates in synthetic
computability.

• All the results have been mechanised in the proof assistant Coq and each the-
orem and definition has links to the web version of the Coq code.

A generated Coq documentation is available at:
https://ps.uni-saarland.de/~zeng/bachelor/coqdoc/thesis

1.2 Outline

Sec. 2.2 Synthetic Computability

Sec. 4.1 Arithmetical Hierarchy
Sec. 3.1 Synthetic Oracle Computability

Sec. 3.2 Step-Indexed Oracle Machines

Sec. 4.2 - 4.3 Limit Computability

Sec. 6.1 The Priority Method

Sec. 6.2 Simple Predicates

Sec. 6.3 Low Simple Predicates

Figure 1.2: A dependency graph for the contents of this thesis.

The structure of this thesis follows a bottom-up approach in Chapter 2 to 4, until
reaching the point where Post’s problem can be stated in terms of synthetic com-
putability. Subsequently, the construction and correctness proof of the solution to
Post’s problem are presented in a top-down manner in Chapter 6.
The readers may find Figure 1.2 useful, as it shows the dependencies of this project
and the foundation upon which it is built. The grey part represents the results that
already existed before [21, 20], serving as the starting point of this project. This

https://ps.uni-saarland.de/~zeng/bachelor/coqdoc/thesis


6 Introduction

part is not the author’s contribution; the author’s contributions come in the blue
and red parts.
The blue part includes the technical lemmas and the necessary constructions that
make the discussion of Post’s problem in synthetic computability possible.
If the readers are only interested in the solution to Post’s problem, the red part
illustrates the construction based on the abstract properties and lemmas that have
been established in the blue part.
Here are the contents of each chapter:

• In Chapter 2, we introduce the basic concepts of the calculus of inductive
constructions (CIC) and synthetic computability.

• In Chapter 3, we review the concepts of oracle computability within synthetic
computability, then construct and verify the step-indexed oracle machines
and use functions.

• In Chapter 4, we introduce a synthetic notion of limit computability, and
prove the limit lemma.

• In Chapter 5, we review the background of Post’s problem and the Friedberg-
Muchnik theorem, as well as Lerman and Soare’s construction.

• In Chapter 6, we first establish the priority method in synthetic computabil-
ity, and use this does construct low simple predicates, thereby solving Post’s
problem.

• In Chapter 7, we conclude the thesis and discuss future work.



Chapter 2

Preliminaries

In this thesis, we are working on the calculus of inductive constructions (CIC), the
theory implemented by the proof assistant Coq [12, 11, 50]. In this chapter, we first
briefly introduce basic notions of CIC and then discuss basic definitions of synthetic
computability. Finally, we present classical axioms related to the results of this
thesis.

2.1 The Calculus of Inductive Constructions
In CIC, a term t that has type T is denoted by t : T . For example, 0 : N means that 0
has type N. Inductive propositions and types can be defined in the propositional
universe Prop or in the type universe Type. However, eliminating a proposition for
constructing a type is not always allowed andmust be based on specific constraints.
We start with the usual definitions of inductive types and some notations.

2.1.1 Basic Notations
These are some basic inductive types that will be used in this thesis:

• Unit: 1 : Type ::= ⋆ : 1

• Booleans: B : Type ::= true : B | false : B

• Natural numbers: N : Type ::= O : N | S : N → N

• Option types: T ? : Type ::= !_" : T → T ? | none : T ?

• Product types: X× Y : Type ::= (_ , _) : X → Y → X× Y

• Lists: T∗ : Type ::= [ ] : T∗ | _ :: _ : T → T∗ → T∗



8 Preliminaries

• Sum types: X+ Y : Type ::= inl : X → X+ Y | inr : Y → X+ Y

In CIC, two similar yet distinct notions exist: the sigma type Σ x.T x : Type for T :

X → Type, and the existential type ∃x.P x : Prop for P : X → Prop. While both types
present the existence of a witness x satisfying T x or P x, respectively. They reside
in different universes – Type and Prop, respectively. The sigma type can project
the witness x to construct functions via projection π, whereas the elimination of the
existential type can only be used in proofs. For instance, if we have

h := ∀n : N. Σm : N. P n m,

we can define a function f n := π(h n) and show that ∀n. P n (f n). However, given
a proof of ∀m. ∃n. P n m. For any n, anm obtained from this proof, such that P n m

holds, can only be used for proofs, specifically for constructing terms of type Prop.
By default, the capital letters X Y Z : Type are used to arbitrary types, P Q : Prop
are used to arbitrary propositions, while p q : X → Prop generally express arbitrary
predicates over X.
When the symbol x ∈ A is used, it is a recursively defined inclusion ifA is a list, and
an alias of A x if A is a predicate. Similarly, the symbol A ⊆ B is an abbreviation
of ∀x. A x → B xwhen A and B are predicates, and A is a sublist of Bwhen they are
lists. The notation l1 ⊑ l2 is used to denote that l1 is a prefix of l2.
The complement of a predicate p : X → Prop is defined as: p x := ¬p x.
For predicates p, q : X → Prop, we define the equivalence between them up to a
list l as: p ≡l q := ∀x. x ∈ l → p x↔ q x.
Not only with a list l, we also use a natural number n to denote the equivalence up
to n if the type X is N: p ≡n q := ∀x. x < n → p x↔ q x.
This notation is also used for both predicates and boolean functions, e.g., for f :

N → bool and p : N → Prop:

f ≡n p : ∀x. x < n → f(x) = true ↔ p x

Since sum types is often used in our discussion to distinguish between different
results, we conventionally define ask := inl and out := inr .
Definition 2.1 (Logical Decidability) A predicate p : X → Prop is logical decidable
if:

∀x. p x∨ ¬ p x

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.the_priority_method.html#pdec


2.2. Synthetic Computability 9

Definition 2.2 (Characteristic Relation) The characteristic relation p̂ : X → B →
Prop of a predicate p : X → Prop is defined by:

p̂ := λx b.

{
p x if b = true
¬ p x if b = false

2.1.2 Partial Functions
In CIC, all functions are total functions. However, one can define an interface of
partial function by its properties and then implement it with total functions. The
interfaces of partial functions include the following operations:

• part A : Type

• ↓ : partA → A → Prop

• ret : A → part A

• ≫= : partA → (A → partB) → partB
• seval : partA → N → A?

Those operations satisfy the following properties:
• x ↓a1 → x ↓a2 → a1 = a2

• reta ↓a

• x≫= f ↓b↔∃a. x ↓a∧ f a ↓b

• x ↓a↔∃n. seval x n = !a"

• seval x n = !a"→ ∀m # n. seval x m = !a"

Based on this interface, we use the notationX⇀ Y := X → partY tomake it look like
a function. One possible implementation of partial functions is to define partA as
a step-indexed option type N → A?, we refer to Forster’s thesis [16] for me details.
The notation x ↓na denotes that the evaluation of x is terminated on a within n

steps seval x n = !a".

2.2 Synthetic Computability
In a synthetic approach to computability theory [7, 53, 3], every function is consid-
ered computable. This allows us to define notions such as (semi-) decidability and
many-one reductions without referring to a specific model of computation.

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#char_rel


10 Preliminaries

2.2.1 Basic Definitions
We summarise basic definitions in synthetic computability and refer to Forster’s
thesis [16] for detailed discussions.
Definition 2.3 For any predicate p : X → Prop, we define the following properties:

• Decidability: ∃f : X → B. ∀x. p x↔f(x) = true, denoted byD(p). We call f a decider
of p.

• Semi-decidability: ∃f : X → N → B. ∀x. p x↔∃n. f(x, n) = true, denoted by S(p).
We call f a semi-decider of p.

For any type X, we define the following properties:
• Discreteness: ∀x y : X. (x = y)+(x ̸= y).
• Enumerability: ∃f : N → X. ∀x. ∃n. f(n) = x.
• Data Type: X is both discrete and enumerable.

There is an alternative definition of semi-decidability via partial functions:

S(p) := ∃f : X ⇀ 1. ∀x. p x↔ f x ↓ ⋆

Definition 2.4 (Many-One Reductions) A predicate p : X → Prop is many-one re-
ducible to q : Y → Prop if there exists a function f : X → Y that maps instances of p to
instances of q, formally:

q ≼m p := ∀x. q x↔ p (f x)

Fact 2.5 For any predicate p:
• If p is decidable, then p is decidable.
• For any predicate q, if q ≼m p, then q is decidable if p is decidable and q is semi-

decidable if p is semi-decidable.

2.2.2 Church’s Thesis
In CIC, every definable function is intuitively computable. This fact can be inter-
nalised by assuming axioms like Church’s thesis (CT), which states a step-indexed
universal function that computes all functions N → N. Since CT maintains consis-
tency with LEM in CIC [15], this framework allows us to analyse which classical
axioms are sufficient or necessary to demonstrate specific results.
In this thesis, we assume the axiom of enumerability of partial functions (EPF),
which is equivalent toCT [17]. This axiom states that there exists a partial universal
function that enumerates all partial functions N ⇀ N.

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.Synthetic.Definitions.html#decidable
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.Synthetic.Definitions.html#reduction
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.Synthetic.reductions.html#Many-one%20reducibility


2.2. Synthetic Computability 11

Definition 2.6 (Enumerability of Partial Functions (EPF)) There is an enumera-
tor of partial functions θ : N → (N ⇀ N), such that for any partial function f : N ⇀ N,
there exists a code c : N such that θc and f coincide:

Σ θ : N → (N ⇀ N). ∀f : N ⇀ N. ∃c : N. ∀x v. θc x ↓ v↔ f x ↓ v

Given θ, we define Wc x := θc ↓ x as the c-th semi-decidable predicate. The nota-
tion Wc[n] is used to denote the c-th semi-decidable predicate at step n. i.e., it can
be defined as:

Wc[n] x := θc ↓nx

Therefore, we can show that Wc x↔∃n. Wc[n] x and the predicate Wc[n] is decid-
able.
Definition 2.7 (The Halting Problem) The synthetic self halting problem is the pred-
icate that determines whether a given partial function halts on its corresponding code:

H x := ∃v. θx x ↓ v

Lemma 2.8 The halting problem is semi-decidable but not decidable.

2.2.3 Classical Logic
The law of excludedmiddle (LEM) is a classical axiom, which states that a proposi-
tion is either true or false. It is not provable in CIC without any axioms. Assuming
LEM allows for classical reasoning.
Definition 2.9 LEM := ∀p : Prop. p∨ ¬ p

For some results in this thesis, weaker classical principles, such as Markov’s princi-
ple (MP) or the limited principle of omniscience (LPO) are enough. LPO and MP
are common used in reverse construction mathematics. They are strictly weaker
than LEM, but still allow for some classical reasoning. Neither of them is provable
in CIC.
Definition 2.10 MP := ∀f : N → B. ¬¬(∃n. f n = true) → ∃n. f n = true

Definition 2.11 LPO := ∀f : N → B. (∃n. f n = true)∨ (∀n. f n = false)

Lemma 2.12 Assuming LPO, the halting problem is logical decidable.
Proof Since the halting problem H is semi-decidable, there is a semi-decider f :

X → N → B. For any given x, we apply LPO on f x. If ∃n. f x n = true, then H x

holds. If ∀n. f x n = false, then ¬H x holds, otherwise, there is a number n such
that f x n = true, which contradicts the assumption. $

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.Axioms.EPF.html#EPF
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.Axioms.EPF.html#K
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.CRM.principles.html#LEM
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.CRM.principles.html#MP
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.CRM.principles.html#LPO
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.limit_computability.html#def_K




Chapter 3

Oracle Computability

Oracle computability is a concept initially introduced in Turing’s PhD thesis [66]
and later developed by Post in his seminal paper [52], used to describe a very gen-
eral reduction between two predicates, now called Turing reduction.
Turing reductions are more general than many-one reduction (see Definition 2.4)
we discussed earlier. Specifically, in many-one reduction, a computable function
maps an instance of a predicate p to another predicate q, thereby allowing the com-
putable function that decides q also to decide p. It turns out that the answer of q is
invisible to the reduction, and therefore, the answer of q cannot affect the compu-
tation of reduction. However, Turing reducibility allow for different computations
based on the answers.

1

Oracle Machine

Oracle
q1 q2 q3 …

a1 a2 a3 …

i

o

Figure 3.1: Oracle Machine

Imagine an oracle that can solve the halting problem H. Suppose we want to know



14 Oracle Computability

whether x is in H, i.e., whether the x-th partial function diverges. We could ask
the oracle if x is in H, then H x if the answer is not, and vice versa. Any many-one
reduction cannot capture this process, while it can be captured by more general
reductions such as truth-table reductions or Turing reductions.
In a nutshell, Turing reductions allow for querying the oracle at any point, and
decisions about whether to continue asking or computing a result are made based
on the answers. In a general sense, divergence is also a possible behaviour. This
process can be generalised to any question and answer, meaning the question does
not necessarily have to be a natural number, and the answer is more than simply
"correct" or "incorrect".
For any input type I, output type O, and a relation R : Q → A → Prop, where Q

is the question type and A is the answer type, oracle machines can be described
by Figure 3.1. E.g., for an input i, the oracle machine asks the oracle with q1, and
based on the answer a1, it proceeds to ask q2, and so on, until it either outputs an
answer o or diverges.
Based on these intuitions, we summarise how to render oracle machines syntheti-
cally and their basic properties in Section 3.1. The introduction is based on Forster,
Kirst, and Mück’s works [16, 21, 20] that establish the foundation and applications
of oracle computability in synthetic computability. In Section 3.2, we then discuss
the step-indexed oracle machines, which approximate the oracle machines through
computable functions with indexed steps.

3.1 Synthetic Oracle Computability
In this section, we summarise basic concepts introduced by Bauer, Forster, Kirst,
andMück. Formore detailed discussions and examples, we refer to their papers [4,
21, 20].
The first definition of synthetic oracle computability is given by Bauer [4]. Later,
Forster and Kirst describe a reformulation in CIC [16], along with another sug-
gestion that enables the connection of Post’s theorem and the arithmetical hierar-
chy [19]. However, the existence of an enumerator of oracle machines for all these
definitions necessitates an axiom not derived from the commonly accepted axiom
of synthetic computability, CT (see Definition 2.2.2). This requirement leaves a gap
in the consistency status.
Forster, Kirst, and Mück propose a stricter notion that requires the interactions be-
tween oracle machines and oracles to be sequential continuous. [20]. This approach
enables the construction of an enumerator of oracle machines based on CT. Build-
ing on this, we can define concepts such as the relative halting problem and the



3.1. Synthetic Oracle Computability 15

Turing jump without relying on assumptions beyond CT.
In addition to these approaches, Andrew Swan proposes a formulation of Turing
reducibility as higher modalities [64].

3.1.1 Oracle Computability
In synthetic computability, oracle computability is modelled by relation transform-
ers F : (Q → A → Prop) → (I → O → Prop) that is captured by a sequential compu-
tation. Such transformers take a relation R : Q → A → Prop as input and output a
relation F R : I → O → Prop for any types Q,A, I, and O.
Definition 3.1 (Oracle Computability) Let F : (Q → A → Prop) → (I → O →
Prop) be a relation transformer, andR : Q → A → Prop be a relation. F is oracle computable
if there is a partial function τ : I → A∗ ⇀ Q+O such that for any input i and output o:

F R i o ↔ ((τ i);R ⊢ qs;as)∧ (σ as ↓ out o)

We call τ a sequential computation. In this context, the interrogation relation σ;R ⊢ qs;as
is defined as:

σ;R ⊢ [ ]; [ ]
σ;R ⊢ qs;as σ as ↓ ask q R q a

σ;R ⊢ qs++ [q];as++ [a]

where the notation l1 ++ l2 is list concatenation.

The intuition behind this definition is that a transformer F is oracle computable if
there is a sequential computation τ computing based on an input i and the response
from an oracle R. For example, consider a sequential computation τ, it begins with
an empty answer list [ ], and τ may either ask a question, produce an output or di-
verge. If τ poses a question q to R, then for any answer a for which R q a holds, τ
continues the computation with the list [a]. It may ask another question and con-
tinues until it either produces an output or diverges based on some answer list.
This process is precisely what was described at the beginning of this chapter. Se-
quential computation τ is used to reflect the computational behaviour of oracle ma-
chines. Based on this definition, several basic properties of sequential computations
and interrogations can be derived.
Lemma 3.2 Let F : (Q → A → Prop) → (I → O → Prop) be a relation transformer
witnessed by the sequential computation τ : I → A∗ ⇀ Q+O, and R : Q → A → Prop be
a relation.

• If R is functional, then F R is functional as well.
• For any σ : A∗ ⇀ Q+O, if σ;R ⊢ qs;as and R ′ ≡qs R, then σ;R ′ ⊢ qs;as.

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#OracleComputable
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_det


16 Oracle Computability

• For any σ : A∗ ⇀ Q+O and functional relation R, if σ;R ⊢ qs1;as1 and σ;R ⊢
qs2;as2 hold, |qs1| % |qs2| implies qs1 ⊑ qs2 and as1 ⊑ as2.

Proof The proof of the first lemma is merely a derivation from the definition. The
second lemma is proved by induction on the given interrogation. The third lemma
is shown by induction on the length of the question list. $

This synthetic notion of oracle computability is stronger than the one defined by
modulus continuity, as introduced in the following definition. The latter states that
amodulus always exists to control the process of the relation transformer, although
this modulus may not be computable.
Definition 3.3 (Modulus Continuity) For any transformer F, relation R, input i, and
output o with F R i o, a list of questions r : Q∗ is called a modulus (of continuity) if for any
other relation R ′ that is equivalent to R over r, i.e., R ≡r R ′, F R ′ i o holds, formally:

F R i o → ∃r. ∀R ′. R ≡r R ′ → F R ′ i o

This definition is strictly weaker than the sequential continuity we have discussed,
as illustrated by the following lemma.
Lemma 3.4 If F is oracle computable, then F is modulus continuous, but the converse does
not hold.
Proof If F is oracle computable, then by the definition there is a sequential com-
putation τ such that F P i o ↔ (τ i);R ⊢ qs;as ∧ σ as ↓ out o. Then the list qs is the
modulus of F by the basic property of interrogation.
A transformer that is modulus continuous but is not sequential continuous is given
by F := ∃q. R q true. Details of the proof can be found in Lemma 2 of the paper by
Forster et al. [20]. $

3.1.2 Turing Reductions
A predicate p is Turing reducible to a predicate q if there exists a computable func-
tion that can decide p with the capability to ask the decider of q. Considering that
every function is computable in our constructive meta-theory, a naive approach
may just assume the existence of a function that decides q. However, such an as-
sumption would directly break the faithfulness of synthetic computability.
Therefore, the definition must naturally live in the propositional universe, where
the reduction is conceptualized as a predicate transformer that transforms q into p.

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#modulus_continuous
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#cont_to_cont


3.1. Synthetic Oracle Computability 17

Definition 3.5 (Turing Reduction) A predicate p : X → Prop is Turing reducible to a
predicate q : Y → Prop if there is a oracle computable F : (Y → B → Prop) → (X → B →
Prop) that transforms q to p:

p ≼T q := ∃F. F is oracle computable∧ ∀x b. p̂ x b↔ F q̂ x b,

where the notation p̂ maps the predicate q to a relation (see Definition 2.2).

We next discuss some basic properties of Turing reducibility.
Lemma 3.6 Turing reducibility is a preorder, namely, it is reflexive and transitive.
Proof The reflexivity comes from a trivial transformer that maps q to q with fol-
lowing computable tree τ:

τ i [] := ask i

τ i (a :: l) := out a

The transitivity comes from composing two sequential computations τ1 and τ2, see
Theorem 21 in [20]. $

Lemma 3.7 Many-one reducibility implies Turing reducibility.
Proof For any predicates p and q with p ≼m q, let f be the many-one reduction.
Then the oracle computable transformer F R i o := R (f i) o is defined by defining
following τ:

τ i [] := ask (f i)

τ i (a :: l) := out a $

A fundamental property of Turing reductions is that once a given oracle is decid-
able, the oracle machine should behave like a computable function. In other words,
an oracle machine with a computable oracle does not enhance computability to a
level stronger than a computable function.
To establish the above lemma, we start with a simple lemma that demonstrates how
to convert a partial function into a total one.
Lemma 3.8 For any Boolean partial function f : X ⇀ B and predicate p : X → Prop,
if ∀x. p x↔ f x ↓ ret true and ∀x. ∃b. f x ↓ retb, then p is decidable.
Proof Since f x terminates for any x, a total function that decides p can be con-
structed by extracting the results of termination since N is discrete. $

We then can show the following lemma by assuming the classical principleMP (see
Definition 2.10).

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#red_Turing
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_refl
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#red_m_impl_red_T
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#partial_decidable


18 Oracle Computability

Lemma 3.9 Assuming MP, if q is decidable and p ≼T q, then p is also decidable.
Proof Let f be the decider of q. Since the oracle is decidable, the sequential com-
putation τ of F that reduces q to p can be computed by an f such that

∀x b. p̂ x b↔ f (λy. ret (g y)) x ↓b,

By MP, we can show that f always terminates, therefore, a decider of p exists by
lemma 3.8. $

We define the notion of oracle semi-decidability, which is a generalisation of semi-
decidability. If a oracle computable transformer that uses an oracle q is a semi-
decider of p, then we say p is semi-decidable in q.
Definition 3.10 (Oracle Semi-Decidable) A predicate p is semi-decidable in the pred-
icate q, if there exists a oracle computable transformer F such that F q̂ accepts p:

Sq(p) := ∃F. F is oracle computable∧ ∀x. p x↔ F q̂ x ⋆

We present several properties associated with oracle semi-decidability:
Fact 3.11 For any predicate q, if p is semi-decidable, then Sq(p).
Proof Let f : X⇀ 1 be the semi-decider for q, the proof comes with the computable
transformer F R i o := f i ↓o by the computable tree τ := f i≫= λo. ret (out o). $

Lemma 3.12 If p ≼T q, then both Sq(p) and Sq(p).
Proof Let F be the sequential transformer that reduces q to p. Then the trans-
former F ′ R x ⋆ := F R x true witnesses Sq(p). In particular, the sequential com-
putation τ ′ of F ′ is defined by outputting ⋆ if F outputs true, otherwise, it diverges.
The proof of Sq(p) is similar. $

The reverse direction of the above lemma also holds, which generalises the famous
theorem by Post. Post’s theorem states that any predicate is decidable if and only
if both it and its complement are semi-decidable. In the context of oracle semi-
decidability, we have the following formulation of Post’s theorem.
Theorem 3.13 If Sq(p) and Sq(p), then p ≼T q,
Proof Since the proof is rather complicated, we refer to Theorem 35 by Forster et
al. [21]. $

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.OracleComputability.html#transport_decidable
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.SemiDec.html#OracleSemiDecidable
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.SemiDec.html#semi_decidable_OracleSemiDecidable
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.SemiDec.html#Turing_to_sdec
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.TuringReducibility.SemiDec.html#PT


3.1. Synthetic Oracle Computability 19

3.1.3 Turing Jump
As previouslymentioned, this definition of oracle computability allows for the enu-
meration of all oracle machines based on the common axiom of synthetic com-
putability – CT. Under our setting, oracle machines are oracle computable trans-
formers.
In this thesis, we assume EPF (see Definition 2.6), which is equivalent to CT. To
construct the enumerator, we derive the following lemma from EPF.
Lemma 3.14 There exists an enumerator for any family of partial functions, i.e.:

∃θ : N → (N ⇀ N). ∀f : N → (N → N). ∃γ : N → N.∀n x v. θγ(n)x ↓ v↔ fn x ↓ v

Based on this axiom, since any oracle computable transformer can be represented
through a sequential computation, this representation takes the form of a partial
function between two datatypes when the types of questions, answers, inputs, and
outputs are all datatypes. Therefore, the enumerator for oracle machines can be
constructed by enumerating all partial functions between two datatypes.
Theorem 3.15 There exists an enumerator of transformers Ξ : N → (N → B → Prop) →
(N → B → Prop) such that for any oracle computable transformer F, there is an index c,
such that:

∀ R x b. F R x b ↔ Ξc R x b

Proof The construction is generally applicable to arbitrary datatypes. However,
in this thesis, we fix the types of questions, answers, inputs, and outputs to be N,
B, N, and B, respectively. Given this context, the sequential computations have
type N → B∗ ⇀ N+B. Consequently, an enumerator ξ : N → (N → B∗ ⇀ N+B) can
be constructed by:

ξc x l := θc(ι1(x, l))≫= λv. ret (ρ2 v)

with
∀τ. ∃γ. ∀n x l v. ξγ(n) x l ↓ v↔ τn x l ↓ v

where the functions ρ1 : N → N×B∗, ρ2 : N → N+B and ι1, ι2 indicate the enumer-
ability of N×B∗ and N+B, respectively, i.e. ∀n. ι1,2(ρ1,2(n)) = n.
As ξc is the c-th oracle machine, for any given oracle R and input x, the predicate
determining whether the c-th oracle machine is terminated at x can be defined as:

Ξc R x b := ∃qs as. ξc;R ⊢ qs;as∧ ξc x as ↓b

As a result, the enumerator Ξ is constructed by ξ, and the theorem is proved. $

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.Axioms.EPF.html#EPF_iff_nonparametric
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.TuringJump.html#f7be7cbb23cecde2056334af13bd321d


20 Oracle Computability

When it does not cause confusion, for any sequential computation τ : I → A∗ →
Q+O that only involves datatypes, due to the existence of the enumerator, we
sometimes denote it by a code e : N. That is, e := ξe.
Given a predicate p, the relative halting problem in p (also called Turing jump of p),
refers to whether the c-th oracle machine terminates on the input cwith the oracle
p, can be defined in a manner similar to the halting problem, with the enumerator
of partial functions being replaced by the enumerator for oracle machines.
Definition 3.16 The Turing jump of a predicate p : N → Prop i.e., p ′ is defined as:

p ′ x := Ξx p̂ x ⋆

For any predicate p, we define iterated Turing jumps as follows

p(0) := p p(n+1) := (p(n))′,

and a trivial decidable predicate O := λx. true is used as a basis.
Notice that the Turing jump of a predicate is semi-decidable in itself, but its com-
plement is not.
Lemma 3.17 Sp(p ′) and ¬Sp(p ′).
Proof The first is proved by the transformer λR c o. Ξc R c ⋆. For the second one,
assume that there exists a transformer F that gives ∀x. ¬p ′x↔ F R x ⋆. By definition,
we have ∀x. ¬p ′x↔ ¬Ξx R x ⋆. Fact 3.15 yields F R x↔ Ξc R x for some c. Thus, the
contradiction Ξc R c ⋆↔¬Ξc R c ⋆ is obtained. $

The Turing jump of a predicate is strictly higher than itself in the order defined by
Turing reduction, as the following lemma shows.
Lemma 3.18 For any predicate p:

p ′ ̸≼T p and p ≼T p ′

Proof If p ′ is Turing reducible to p, by Lemma 3.12, the complement of p ′ is semi-
decidable in p, which contradict Lemma 3.17. For the second part, we refer to the
proof of Lemma 16 in [21]. $

We conclude this recap section with the following lemma, which connects all the
definitions above. The detailed proof can be found in Forster et al. [21].
Lemma 3.19 For any predicate p and q:

Sq(p)↔ p ≼m q ′

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.TuringJump.html#J
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.TuringJump.html#semidecidable_J
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.TuringJump.html#jump_gt
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.TuringJump.html#red_m_iff_semidec_jump_vec


3.2. Step-Indexed Oracle Machines 21

3.2 Step-Indexed Oracle Machines
So far, we have discussed several essential properties of oracle computability. How-
ever, since oracle computability is defined in the propositional universal, oracle
computable transformers can not be executed. To analyse them, the concepts of
step-indexed execution and use functions are helpful. In this section, we render those
concepts synthetically.
We use the following shorthand, where P is a predicate over N:

lim
x→∞

P(x) := ∃y. ∀x. (y % x → P(x))

3.2.1 Step-Indexed Execution
Step-indexed execution allows the computation to stop at any point to analyse the
execution. For instance, the operator seval (see Definition 2.1.2) is the step-indexed
execution of partial functions.
However, step-indexed execution for oracle machines is not straightforward. The
potential undecidability of an oracle may cause execution to become stuck after a
query is sent. For a decidable oracle, however, oracle machines function equiva-
lently to computable functions. Nonetheless, there are remaining possibilities for
progress. If the oracle is semi-decidable, we can execute oracle machines with step-
indexing and derive non-trivial conclusions. First, we need to index semi-decidable
predicates by steps.
Definition 3.20 (Σ1 Approximation) For any predicate p : X → Prop, a Σ1 approxi-
mation of p is a monotonic sequence f : N → X → B, such that for any x : X:

p x↔∃n. f(x, n) = true

A sequence f : N → X → B is monotonic if:
∀n x. f(n, x) = true → ∀m. n % m → f(m,x) = true.

Lemma 3.21 A predicate p : X → Prop is semi-decidable if and only if there is a Σ1

approximation for p.
Proof A Σ1 approximation is a semi-decider. For the reverse direction, a semi-
decider g : X → N → B can be extended to a Σ1 approximation by stabilisation.
With the Boolean or function _ || _ : B → B → B, we can define:

f 0 x := g x 0

f (n+ 1) x := g x (n+ 1) || f n x

It’s easy to verify that f Σ1 approximates p. $

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#stable
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#semi_decider_to_stable


22 Oracle Computability

We also denote the Σ1 approximation of a predicate p by pn, a family of functions
such that f(x, n) = true ↔ pn x. Then, we can define the step-indexed execution of
an oracle machine with a semi-decidable oracle p as follows:
Definition 3.22 (Step-Indexed Oracle Machines) For any given datatype T , a func-
tion φ : (N → N∗ ⇀ N+T) → (N → Prop) → N → N → T ? is called a step-indexed oracle
machine, if it meets the following requirement for any oracle machine ewith a semi-decidable
oracle p : N → Prop:

∀x b. Ξe p̂ x b → lim
n→∞

(φp
e (x)[n] = !b")

where we abbreviate φpn
e x n as φp

e (x)[n].

To construct step-indexed oracle machines, we have to examine the definition of
oracle computability to execute sequential computation. This means we can decide
how many steps to explore and how much depth to probe each time for a given
sequential computation.
Definition 3.23 (Step-Indexed Execution) Let h : Q → A be a function and τ : I →
A∗ ⇀ Q+O be a sequential computation. For the maximum steps i that can be explored,
and the maximum depth j, step-indexed execution can be defined by recursively exploring
the sequential computation τ:

φh
τ x i j :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

!out o" if (τ x [ ]) ↓ j out o

!ask q" if (τ x [ ]) ↓ j ask q and i = 0

Φh
λr. τ x h(q)::r x i ′ j if (τ x [ ]) ↓ j ask q and i = i ′ + 1

none otherwise

There are monotonic properties associated with the indices of step-indexed execu-
tion φ.
Fact 3.24 For any given function h : Q → A and any sequential computation τ : I →
A∗ ⇀ Q+O, the following properties hold:

• φh
τ x i j = !v" implies that for any j ′ where j % j ′, φh

τ x i j ′ = !v".
• φh

τ x i j = !out o" implies that for any i ′ where i % i ′, φh
τ x i ′ j = !out o".

Proof For the first fact, by using induction on step i and case analysis on the out-
put of τ x [ ], we only need to show that if x ↓ jo holds, then x ↓ j ′o also holds for a
deeper j ′. In turn, this follows the monotonicity of seval .
For the second fact, it suffices to show that if φh

τ x i j = !out o", then φh
τ x (i+ 1) j =

!out o". This can also be proved by induction on i and case analysis on τ x [ ].

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#c10eaa900d81cf41e7933063d0071a94
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#evalt_comp
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#evalt_comp_depth_mono


3.2. Step-Indexed Oracle Machines 23

The critical point is that the induction must move τ outside the induction scope,
as τ may be replaced by a new one in the inductive case to enable the induction
hypothesis. $

Based on this definition, we present some technical lemmas that hold intuitively
but are intricate in formal proofs. We use the notation ĝ x y := g x = y to turn a
function into a relation.
Fact 3.25 For any function g : Q → A and a sequential computation τ : A∗ ⇀ Q+O, if
the interrogation always yields results qs;as, and for that sequence of answers, the oracle
machine always terminates. Then τ always terminates for any prefix of answers as ′:

τ; ĝ ⊢ qs;as → τ as ↓ v → ∃j. ∀as ′ ⊑ as. ∃w. (τ x as ′) ↓ j w

Proof By induction on the interrogation. For the base case where the answer list is
empty, the result is straightforward. For the inductive case, perform a case analysis
on as ′ ⊑ as ++ [a]. If as ′ = as ++ [a], then the result follows directly from the
assumption. If as ′ ⊑ as, it is proved by the induction hypothesis. $

To help us with the proof, notice that when defining the step-indexed execution of
a sequential computation τ, all answers are added to τ, i.e., we get another τ, and
the following theorem helps us to run the step-indexed execution.
Fact 3.26 For any function g : Q → A and a sequential computation τ : A∗ ⇀ Q+O,
if τ; ĝ ⊢ qs;as and ∀as ′ ⊑ as. ∃w. (τ x as ′) ↓ jw:

φg
λr. τ x (as++r) x n j = !v"↔ φg

τ x (|as|+ n) j = !v"

Proof By induction on the interrogation and then making use of the basic proper-
ties of lists. $

Fact 3.27 For any sequential computation τ : A∗ ⇀ Q+O and functions g, h : Q → A,
we have:

τ; ĝ ⊢ qs;as → τ as ↓ out o → ∃i j. ∀h. τ; ĥ ⊢ qs;as → φh
τ i j = !out o"

Proof By Fact 3.25, there exists a depth j such that the step-indexed oracle machine
does not get stuck. Let the number of steps be |as|+1. The result can then be verified
by Fact 3.26. $

Lemma 3.28 For any family of functions g : N → Q → A, and a sequential computa-
tion τ : I → A∗ ⇀ Q+O.

( lim
k→∞

τ; ĝk ⊢ qs;as) → τ as ↓ out v → ( lim
k→∞

φgk
τ n n = !out v")

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#interrogation_ter
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#interrogation_plus_evalt_comp
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#evalt_comp_oracle_approx
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#interrogation_evalt_comp_limit


24 Oracle Computability

Proof For a sufficiently large k, τ : ĝk ⊢ qs;as holds, and Fact 3.27 provides a suf-
ficiently large depth j and step i such that the step-indexed oracle machine halts.
Let c = max(k, i, j). For any c ′ where c % c ′, we have φ

gc ′
τ c ′ c ′ = !out v" be-

cause it is monotonic in both step and depth according to Fact 3.24. Addition-
ally, τ; ĝc ′ ⊢ qs;as holds by assumption. $

As there are two indices for the step-indexed execution, we can unify indices to
obtain step-indexed oracle machines by defining the following:

φf
e x n := φf

e x n n

Theorem 3.29 For any semi-decidable predicate p : N → Prop and an input x : N,
Ξe p̂ x b → lim

n→∞
φpn
e x n = !b",

where b is an instance of datatypes T .
Proof By definition of Ξe p̂ x, we have ∃qs as. ξe; p̂ ⊢ qs;as. Since p has a Σ1 ap-
proximation, there is a sufficient large k such that ξe; p̂k ′ ⊢ qs;as for any k ′ # k. By
Fact 3.28, we obtain the desired result. $

3.2.2 Use Functions
Since step-indexed oracle machines can approximate oracle machines, the infor-
mation used over the computation can be collected and reflect the behaviour of
oracle machines. In this section, we introduce another concept connecting to the
step-indexed oracle machines, namely use functions.
Use functions compute the maximum number of questions a step-indexed oracle
machine asks for a given input and steps. For instance, for a computation φp

e (x)[n]

= !v", if this computation asks questions q1, . . . , qm to the oracle, the use func-
tion up

e (x)[n] outputs the value max(q1, . . . , qm) + 1. If φp
e (x)[n] = none, then the

use function up
e (x)[n] outputs 0. In other words, use functions compute the part

of the oracle that has been used. If a value greater than the result of the use func-
tion (if not 0) is added to the oracle for the same inputs and number of steps, the
step-indexed oracle machines will have the same result.
Definition 3.30 (Use Functions) Given a step-indexed oracle machine φ, a use func-
tion u : N → (N → Prop) → N → N → N is a function that satisfies the following
properties: Let w = uq

e (x)[n],
φq
e (x)[n] ↓ → ∀p. p ≡w q̂n → Ξe p̂ e ⋆ , (3.1)

φq
e (x)[n] ↓ → qn+1 ≡w qn → φq

e (x)[n+ 1] ↓ , (3.2)
φq
e (x)[n] ↓ → qn+1 ≡w qn → uq

e (x)[n+ 1] = w, (3.3)
where we abbreviate φq

e (x)[n] = !out ⋆" as φq
e (x)[n] ↓ , and uqn

e x n as uq
e (x)[n].

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#c10eaa900d81cf41e7933063d0071a94
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#1518afe5d269f354ecae6d71a18311e7


3.2. Step-Indexed Oracle Machines 25

The first property (3.1) is the completeness of step-indexed oracle machines, which
states if the step-indexed execution of an oracle machine terminates at step n, then
for any oracle p equivalent to pn up the result of the use function, this oracle ma-
chine with p terminates as well. Based on the properties (3.2) and (3.3), for any
given step n with the termination of step-indexed execution, the step-indexed ex-
ecution, as well as the use function, behave the same at step n + 1 if the pn+1 is
equivalent to pn up to the result of the use function.
We next introduce the construction of use functions.
Definition 3.31 (Information Predicates) For any function f : N → B and e, n : N,
we define the information predicate over a question list qs and an answer list as as:

ιfe(x)[n | qs;as] := τ as ↓ out ⋆
∧ ∀p. p ≡qs f̂ → τ x; p̂ ⊢ as;qs

We now show that an information predicate can be derived from a computation of
step-indexed oracle machine.
Lemma 3.32 (Extraction Functions) There is an extraction function E such that for
any proof h of computation φf

e(x)[n] ↓, E h outputs a question list qs and an answer list
as, together with a certificate showing their properties.

E : φf
e(x)[n] ↓ → Σ qs as. ιfe(x)[n | qs;as]

Proof By induction on n, consider the base case where both qs and as are [ ]. The
hypothesis provides sufficient information for this case.
For the inductive case, performing the case analysis onH, if the result of the sequen-
tial computation τ [ ] is an answer, let qs = as = [ ]. The assumption is sufficient.
If the result of the computation is a question q, we get qs ′ and as ′ for the stepn−1 by
the induction hypothesis. Now let qs = q :: qs ′ and as = f(q) :: as ′. The remaining
proof only requires the basic properties of interrogation.

Fact 3.33 For any fixed sequential computation and step-index, the output of step-indexed
oracle machines is decidable:

φf
τ(x)[n] ↓ + ¬φf

τ(x)[n] ↓

Aswe candecidewhetherφf
τ xnm ↓using its proof, the use function can be defined

as follows:

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#extract_computation
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#extract_computation
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#use_function'


26 Oracle Computability

Definition 3.34 (Use Function)

uf
e(x)[n] :=

{
max(π (E h)) + 1 if h := φf

τ(x)[n] ↓
0 otherwise

The idea behind this definition is to determine if a computation has terminated.
If the computation is not complete and returns none, the use function outputs 0.
Conversely, if the computation finishes with the proof H : φf

τ(x)[n] ↓, inserting this
proof into the extraction function E yields an informative type. The first element
– a list of questions qs, is then extracted using the projection π1. Then the use
function outputs one more than the maximum value in qs to differentiate from
cases where the computation has not finished. We start with some basic facts about
use functions.
Fact 3.35 For any given computation φf

e(x)[n], we have:
• ∀m. uf

e(x)[n] = m+ 1↔ φf
e(x)[n] ↓

• uf
e(x)[n] = 0↔ ¬φf

e(x)[n] ↓

Proof The proof is straightforward by the definition of use functions. $

The correctness of use functions follows the definition of information predicate,
and we provide the following proof of the correctness of property (3.1) for use
functions (see Definition 3.30):
Theorem 3.36 Let w = uq

e (x)[n],

φq
e (x)[n] ↓→ ∀p. p ≡w q̂n → Ξe p̂ e ⋆

Proof If the computation has terminated, according to the definition of use func-
tion, w is determined as max(qs) + 1. Given that p and q̂n are equivalent up to w,
this implies they are equivalent up to qs, denoted as p ≡qs q̂n.
Therefore, by applying the information predicate, we show that τas ↓ out ⋆∧ τ x; p̂ ⊢
as;qs, which is Ξe p̂ e ⋆. $

To establish the last two properties, a crucial technical lemma tells us when two
step-indexed executions will have the same outputs:
Lemma 3.37 For any functions f, g, we have the following property:

(φf
e(x)[n] ↓) → (τ as ↓ out ⋆) → (τ x; f̂ ⊢ as;qs) → (τ x; ĝ ⊢ as;qs) → (φg

e(x)[n] ↓)

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#7f48d4a68765673379b41e1b1ee20edf
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#2eb8a74ffab30fa61125a696613e6310
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#1518afe5d269f354ecae6d71a18311e7
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#final_fact


3.2. Step-Indexed Oracle Machines 27

Proof Proving this lemma involves more details and trivial facts, but the core idea
is simple: If two step-indexed executions on interrogations that behave the same
should turn out to be the same. By induction on one of the interrogation and
analysing the other one, we can get that at each step of the step-indexed execu-
tion, they are the same. $

We then verify the properties (3.2) and (3.2) hold for our construction of u, which
implies that u are use functions according to the definition (see Definition 3.30).
Theorem 3.38 Let w = uq

e (x)[n],

(φq
e (x)[n] ↓) → (qn+1 ≡w qn) → (φq

e (x)[n+ 1] ↓)

Proof With the information predicate, we get τ x; q̂n ⊢ as;qs. Since qn+1 ≡w qn,
we have τ x; q̂n+1 ⊢ as;qs. By Lemma 3.37 and the monotonicity of step-indexed
oracle machines, we obtain the goal φq

e (x)[n+ 1] ↓. $

Theorem 3.39 Let w = uq
e (x)[n],

(φq
e (x)[n] ↓) → (qn+1 ≡w qn) → (uq

e (x)[n+ 1] = w)

Proof If uq
e (x)[n+ 1] is not equal to 0, we then verify the list of questions that used

to compute the use function is the same as the one in the step-indexed execution.
Therefore, the same as uq

e (x)[n]. If uq
e (x)[n + 1] is equal to 0, similar to the proof of

the previous theorem, we can get the fact φq
e (x)[n + 1] ↓, so that the computation

must be terminated, and the use function is not 0. $

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#ef9392a32b85fb1e3048f191161ee1f3
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.step_indexing.html#185fadc426c0281417b34b78bc1af89f




Chapter 4

Limit Computability

Limit computability is a more general notion than semi-decidability. Similar to the
definition of semi-decidable, a predicate is limit computable if a limit decider decides
the predicate. Shoenfield first introduced this concept in 1959 [58]. However, due
to overlooking Shoenfield’s work, Gold reintroduced this concept in 1964 [28].

∆1

Σ0 Π0

Σ1 Π1

Σ2 Π2

∆2

decidable

limit computable

semi-decidable

Figure 4.1: Arithmetical Hierarchy

To build a complete big picture of computability theory, we begin in Section 4.1 by
briefly reviewing the arithmetical hierarchydue toKleene [36] andMostowski [45],
classify the undecidability of predicates based on the complexity of formulas that
define them. We aim to give the basic concepts and intuitions based on the recent



30 Limit Computability

development of the arithmetical hierarchy and Post’s theorem in synthetic com-
putability by Forster, Kirst, and Mück [21].
This overview will examine how limit computability fits within this hierarchy, as
illustrated in Figure 4.1 (more details will be presented in the following sections).
In Section 4.3, we will establish that a predicate is limit computable if and only if it
is Turing reducible to the halting problemH, known as the limit lemma. Due to the
straightforward definition of limit computability, any proof of Turing reducibility
to H can be replaced by showing limit computability.

4.1 Arithmetical Hierarchy
This section briefly reviews Forster, Kirst andMück’s work on the arithmetical hier-
archy in synthetic computability [21]. In the arithmetical hierarchy, all predicates
are classified into Σn and Πn using first-order formulas. For instance, for any semi-
decidable predicate p, there exists a decidable arithmetic formula R such that p x if
and only if ∃n.R(x, n).
Considering that repeated quantifiers can be folded into one, we can generalise this
concept by alternating different quantifiers. We define the Σn as follows:

Σn := {p | ∀x. p x↔∃y1 ∀y2 ∃y3 ∀y4 . . . R(x, y1, . . . , yn)∧D(R)}

According to above definition, Σ1 refers to semi-decidable predicates, and Σ0 de-
notes decidable predicates. In the definition of Σn, formulas begin with an existen-
tial quantifier. If we start with a universal quantifier instead, we can define the Πn

classes.
Πn := {p | ∀x. p x↔∀y1 ∃y2 ∀y3 ∃y4 . . . R(x, y1, . . . , yn)∧D(R)}

Similarly, Π0 denotes decidable predicates. Additionally, the concept of ∆n is refer-
ring a predicate for both in Πn and Σn.

∆n := Σn ∩ Πn

In synthetic computability, the arithmetical hierarchy is definedmutually as induc-
tive predicates [21].
Definition 4.1 (Arithmetical Hierarchy)

∀v : Nk. p v↔ f v = true
Σk
0 p

Πk+1
n q ∀v : Nk. p v↔∃x. q(x :: v)

Σk
n+1 p

∀v : Nk. p v↔ f v = true
Πk
0 p

Σk+1
n q ∀v : Nk. p v↔∀x. q(x :: v)

Πk
n+1 p

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#dcce78e25b1a71bddb5c80acf6e5da10


4.1. Arithmetical Hierarchy 31

Similarly, we have the following definition of ∆n:

∆k
n p := Σk

n p∧ Πk
n p

Note that the superscript k here is different from the definitions in traditional text-
books. It denotes the arity of the predicate, whereas traditional textbooks usually
use the superscript 0 to denote a predicate over N. Our definitions of Σk

n and Πk
n

are the same as Σ0
n and Π0

n in textbooks. We omit the arity k when it is clear from
the context.
Based on this synthetic definition of the arithmetical hierarchy, we establish the
following facts:
Fact 4.2 For any predicate p and q, the following facts hold:

• p is semi-decidable if and only if it is in Σ1,
• If n % m, then Σn ⊆ Σm and Πn ⊆ Πm,
• Σn ⊆ Πn+1 and Πn ⊆ Σn+1,
• if q ≼m p, then Σn p implies Σn q and Πn p implies Πn q.

As pointed out in Post’s hierarchy theorem (see Theorem 4.6) below, there are sig-
nificant connections between oracle computability and the arithmetical hierarchy
as Figure 4.1 shown. To establish this connection, classical axioms are needed. To
further explore these connections, we introduce an arithmetical hierarchy of the
law of excluded middle as proposed by Akama et al. [1].
Definition 4.3 For an arbitrary hierarchy n : N, we have the following axioms:

Σn-LEM := ∀k. ∀p : Nk → Prop. Σn p → ∀v. p v∨ ¬ p v

Πn-LEM := ∀k. ∀p : Nk → Prop. Πn p → ∀v. p v∨ ¬ p v

Σn-DNE := ∀k. ∀p : Nk → Prop. Σn p → ∀v. ¬¬ p v → p v

Πn-DNE := ∀k. ∀p : Nk → Prop. Πn p → ∀v. ¬¬ p v → p v

Fact 4.4 These logical axioms satisfy the following facts:
• Σn-LEM → Σn-DNE.
• Πn-LEM → Πn-DNE.
• Σn-DNE ↔ Πn+1-DNE.
• Πn+1-LEM → Σn-LEM.
• Σn-LEM → Πn-LEM

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#ArithmeticalHierarchySemantic
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#bf473662ff521e7e917a6f239fbb7282
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#DNEimpl


32 Limit Computability

• Σn+1-DNE → Σn-LEM.

With this arithmetical hierarchy, we can see the connection to other axioms:
Fact 4.5

• Σ0-LEM holds constructively, and thus all 0 levels axioms.
• Σ1-LEM ↔ LPO.
• Σ1-DNE ↔ MP.
• Π1-DNE holds constructively.

To conclude, we have the following theorem:
Theorem 4.6 (Post’s Hierarchy Theorem) Assuming Σn-LEM, for any predicate p,
the following facts hold:

• Σn+1 p if and only if Sq(p) for some q in Πn,
• Σn+1 p if and only if Sq(p) for some q in Σn,
• ΣnO(n),
• if Σn p then p ≼m O(n), and thus p ≼T O(n),
• Σn+1 p if and only if SO(n)(p).

For detailed proofs we refer to the paper by Forster et al. [21].

4.2 Synthetic Limit Computability
In mathematics, a limit is the value that a function reaches when the index goes
infinite. We say the limit of a function f : N → X is the value b when there is a
bound n, such that f(m) = b for any m after n, formally:

lim
n→∞

f(n) = b := ∃m. ∀n # m. f n = b

Definition 4.7 (Limit Computability) A relation R : X → Y → Prop is limit com-
putable if there is a function f : X → N → Y, such that R x y if and only if the limit of f x
in n is y, formally:

∀x y. R x y↔ lim
n→∞

f(x, n) = y

We call f a limit decider. For any predicate p : X → Prop, p is limit computable if p̂ : X →
B → Prop is limit computable.

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.ArithmeticalHierarchySemantic.html#level1
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsTheorem.PostsTheorem.html#PostsTheorem
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.limit_computability.html#char_rel_limit_computable


4.2. Synthetic Limit Computability 33

By unfolding the definition of limit computable, a predicate p : X → Prop is limit
computable if there is a function f : X → N → Prop such that:

p x↔ lim
x→∞

f(x, n) = true and ¬ p x↔ lim
x→∞

f(x, n) = false

In other words, an element x is in p if the decider f is convergent to true, and verse
vice. An element x is not in p if and only if the decider f is convergent to false. As
Figure 4.2 shows, if x is in a limit computable predicate p, there is bound n, such
that for any m, where n % m, there is f(x,m) = true for the limit decider f.

…f(x,0) f(x,1) f(x,2) f(x,3) f(x, n + 1) …f(x, n + 2) f (x, n + 3)f(x, n)

n

Figure 4.2: Limit Computable

We briefly discuss why we choose this definition as the definition of limit com-
putability in synthetic computability, considering different classically equivalent
definitions of limit computability. For instance, one can define limit computability
of p : X → Prop as:

p x↔ lim
n→∞

f(x, n) = true and ∃b. lim
n→∞

f(x, n) = b

By this definition, a limit decider f is a convergent function such that p x if and only
if f converges to true. It’s easy to verify that these two definitions are equivalent
by assuming LEM. However, the latter implies that p is logically decidable since
f is either convergent to true or false. This concludes that our definition of limit
computable is a more constructive version.
By unfolding our definition of limits, we have:

p x↔∃n. ∀m. n % m → f(x,m) = true
¬ p x↔∃n. ∀m. n % m → f(x,m) = false

As n % m is decidable and so is f(x,m) = true, we can then have a function that
decides whether n % m → f(x,m) = true holds. Hence, by the definition of the
arithmetical hierarchy, we can show the following fact:
Fact 4.8 For any limit computable predicate p, both p and p are in Σ2. This also means
that p is classically in Π2, and together p is classically in ∆2.

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.limit_computability.html#LimitLemma1


34 Limit Computability

4.3 Limit Lemma
A central result of limit computability is the limit lemma, which states that a pred-
icate is limit computable if and only if it is Turing reducible to H. By using results
from before, deriving the limit lemma is straightforward.
Lemma 4.9 Assuming Σ1-LEM, for any limit computable predicate p, p is Turing re-
ducible to H.
Proof Suppose that p is limit computable, then both p and p are in Σ2 by Fact 4.8.
Since H is a semi-decidable predicate, we have SH(p) and SH(p) by Post’s hierarchy
theorem (see Theorem 4.6) and Σ1-LEM. Therefore, p is Turing reducible to H by
applying Post’s theorem (see Theorem 3.13). $

To prove that reducibility to H implies limit computability, we need to construct a
limit decider from a Turing reduction, i.e., an oracle machine. This requires using
step-indexed oracle machines based on the results established in Chapter 3.
Lemma 4.10 For any predicate p, by assuming the logical decidability of p, if p is Turing
reducible to H, then p is limit computable.
Proof Suppose that p is Turing reducible to H, then there is a Turing reduction
from p to H. By the definition of Turing reduction, we have an oracle computable
transformer F : (N → B → Prop) → (N → B → Prop) such that:

∀x b. p̂ x b↔ F Ĥ x b

By properties of step-indexed oraclemachines (seeDefinition 3.22), we have a func-
tion φ : N → N → B? such that:

F Ĥ x b → lim
n→∞

φ(x)[n] = !b"

Let the limit decider f : X → N → B be:

f(x, n) :=

{
b if φH

e (x)[n] = !b"
false otherwise

We then have F Ĥ x b → limn→∞ f(x, n) = b. Therefore,

p̂ x b → lim
n→∞

f(x, n) = b

In order to show limn→∞ f(x, n) = b → p̂ x b, we can do a case analysis on p x

since p is logically decidable. We consider the proof when b = true. The proof
of b = false is analogous. If p x holds, then we obtain p̂ x true directly. If ¬p x

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.limit_computability.html#limit_turing_red_K
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.limit_computability.html#turing_red_K_lim


4.3. Limit Lemma 35

holds, it implies that limn→∞ f(x, n) = false by the above fact, which contradicts
the assumption limn→∞ f(x, n) = true. Therefore, we show that f is a limit decider
for p:

∀x b. p̂ x b↔ lim
n→∞

f(x, n) = b

So p is limit computable. $

Since Σ1-LEM is equivalent to LPO (see Fact 4.5), we can show that any limit com-
putable predicate is Turing reducible to H by assuming LPO (see Lemma 4.9). By
assuming LPO, if a predicate p is Turing reducible to H, then we have p is logically
decidable (see Lemma 2.12). Therefore, we can show that LPO is sufficient for the
limit lemma.
This lemma provides us with a convenience: When we need to show that a predi-
cate is Turing reducible to the halting problem, instead of constructing a reduction,
it is suffices to show that there is a limit decider for this predicate.





Chapter 5

Post’s Problem

Post’s problem is about whether there exists a semi-decidable predicate that is un-
decidable and strictly easier than the halting problem [52]. "Easier" here is defined
based on a general reduction – Turing reduction (see Chapter 3 for a formal defi-
nition). Intuitively, a predicate being "easier" than the halting problem means that
even if there is a machine that could answer any question about this predicate, the
halting problem still cannot be solved by asking this machine questions arbitrary
often.

H H

decidable

reducible from H

semi-decidable

Figure 5.1: Post’s Problem

Twelve years after the publication of Post’s paper, Friedberg and Muchnik inde-
pendently solved the problem by developing the priority method [27, 46], demon-
strating the existence of the predicate in Post’s problem. Therefore, as shown in
Figure 5.1, we can find some predicates in the shaded area. The priority method,
a crucial tool in the Friedberg-Muchnik construction, was central to this result. Its
ability to construct rich semi-decidable predicates make it essential to this field [47,
44, 55, 56].



38 Post’s Problem

This chapter is not technical, we aim to review the meaning of Post’s problem, in-
cludingwhy it ismathematically interesting and how it has been solved historically.
Instead, the next chapter will be about technical implementation. In Section 5.1, we
will introduce variants of Post’s problem under different reducibility notions, as
well as the notion of Turing degree, a way of looking at the structure of undecid-
ability other than the arithmetical hierarchy (see Section 4.1). Section 5.2 briefly re-
views how the Friedberg-Muchnik theorem solves Post’s problem and the intuition
behind it. In the final section, we will briefly discuss Lerman and Soare’s construc-
tion of low simple predicates, and by comparing this with the Friedberg-Muchnik
construction, we will explain why we chose it as our source.

5.1 Post’s Problem
Post’s 1944 paper [52] introduced many essential concepts of computability the-
ory. This section will review the paper in general and explore how Post naturally
presented this open problem. For discussions on synthetic computability, we refer
to Forster, Kirst, and Mück [18, 21] . We will focus on predicates that are easier
than the halting problem. According to the limit lemma (see Section 4.3), those
predicates are limit computable.

5.1.1 Many-One Degrees

Σ0 Π0

Σ1 Π1

degm(∅)

degm(H)

Figure 5.2: Many-one Degrees

Since a reduction introduces an order strucutre of predicates, we can then classify
undecidability by different reductions. We start from the most straightforward re-
duction – themany-one reduction. Themany-one degree of a predicate p is defined
as:

degm(p) := {q | p ≼m q∧ q ≼m p}

As shown in Figure 5.2, since decidable predicates are many-one reducible to each
other, all decidable predicates are fitted into the many-one degree of the trivial



5.1. Post’s Problem 39

decidable predicate ∅. Predicates in the many-one degree of H are semi-decidable
as well by the property of many-one reductions. Similar to Post’s problem, we can
then ask whether there exists a semi-decidable predicate A, such that

∅ ≺m A ≺m H,

where the notation p ≺m q denotes p ≼m q∧ p ̸∈ degm(q).
This problem is a variant of Post’s problem with respect to many-one degrees,
which was solved by Post’s construction of simple predicates. A simple predicate is
a semi-decidable predicate whose complement does not contain any infinite semi-
decidable predicates.
A simple predicate is semi-decidable yet undecidable and not in the many-one de-
gree ofH, which provides a positive solution to the above question. The existence of
simple predicates was shown in Post’s 1944 paper [52] and a synthetic construction
of simple predicates was established by Forster and Jahn in 2023 [18].
Theorem 5.1 (Post, 1944) There exists a simple predicate A, such that ∅ ≺m A ≺m H.

However, the simpleness of predicates does not imply they cannot be Turing re-
duced from the halting problem, as Turing reducibility is more general than many-
one reducibility. Next, wewill examine a reduction stricter than Turing reducibility
but more general than many-one reducibility: truth-table reducibility.

5.1.2 Truth-Table Degrees

Σ0 Π0

Σ1 Π1

degtt(∅)

degtt(H)

Figure 5.3: Truth-table Degrees

Truth-table reduction is analogous to Turing reduction. For a predicate p to be
truth-table reducible to q, denoted as p ≼tt q, it means that to solve a problem
p, the reduction describes the answer as a truth table of some finite number of
questions to q. Since this table is bounded, truth-table reduction is strictly weaker
than Turing reduction, and therefore also called bounded Turing reduction. We



40 Post’s Problem

do not give formal definitions but will show Post’s progress towards solving Post’s
problem in his 1944 paper, in which he solved another variant of Post’s problem
with respect to truth-table reduction.
Again, we can define the truth-table degree as degtt(p) := {q | p ≼tt q∧ q ≼tt p}.

As Figure 5.3 shows, the truth-table degree of the halting problem is not necessar-
ily semi-decidable, and more semi-decidable predicates can be found in the truth-
table degree of the halting problem. Therefore, we can ask whether there is a semi-
decidable predicate A such that: ∅ ≺tt A ≺tt H.
Similarly, by constructing predicates with more restrictions than simple predicates,
also called hyper-simple predicates, Post proved the existence of a truth-table de-
gree lying between the truth-table degree of H and ∅ in 1944 [52]. Forster and
Jahn’s 2023 paper [18] provided a synthetic construction of hyper-simple predi-
cates as well.
Theorem 5.2 (Post, 1944) There exists a hyper-simple predicate A, such that ∅ ≺tt

A ≺tt H.

Up to this point, Post left Post’s problem as an open problem at the end of his paper.
Following the paths of hyper-simple predicates and Post’s defined hyper-hyper-
simple predicates seemed like a natural way to solve Post’s problem; however, this
was proven impossible [61, 41].

5.1.3 Turing Degrees
Similarly, we can define Turing degrees as follows:

degT (p) := {q | p ≼T q∧ q ≼T p}

As Figure 5.4 demonstrates, the Turing degree of H includes all the limit com-
putable predicates that can be reduced from the halting problem, as it contains
more semi-decidable predicates than the truth-table degree of H. Post’s problem
asks whether there exists a semi-decidable predicate that lies between Turing de-
grees of H and ∅.
This problem is so challenging that it wasn’t solved until 12 years later.. Before that,
the closest result was achieved by Post and Kleene [37], where they proved that:
Theorem 5.3 (Kleene-Post, 1954) There are two Turing-incomparable degrees A and
B, such that A ≼T H and B ≼T H.

SinceA and B are Turing incomparable, they are not Turing reducible to each other.
This result shows that there exists a Turing degree that lies between the Turing



5.2. Friedberg-Muchnik Theorem 41

Σ0 Π0

Σ1 Π1

degT (∅)

degT (H)

Figure 5.4: Turing Degrees

degrees of H and ∅. The only gap in solving Post’s problem is that this degree is
only guaranteed to be limit computable (or reducible to H), and not necessarily
semi-decidable. A synthetic proof of the Kleene-Post theorem is constructed by
Forster, Kirst, and Mück in 2024 [21].

5.2 Friedberg-Muchnik Theorem
Eventually, Post’s problem was solved by the priority method, specifically the sim-
plest priority method known as the finite injury method. This method establishes
the property of a predicate by constructing semi-decidable predicates and verify-
ing that they satisfy a series of requirements. During the verification process, some
requirements are violated (called injuries), but the requirements all hold in the
end because the number of injuries is finite. This explains the name of the method.
Using this method, Friedberg and Muchnik proved the essential theorem.
Theorem 5.4 (Friedberg-Muchnik, 1956-1957) There exist semi-decidable yet unde-
cidable predicates A and B, such that A and B are Turing incomparable.

This theorem shows that there are two predicates that are not Turing reducible to
each other. So, at least one of the predicates is not reducible to the halting prob-
lem, and such a predicate is also semi-decidable and undecidable. Therefore, the
theorem provide a positive solution to Post’s problem.
We start with the requirements to be satisfied by the constructed predicates. These
requirements are infinite and indexed by a natural number e. We only provide the
informal intuition behind the requirements here:

R2e := e-th oracle machine cannot be used to reduce A to B

R2e+1 := e-th oracle machine cannot be used to reduce B to A



42 Post’s Problem

If there are predicates A and B, and such a requirement Re is satisfied for all e, then
for any oracle machine denoted by a code e, e can not be used to reduce A to B or B
to A. Hence, these two predicates are not Turing reducible to each other.
Next, we briefly discuss the construction of these two predicates. In the finite in-
jury method, predicates are constructed step by step (for a formal definition, see
Section 6.1). At each step, an element is added, and the process at each step is com-
putable, ensuring that the constructed predicates are semi-decidable. Our task is
to control what kind of elements can be added.
Informally, in the Friedberg-Muchnik construction, an element is added to Awhen
it can be used to destroy the possibility of some oracle machine being a reduction
of B to A. The difficulty is that once such an element is added to A, as A changes,
the behaviour of the oracle machines changes when A acts as an oracle. Therefore,
only the element greater than the use functions (see Definition 3.30) is added at
each step, i.e., that do not affect the behaviour of the oraclemachines. However, this
doesn’t mean everything is resolved since the newly added elements can still break
some other satisfied requirements, i.e., injured requirements. Then, by showing
that Re is injured at most a finite times for any e, all requirements are eventually
satisfied. We point out that Re can be only injured at most 2e−1 times, which is one
of the reasons why the next construction – Soare’s construction is more accessible
than Friedberg-Muchnik’s construction.

5.3 Lerman and Soare’s Construction
Lerman and Soare construct low simple predicates using the finite injury method.
As the name implies, the constructed predicate is both low and simple. Simpleness
implies the predicate is undecidable, semi-decidable, and not many-one reducible
fromH. A predicate p is low if the Turing jumpof p is Turing reducible to the halting
problem H. If the predicate p is low, it is not Turing reducible from H. Otherwise,
by the transitivity of Turing reducibility, the Turing jump of this predicate would
be Turing reducible to itself, which contradicts the property of Turing jump (see
Lemma 3.18). We will give a formal discussion thereof in the next chapter (see
Section 6.3). Hence, lowness implies thatH is not Turing reducible to p. Thismeans
that the existence of low simple predicates provides a positive solution to Post’s
problemwith respect to Turing degrees. Thus the following theorem is a satisfying
answer to Post’s problem.
Theorem 5.5 (Lerman-Soare, 1980) There exists a low simple predicate A.

The construction is done by extending the predicates step by step. The require-
ments Re are defined via positive requirements Pe and negative requirements Ne.



5.3. Lerman and Soare’s Construction 43

Positive requirements stay satisfied in later stages once satisfied at step n. Negative
requirements Ne will be finitely injured at some steps, but are eventually satisfied.
Informally, the requirements are:

Pe := the e-th semi-decidable predicate intersects with A

Ne := the e-th oracle machine with oracle A terminates on e if
it terminates on infinitely many approximations

The first list of requirements ensures that the constructed predicate is simple, as
it cannot contain any infinite semi-decidable predicate. Showing the lowness of a
predicate p is difficult; instead of directly showing that the Turing jump p ′ is Turing
reducible to the halting problem,Ne requirements show that p ′ is limit computable.
This implies that p ′ is Turing reducible to H by the limit lemma (see Section 4.3).
As wewill see in the next chapter (see Section 6), the crucial part of the verification
is that Ne can only be injured a finite number of times, more precisely, at most 2 · e
times. This property makes this construction more accessible than the Friedberg-
Muchnik construction.





Chapter 6

Low Simple Predicates

Wehave discussed the solution to Post’s problem in the last chapter. In this chapter,
we follow the solution by Lehmann and Soare [44], constructing low simple pred-
icates, which, as discussed in the previous chapter, requires the priority method.
The idea behind the priority method is to build a semi-decidable predicate step
by step. At each step, at most one element is added to the predicate by a com-
putable process. The constructed predicate should then be verified to meet infinite
requirements. In other words, the priority method consists of construction and
verification.
With the intention of developing a general framework that supports various con-
structions in synthetic computability, we introduce a modular approach that ab-
stracts away the concrete construction. This abstraction avoids the tedious reason-
ing required by direct definitions. For instance, as shown in Figure 6.1, our con-
struction of low simple predicates can be divided into three modules. First, we
construct predicates that are semi-decidable under arbitrary extension. Then, we
add an extension parameterised by awall, so the predicate becomes simple. Finally,
a low wall is inserted to achieve lowness.

Semi-decidable

P

Simple

γ
Low

ω

Figure 6.1: Overview of the construction of the low simple predicate.

In Section 6.1, we will develop this modular approach to the priority method in
synthetic computability and demonstrate how to construct concrete examples. In



46 Low Simple Predicates

Section 6.3.1, we will use our method to construct simple predicates, following Ler-
man and Soare’s method [44, 62] and using the framework for infinite predicates
developed by Jahn and Forster [21]. We show the existence of low simple predi-
cates by using the properties of step-indexed oracle computability in Section 6.3.
Finally, we will discuss the result and the reverse mathematics analysis of it.

6.1 The Priority Method
The priority method constructs desired semi-decidable predicates with a dynamic
view of semi-decidability. Instead of using logical properties to define a predicate,
a semi-decidable predicate is considered to be a predicate that can be enumerated
by an enumerator. These enumerators can then be defined recursively on the steps.
We discuss this construction using an inductive predicate and abstract the process
of deciding what will be added at each step to a predicate. This predicate takes
all the information from the n-th stage to determine whether an element will be
added at the n-th stage. In this way, we can abstract the decision process from the
construction to analyse the constructed predicate.

6.1.1 Construction
We start by describing the properties that should be satisfied by an extension used
to construct semi-decidable predicates.
Definition 6.1 (Extensions) A predicate γ : N → N∗ → N → Prop is an extension if it
is computable and unique, formally, for any n : N and L : N∗, the following properties hold:

(Σx. γL
n x) + (∀x. ¬ γL

n x)

∀x y. γL
n x → γL

n y → x = y

This means that, for any given L and n, either there exists a unique element x such
thatγL

n x, or for all x it is¬γL
n x. An extension can be used to decide at stepnwhether

an element should be added, i.e., we define how an extension finitely extends a
predicate.
Definition 6.2 Given any extension γ : N → N∗ → N → Prop, the construction of the
priority method, is defined as an inductive predicate&: N → N∗ → Prop:

0& [ ]

n& L γL
n x

n+ 1& x :: L

n& L ∀x. ¬ γL
n x

n+ 1& L

Based on this construction, we define the predicate constructed by the extension γ as:

pγ x := ∃nL. (n& L)∧ (x ∈ L)

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.the_priority_method.html#Extension
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.the_priority_method.html#F_


6.1. The Priority Method 47

As shown in Figure 6.2, a unique list L is associated with each step n. We call L the
n-th stage if n & L. From step n to n + 1, the stage either remains unchanged or
gains a new element. Since the process of each step is computable, the cumulative
stage can be computed. Therefore, checking whether a stage includes an element
is semi-decidable, implying that pγ is semi-decidable.

0 1 2 3 . . . n stages

[ ] [x1] [x1] [x1, x2] . . . . . .[x1, . . . , xm]

γ
[ ]
0 x1 γ

[x1]
2 x2

Figure 6.2: The Priority Method

Based on this intuition, we verify semi-decidability of our construction, starting
with facts about the construction.
Fact 6.3 For any extension γ, stages are unique, i.e., for any n and lists L1, L2:

n& L1 → n& L2 → L1 = L2

Fact 6.4 For any extension γ, stages are cumulative, i.e., for any n1, n2 : N:

n1 & L1 → n1 & L2 → n1 % n1 → L1 ⊆ L2

For each joined element, the stage to which it was added is obtained by the follow-
ing lemma.
Fact 6.5 For any extension γ, if n& x :: L, then there must be a step m, where m % n, at
which x is added:

n& x :: L → ∃m. m % n∧m& L∧ γL
m x

Proof By induction on n& x :: L, the remainder is straightforward. $

Since extensions are computable, we can extract a function that computes the stage
for any step:
Lemma 6.6 (Stage Functions) For any extension γ, there is a stage function Γ : N →
N∗ such that:

n& Γn and | Γn | % n

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.the_priority_method.html#F_uni
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.the_priority_method.html#F_mono
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.the_priority_method.html#F_pick'
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.the_priority_method.html#F_func_F_with


48 Low Simple Predicates

Proof The function Γ can be defined as follows:
Γ0 := [ ]

Γn+1 := if γΓn
n x then x :: Γn else Γn

By induction on n, we then verify that Γn is the n-th stage. $

Based on the correctness of the stage function Γ , we have:
pγ x↔∃n. x ∈ Γn

Theorem 6.7 For any extension γ, the predicate pγ is semi-decidable.
Proof Since it is decidable whether an element is inside a list or not, let f x n :=

x ∈ Γn be the semi-decider, it is easy to see that pγ x↔∃n. f x n. Note that f can be
turned into a Σ1 approximation of pγ, for simplicity of writing, we also use Γn to
denote the Σ1 approximation. $

Therefore, as shown in the Figure 6.3, we finished the first step of the construc-
tion: For any extension γ, the predicate pγ is semi-decidable. Next we are free to
construct a wide variety of semi-decidable predicates with a choice of extension.

Semi-decidable

P γ

Figure 6.3: A semi-decidable predicate based on the finite extension method.

In addition to the construction, in the priority method, we will also provide a se-
quence of requirements R : N → (N → Prop) → Prop and prove that the constructed
predicate of extension γ satisfies these requirements, i.e., ∀e. Re pγ. And for the
method we use, the simplest case of the priority method - finite injury method,
where the term finite injury refers to the possibility that some requirements in Pe
might be broken during the construction of P due to the satisfaction of other re-
quirements, also known as injury. However, because the injury is finite, P will sat-
isfy all Pe as required.

6.1.2 Concrete Example: The Halting Problem
The priority method is divided into two phases: construction, which specifies an
extension, and verification, which verifies that the constructed predicate satisfies
a sequence of requirements. We illustrate this process by constructing a trivial ex-
ample – the halting problem.

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.the_priority_method.html#F_with_semi_decider


6.1. The Priority Method 49

Construction
We first consider a concrete predicate ϑ that accepts an element x at step n if x is the
least element such that x-th partial function θx halts at x within n steps, formally:

ϑLn x := x is µ y. ∃v. θy(y) ↓nv

The notation x is µ y. p y denotes that x is the least element that satisfies the predi-
cate p as follows:

x is µ y. p y := p x∧ ∀y < x. ¬p y

Due to the uniqueness of the least element and the decidability of whether a partial
function halts within a number of steps, we can prove that this ϑ is an extension.
Thus, pϑ is semi-decidable by Theorem 6.7.

Verification
To demonstrate the verification process, our example is very simple. The number
of injuries to requirements is 0, meaning that once a requirement is satisfied, it will
always be satisfied for a larger number of steps. To establish the propertieswe need,
requirements R are as follows:

Re p := (θe e ↓) → e ∈ p

Now we prove that pϑ satisfies Re. Notice that Re can be sorted by its index e,
indicating priorities:

R0 > R1 > . . . > Rn > . . .

This is the origin of the name "priority method". The least predicate µ in the ex-
tension is essential, as it ensures that at any given n, if multiple e satisfy the condi-
tion ∃v. θe(e) ↓nv (meaning these requirements Re receive attention at stage n), we
always choose the one with the highest priority, i.e., the one with the smallest e, to
trigger the extension of the stage (i.e., to activate Re).
For example, at some n, if e is the smallest such that ∃v. θe(e) ↓nv holds, then by
adding e to pϑ, Re holds. Sincewe do not remove any elements, Re will always hold.
Thus, we need to prove that for all e, Re will be activated at least once.
The sketch of the proof is as follows: for a given e, we choose the step k such
that all Re ′ have been activated for e ′ < e. Since θe e ↓, we have a step k ′ such
that ∃v. θe(e) ↓ k ′v. Then, for the step s = max(k, k ′), we know that Re will re-
ceive attention and is the smallest element that satisfies the condition. Thus, at
step s+ 1, Re is satisfied by pϑ.



50 Low Simple Predicates

Since pϑ satisfies Re and has ∃ L n. ϑLn x for all elements x in pϑ, we get pϑ x↔θx x ↓,
and hence pϑ is the halting problem. While this is a relatively boring example,
it demonstrates the basic construction ideas. We will see how to construct more
interesting predicates in following sections.

6.2 Simple Extension
Post defined and constructed simple predicates [52] to demonstrate the existence
of semi-decidable yet undecidable predicates that are not many-one reducible from
the halting problem. As an initial attempt at answering Post’s problem, simple
predicates provide a valuable template for constructing undecidable predicates.
We start with simple predicates, following Forster and Jahn’s definition in synthetic
computability [18]. They defined and constructed a simple predicate and proved
some properties related to it:
Definition 6.8 (Finiteness) A predicate p : N → Prop is finite if there is a list that lists
all elements in P.

L(p) := ∃L. ∀x. p x↔ x ∈ L

A non-finite predicate p is a predicate that is not finite, i.e., ¬L(p).
Definition 6.9 (Simple Predicates) A predicate p is simple if p is semi-decidable, and
its complement p, is non-finite and does not have a semi-decidable infinite subpredicate.

simple p := S(p)∧ ¬L(p)∧ ¬∃q. S(q)∧ ¬L(q)∧ q ⊆ p

Theorem 6.10 Simple predicates are undecidable.
Proof To prove the undecidability, we assume that a simple predicate p is decid-
able. Then, the complement of p is also decidable and non-finite, meaning that p
contains a non-finite and semi-decidable predicate – itself, which contradicts the
definition of simple predicates. $

6.2.1 Requirements
In Section 5.3, we have discussed the requirements of low simple predicates. To
satisfy the simpleness part, the constructed predicate has to satisfy the require-
ments Pe, which states that the e-th semi-decidable predicate intersects with p,
i.e., We # p as in the following definition:
Definition 6.11 (Disjointness) For any list L, the disjointness of L and the predicate p
is defined as:

L # p := ∀x. x ∈ L → ¬p x

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.Shared.FinitenessFacts.html#exhaustible
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.ReducibilityDegrees.simple.html#simple
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.ReducibilityDegrees.simple.html#simple_undecidable
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#disj_list_pred


6.2. Simple Extension 51

This definition is used to check whether a list L is disjoint from a predicate p, and
it is decidable when the predicate p is decidable. Based on that, we can define the
requirements for simple predicates as follows:

Pe A := ¬L (We) → ¬We # A

A predicate that satisfies these requirements with some additional restrictions is a
simple predicate.
Lemma 6.12 If there is an extension γ, such that pγ satisfies the requirement Pe for all e,
then pγ is simple if pγ is non-finite.
Proof Since any predicate constructed by the priority method is semi-decidable,
and the non-finiteness of the complement predicate comes from the premise, we
only need to show that pγ does not contain any infinite semi-decidable predicate.
By the definition of the requirements, we have ¬We # pγ for any non-finite semi-
decidable predicate, and the rest is straightforward. $

6.2.2 Construction
The idea behind the simple extension is that for any step n and the n-th stage, we
check the finite fragment of the first n semi-decidable predicates – elements ac-
cepted within the first n steps of the decider. Then, if there exists such a finite frag-
ment of a semi-decidable predicate that is still disjoint from the current stage and
includes an element large enough, we add this element to the current stage. Notice
that when multiple predicates satisfy this requirement, we only focus on the one
with the smallest code; if multiple elements fulfil this requirement, we also only
consider the least. As this extension is not straightforward, so we break it down
into several steps.
Recall that our notation We[n] : N → Prop represents the decidable predicate ob-
tained by running n steps of the semi-decider for the e-th semi-decidable predicate
introduced by the EPF. This notation also denotes a Σ1 approximation of the e-th
semi-decidable predicate via index n.
Definition 6.13 (Simple Extension) At any stage n and for any list L, the extension
checks whether L intersects with the first n elements of the e-th semi-decidable predicateWe

or not. If there are such e and x that x ∈ We[n] and 2e < x, we pick the least e and the
corresponding least x as the next element to add to the predicate.

αn e x := x ∈ We[n]∧ 2e < x

βL
n e := L # We[n]∧ ∃x. αn e x

γL
n x := ∃e. e < n∧ e is µ e. βL

n e∧ x is µ x. αn e x

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#P_simple
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#ext_intersect_W


52 Low Simple Predicates

In this definition, βL
n e indicates that the e-th semi-decidable predicate may satisfy

the requirement, which means that the corresponding least element always exists
as the following fact shows.
Fact 6.14 βL

n e → ∃x. x is µ x. αn e x

Proof By the definition of βL
n e, we have ∃x. αn e x. The least element always exists

by a linear search function and the decidability of α. $

Lemma 6.15 The predicate γ defined above is an extension function (in the sense of Def-
inition 6.1).
Proof Based on the definitions above, predicates α,β, and γ contain only decidable
predicates, such as We[n] and L # We[n], and all variables are bound, so it can be
verified that these predicates are decidable. The uniqueness comes from the last
predicate. $

While the proof of the priority method is tedious, the intuition behind it is simple.
By abstracting two essential predicates, the following verification process focuses
only on how these two operations change with the number of steps.
The first predicate describes a requirement that receives attention; we directly spec-
ify the requirement with the highest priority (i.e., with the smallest e). In this case,
this requirement will be activated when we proceed to the next step.
Definition 6.16 (Receiving Attention) The requirement Pe receives attention at the
n-th step if Rn e holds, where:

Rn e := e < n∧ e is µ e. βΓn
n e

The predicate βΓn
n e indicates that the e-th semi-decidable predicate is to receive

attention, as long as e < n, there must be a possibly smaller e receiving attention.
Fact 6.17 e < n → βΓn

n e → ∃e ′ % e. Rn e ′

Proof Similarly to Fact 6.14, the least element can be obtained by existence and
decidability. $

Fact 6.18 For any e and n, the predicate Rn e is decidable.
Proof By the structure of the definition, each part is decidable, and the combination
is as well. $

Fact 6.19 ∀e e ′. Rn e → Rn e ′ → e = e ′

Proof By the uniqueness of the least element, if two elements satisfy the require-
ment, they must be the same. $

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#ext_pick_witness
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#simple_extension
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#ext_pick_attend
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend_dec
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend_uni


6.2. Simple Extension 53

The second predicate we care about is act, meaning that this requirement has been
activated or, that it can no longer receive attention.
Definition 6.20 (Acting) The requirement Pe acts at n-th step if An e holds, where:

An e := ¬ Γn # We[n]

This definition of An e states that the e-th predicate already intersects with the n-th
stage of the constructed predicate, sowedo not need to consider adding elements to
satisfy the requirement any more. This implies that the final constructed predicate
intersects with the e-th predicate as well.
Fact 6.21 An e → ¬We # pγ

Proof Since the construction of pγ is cumulative by Fact 6.23, if the e-th predicate
intersects with the n-th stage, it will also intersect with the final stage. $

Fact 6.22 For any e and n, An e is decidable.
Proof By the structure of the definition, each part is decidable, and the combination
is as well. $

6.2.3 Verification
Satisfaction Toprove that the constructed predicate pγ is simple, we need to show
that pγ satisfies the requirements Pe for all e. We start with the basic properties of
predicates R and A.
Fact 6.23 For any e and n, once a requirement acts, it always acts for a larger number of
steps:

An e → ∀m # n. Am e

Proof If the requirement Pe acts, there is an element x such that x ∈ Γn and x ∈
We[n], by the cumulative property of the construction, x remains in the predicate
for larger steps m, so that x ∈ Γm and x ∈ We[m] as well. $

Fact 6.24 Once a requirement Pe receives attention at n-th stage, this requirement will act
for a larger number of steps, formally:

Rn e → ∀m > n. Am e

Proof If the requirement Pe receives attention at step n, there is an element x such
that γΓn

n e x will be added to the predicate. Thus, Pe will act at step n + 1. By the
above Fact 6.23, Pe will act at a larger step. $

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#act
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#ext_intersect_W_intersect
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#act
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#act_always_act
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend_always_act


54 Low Simple Predicates

Fact 6.25 If a requirement acts, it no longer receives attention:

An e → ¬Rn e

Proof If a requirement Pe acts at step n, the predicate αn e does not hold for any
step n. Therefore, the requirement will not act at any step. $

By combining above facts, we can prove the following corollary:
Corollary 6.26 Rn e → ∀m > n. ¬Rm e

Next, properties wrapped in double negation need to be established:
Fact 6.27 ∀e. ¬¬ ∀∞n. ¬Rn e

Proof To prove this negative goal, we perform a case analysis on ∃n. Rn e. If such
an n exists, then Pe act at subsequent steps, and ¬Rm holds for allm > n. The other
case is trivial. $

Lemma 6.28 ∀e. ¬¬ ∃s. ∀e ′ < e. ∀s ′ > s. ¬Rs ′ e ′

Proof Since e ′ is bounded by e, we proceed by induction on e and apply Fact 6.27.
$

By the definition of requirements Pe, we only need to consider non-finite predi-
cates ¬L (We), for which we establish the following property:
Fact 6.29 ¬L (We) → ¬¬∃n x. αn e x

Proof Consider a non-finite We, which ensures that there exists an n such that a
sufficiently large x is in We[n] under double negation. Since our goal is to prove a
negative goal, we are able to extract the n and x to obtain a large enough witness
that makes αn e x hold. $

To conclude, we need one more step to ensure that all requirements will act:
Corollary 6.30 ¬L (We) → ¬¬ (∃n. Rn e∨ An e)

Proof For any given e, as stated by Lemma 6.28, there is a step s that satisfies ∀e ′ <
e. ∀s ′ > s. ¬Rs ′ e ′. Given that ¬L (We), as shown by Fact 6.29, there exists a step n

such that αn e x is satisfied. Let m be the maximum of s, n, and e. If We[m] # Γm,
thenAm e holds. Otherwise, the requirement Pe is the highest priority requirement.
Consequently, this results in Rm e being satisfied. $

Fact 6.31 ¬L (We) → ¬¬ (∃n. An e)

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#act_not_attend
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend_always_not_attend
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend_at_most_once
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend_at_most_once_bound
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#non_finite_not_bounded
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#non_finite_attend
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#non_finite_attend


6.2. Simple Extension 55

Proof By the above Fact, if Rn e holds for a given m, pick n := m + 1 and apply
Fact 6.24. $

Theorem 6.32 The predicate pγ satisfies requirements Pe for all e:
∀e. Pe pγ

Proof Consider a non-finite predicate We, of which we know ¬¬An e from the
given Fact 6.31. Since the goal of our proof is to establish a negative proposi-
tion, ¬We # pγ, we can then use the premise An e to finish the proof by Fact 6.21.$

Non-Finiteness The non-finiteness of pγ comes from the fact that if there are n

requirements acting in some stage, then this stage contains at most n elements with
the maximum element greater than 2n. To extract this information from the con-
structed predicate, we define the following predicate:
Definition 6.33 (Selected) An element x is selected by the requirement

Se x := ∃n. Rn e∧ γΓn
n x

The predicate Sn x picks the element x used tomake Pe act; for a fixed e, the selected
elements are unique.
Fact 6.34 ∀x x ′. Se x → Se x ′ → x = x ′

Proof By the uniqueness of the least predicate. $

The selected predicate Se x maps the acting Pe to the chosen element x, so the fol-
lowing properties can be extracted from the constructed predicate.
Fact 6.35 For any e, x : N:

pγ x∧ x % 2n → ∃e. Se x∧ e < n

Proof By pγ x, we know that there exists an n such that x ∈ Γn, and induction is
performed on Γn. The case of the empty list is trivial. For the list a :: L, if x ̸= a, then
we are done by the induction hypothesis. If x = a, then we can find the step m at
which a is added by the property of the priority method’s construction, and know
that it satisfies a certain extension γΓm

m a of e. By the definition of the extension, we
can prove the selected predicate S and that e < n. $

We can then generalise this property to arbitrary lists.
Fact 6.36 For any list L : N∗:

(∀x. x ∈ L → x ∈ pγ ∧ x % 2n) → (∀x. x ∈ L → ∃e. Se x∧ e < n)

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#P_meet_R_simple
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#pick_el
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#pick_el_uni
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#P_meet_spec
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#P_extract_spec


56 Low Simple Predicates

Proof Induction on the list L and apply the above Fact 6.35. $

Theorem 6.37 The complement of pγ is non-finite:
¬L( pγ)

Proof The intuition behind this proof stems from the fact that for any n, it is possi-
ble to find a list of length n contained within the predicate pγ. This is because Γn of
length nmust contain only n elements from the set {0, ..., 2n}. For a detailed proof,
refer to Lemma 63 of Forster and Jahn [18]. $

Corollary 6.38 The predicate pγ is simple.
Proof By Lemma 6.12, the predicate pγ is non-finite by Theorem 6.37, and pγ sat-
isfies the requirements Pe by Theorem 6.32. $

6.3 LowWall Functions
With the general extension scheme γ, we have constructed simple predicates in
synthetic computability. However, it can be shown that these predicates are Turing-
reducible from the halting problem [62]. To further enrich this construction with
additional properties, we observe that parts of this extension can be parameterised
by a function that meets specific conditions. We refer to such a function as a "wall
function" because it determines the wall height that an added element xmust over-
come.

6.3.1 Wall Functions
Definition 6.39 (Wall Functions) A wall function is defined as a function ω : N →
N∗ → N → N that meets the following conditions:

2 · e % ωΓn
n (e)

¬¬∃b. lim
n→∞

ωΓn
n (e) = b

The first condition ensures that the wall function is high enough to establish the
non-finiteness as shown in Theorem 6.37. The second condition allows us to prove
that the wall converges under double negation since the requirements are nagated.
Based on this definition, the extension γ can be parameterised by a wall functionω

as follows, where the red parts of the formulas highlight the differences between
the old and new definitions:

α(ω)Ln e x := x ∈ We[n]∧ωL
n(e) < x

β(ω)Ln e := L # We[n]∧ ∃x. α(ω)Ln e x

γ(ω)Ln x := ∃e. e < n∧ e is µ e. β(ω)Ln e∧ x is µx. α(ω)Ln e x

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#P_coinfinite
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#P_simple
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#wall_spec


6.3. Low Wall Functions 57

We add a parameter L to α, so that the wall function can also access information of
the current stage. Notice that predicates A,R, and S thatwe have defined all depend
on the definition of β and γ, thus the definition does not require any changes when
a wall function is fixed.
Theorem 6.40 For any wall function ω, the predicate Pγ(ω) is a simple predicate.
Proof By introducing this change, the structure of the proof remains essentially
unchanged. The primary adjustment required was in the proof of Lemma 6.28,
because the convergent values of the wall function can be extracted to prove a neg-
ative goal, ensuring that the lemma remains valid. $

Semi-decidable

P

Simple

γ
Low

ωω

Figure 6.4: A simple predicate based on the simple extension.

Thus, as demonstrated in Figure 6.4, we have now completed the second part of the
construction. For any wall function ω, we obtain a simple predicate Pγ(ω). There
is a trivial example:

Example Let ωL
n e := 2 · e, since ω is a wall function, the constructed Pγ(ω) is a

simple predicate.
The classical axioms have not been used so far. Our proof is entirely constructive
due to the choice of an appropriate definition of infinite lists; for further details, see
the paper by Forster and Jahn [18].

6.3.2 Lowness
Before giving a concrete definition of a wall function solving Post’s problem, we
give a formal definition of low simple predicates. A low simple predicate is both
low and simple. As the simpleness ensures that the predicate is undecidable and
semi-decidable, the only missing property to solve Post’s problem is that the predi-
cate is not Turing reducible from the halting problemH, which can be derived from
the lowness as follows.
Definition 6.41 (Lowness) A predicate p is low if and only if its Turing jump is Turing
reducible to the halting problem, formally:

low p := p ′ ≼T H

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#wall
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.low_simple_predicates.html#low


58 Low Simple Predicates

Lemma 6.42 For any low predicate p, p is not reducible from the halting problem:

H ̸≼T p

Proof By the definition of low predicates, if both H ≼T p and p ′ ≼T H hold, transi-
tivity of Turing reduction gives p ′ ≼T p, which contradicts Lemma 3.18. $

A low simple predicate is a predicate that is both low and simple. We conclude:
Corollary 6.43 The existence of low simple predicates gives a positive solution to Post’s
problem.

6.3.3 Requirements
The requirements of lowness claim that the e-th oracle machine with oracle A ter-
minates on e if it terminates on infinitely many approximations.

Ne A := ∃∞n. φA
e (e)[n] ↓→ φA

e (e) ↓

We then show the connection between these requirements and lowness:
Lemma 6.44 If there is an extension γ, such that pγ satisfies the requirementNe for all e,
then the Turing jump of pγ is limit computable if the step-indexed oracle machineφpγ

e (e)[n]

is convergent.
Proof To show the lowness of pγ, we need to prove that p ′

γ is limit computable by
the limit lemma 3.28. The limit computability of p ′

γ can be witnessed by a limit
decider φ

pγ
e (e)[n]. Since the step-indexed oracle machine is convergent, it is not

difficult to get this fact along with its properties 3.22 and requirements Ne. $

6.3.4 Construction
To construct a low simple predicate, we have to define an appropriate concrete wall
function. In this section, we define the wall function as the maximum of the func-
tion 2 ·e and the use function on all inputs e ′ less than e. As we discussed in Section
3.2.2, the use functionuA

e (x)[n] captures the highest question asked during the com-
putation of ΦA

e (x)[n]. A critical feature of this function is that if an element greater
than uA

e (x)[n] is added to the predicateA, it does not effect the outcome of the com-
putation ΦA

e (x)[n].
Definition 6.45 (LowWall) The low wall function is defined as follows:

UL
e(e)[n] := max

e ′!e
(uL

e ′(e ′)[n])

ωL
n(e) := max(2 · e,UL

e(e)[n])

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.low_simple_predicates.html#lowness
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.low_simple_predicates.html#low_simple_correct
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#Jump_limit_1
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#wall_instance


6.3. Low Wall Functions 59

where the notation maxe ′!e(f(e
′)) denotes the maximum of f(e ′) for all e ′ less than

or equal to e. The superscript L on a use function denotes the decidable predi-
cate λx. x ∈ L.
According to the definition of the wall function, it is easy to see this function is
greater than 2 · e, there is only one condition that need to be verified:
Fact 6.46 For any e, there exists a boundm such that for any n greater thanm, the element
added at the n-th step exceeds the value specified by the wall function. Formally stated:

¬¬ (∀∞n. γ(ω)Γnn x → ωL
n(e) < x)

Proof By Lemma 6.28, we have ∃s. ∀e ′ < e. ∀s ′ > s. ¬Rs ′ e ′, where the double
negation is eliminated as the goal is wrapped in double negation. Let the bound
be s + 1. According to the definition of γ(ω), an element is added to the predicate
when someN ′

e acts. If e ′ is greater than e, we obtain the conclusion by the definition
of ω. If e ′ % e, it contradicts the assumption that any N ′

e cannot receive attention
when e ′ % e. $

The previous statements are lemmas contributing to this fact:
Fact 6.47 The low wall function ω is convergent:

¬¬∃b. lim
n→∞

ωΓn
n (n)(e) = b

Proof By the above Fact 6.46, there is a boundm, such that ∀n. γ(ω)Γnn x → ωL
n(e) <

x, where m % n. Since the goal is negative, we can do case analysis on whether for
all k > m, the use function ux∈L

e (e)[k] is equal to 0. If it is the case, 2 · e bounds the
wall function. If there is a k greater than m such that ux∈L

e (e)[k] is equal to some
non-zero number c. The wall function bound bymax(2 ·e, c) as the result of the use
function is c for any step larger than k. $

Corollary 6.48 The function ω is a wall function (see Definition 6.39).

So far we already show that the predicate pγ(ω) is a simple predicate based on the
definition of ω. However, in order to establish the lowness, the limit of the wall
function should be obtained without double negation.

6.3.5 Verification
In order to prove lowness, we must show that step-indexed oracle machines are
convergent, which requires us to eliminate the double negation that occurs inside
the theorems. We check the statements where double negation have occurred pre-
viously (see Fact 6.27 and Lemma 6.28). Even though it is enough to show the sim-
pleness, for the lowness, it is essential to note that we proved these lemmas with

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#eventally_wall_db
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#wall_convergence_db
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#wall_convergence_db


60 Low Simple Predicates

case analysis on ∃n. Rn e. Since Rn e is decidable, this means that by assuming
Σ1-LEM, we can do case analysis on ∃n. Rn e.
Lemma 6.49 Σ1-LEM → ∀e. ∀∞n. ¬Rn e

Proof By the definition of Σ1-LEM, the decidable predicate Rn e allows the case
analysis on ∃n. Rn e, the remainder is the same as Lemma 6.27. $
Lemma 6.50 Σ1-LEM → ∀e. ∃s. ∀e ′ < e. ∀s ′ > s. ¬Rs ′ e ′

Proof By induction on e and then applying Lemma 6.49. $

Based on the introduced logical axioms Σ1-LEM, we can further eliminate the dou-
ble negation in the proof of convergence of the wall function.
Fact 6.51 For any e, by assuming Σ1-LEM:

∀∞n. γ(ω)Γnn x → ωL
n(e) < x

Proof The proof is similar to Fact 6.46. Yet note that we can use Lemma 6.50 to
avoid double negation since we have assumed Σ1-LEM. $
Lemma 6.52 For any e, by assuming Σ1-LEM:

∃b. lim
n→∞

ωΓn
n (n)(e) = b

Proof The proof is similar to Lemma 6.47. However, we use the above Fact 6.51
withΣ1-LEM. Moreover, a case analysis for some boundm of ∀k > m. ux∈L

e (e)[k] = 0

can be performed through Π1-LEM, as it follows from Σ1-LEM. $

Based on the above facts, we show that the constructed predicate pγ(ω) satisfies all
the requirements and is convergent.
Theorem 6.53 Assuming Σ1-LEM, the predicate Pγ(ω) satisfies the requirements Ne.
Proof Assume infinitely many n, such that φpγ(ω)

e (e)[n] ↓. As there is a bound m

such that any added element afterm is greater than the use function, together with
the property of the use function (seeDefinition 3.30), the oraclemachine terminates
on e if the corresponding step-indexed oracle machine terminates on e at any step
after m. Since there are infinitely many steps such that the step-indexed oracle
machine terminates on e, the oracle machine terminates on e. This demonstrates
that the requirements Pe is satisfied. $

Since we know that the wall function is convergent for any e, that means that for
any e, there exists a bound where the results of subsequent step-indexed oracle
machineswill no longer change, andwill either always terminate or always diverge.
Notice that this bound is not the bound for the convergence of the wall function,
but the existence of such bound is provable under assumption Σ1-LEM:

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend_at_most_once_test
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.simpleness.html#attend_at_most_once_bound_test
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#eventally_wall
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#wall_convergence
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#N_requirements


6.3. Low Wall Functions 61

Theorem 6.54 Assuming Σ1-LEM, the step-indexed oracle machine φpγ(ω)
e (e)[n] is con-

vergent.
Proof By Fact 6.51, there is a boundm such that for any n > m, we have γ(ω)Γnn x →
ωL

n(e) < x. By applying Σ1-LEM (see Fact 4.5), if ∀n. φpγ(ω)
e (e)[n] = none, then

this step-indexed oracle machine is convergent to none. If there is a n > m such
that ∀n. φpγ(ω)

e (e)[n] ↓, based on the property of step-indexed oracle machine (see
Definition 3.30), the output of it will not change after m as the wall function is
convergent (see Lemma 6.52). Therefore, the step-indexed oracle machine is con-
vergent to !⋆". $

Semi-decidable

P

Simple

γ
Low

ω

Figure 6.5: Construction of the low simple predicate.

As Figure 6.5 illustrates, with this appropriate wall functionω, we have completed
the final piece of the jigsaw puzzle, and the constructed predicate is now low and
simple. With all theorems established above, we can obtain the following conclu-
sion:
Corollary 6.55 Assuming Σ1-LEM, there exists a low simple predicate.

This result gives a positive answer to Post’s problem:
Corollary 6.56 Assuming Σ1-LEM, there is a semi-decidable yet undecidable predicate
that is not Turing-reducible from the halting problem.

Since Σ1-LEM is equivalent to LPO, we have shown that LPO is sufficient to show
the existence of a low simple predicate.

http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.lowness.html#convergent
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.low_simple_predicates.html#a_sol_Post's_problem_2
http://www.ps.uni-saarland.de/~zeng/bachelor/coqdoc/SyntheticComputability.PostsProblem.low_simple_predicates.html#a_fact




Chapter 7

Conclusion

The central achievement of this thesis is the synthetic solution to Post’s problem,
which is accomplished by constructing low simple predicateswithin synthetic com-
putability. We demonstrate how to construct these predicates using the priority
method. This represents an initial step towardsmechanising advanced computabil-
ity, as many advanced results are based on the priority method. In addition to this
core result, we define step-indexed execution and use functions for oraclemachines
and limit computability in synthetic computability.
In this thesis, the main difficulties come from two places. The first difficulty was
that the existing definitions of oracle computability were lacking, and the second
difficulty was that the priority method is simply difficult even outside a proof as-
sistant.
To expand on this further, the problem of existing studies on synthetic oracle com-
putability is that they only focus on properties for arbitrary oracles. To construct a
solution to Post’s problem, it is necessary to consider the properties of oracle ma-
chineswhen given a semi-decidable oracle, i.e., the step-indexing and use functions
for such oracle machines. The definition of these properties needs to be specific to
a certain definition of oracle computability.
In section 7.1, we give an overview of Coq development. Related and future work
are presented in Sections 7.2 and 7.3.

7.1 Mechanisation in Coq
We mechanise all results in the proof assistant Coq. For all definitions, facts, lem-
mas, and theorems, a link to the HTML page of Coq development is available. A
GitHub repository contain all the results can be found in following link:



64 Conclusion

Synthe'c Computability

Oracle Computability

The Priority 
Method 

Simple 
Predicates

Step-Indexed Oracle Machines

Limit Computability

Low Simple Predicates

Lines of code: ~ 1000

Lines of code: ~ 400

Lines of code: ~ 1200

Figure 7.1: Overview of the Coq development

https://ps.uni-saarland.de/~zeng/bachelor/coqdoc/thesis

Our development is based on the Synthetic Computability Theory in Coq[20, 17, 18], a
repository contributed by Forster, et al. We reuse their basic definitions of synthetic
computability, oracle computability, etc. The dependencies of the whole project are
shown in theDiagram7.1: the grey part is already in the library, the greenpart is the
priority method and related technology, the black part is the limit computability-
related content, and finally, the red part combines all these to get the final result.
Mechanisation increases the confidence of the proofs, as we only need to trust the
core rules of the proof assistant. An interesting point is that the constructions of
the priority method typically follow a specific pattern. In the mechanisation of low
simple predicates, we try to minimise repetition, which enhances modularity. For
instance, we can reduce duplication of proofs by abstracting the extension function
(see Definition 6.1) and wall function (see Definition 6.39) to manage our proofs.
This process is aided by mechanisation. As shown by the following code statistics,
themechanisation of the prioritymethod ismanageable, and under ourmodularity
approach, verifying the topmost layer – the crucial lowness – requires only 400 lines
of code.

https://ps.uni-saarland.de/~zeng/bachelor/coqdoc/thesis


7.2. Related Work 65

Specification Proofs
Limit Computability 66 243
Step-Indexed Oracle Machines 246 673
The Priority Method 110 321
Simple Predicates 134 488
Low Simple Predicates 88 357
Total 644 2082

7.2 Related Work
Synthetic Computability Synthetic computability was first proposed by Rich-
mann and Bridges [53, 7], who study computability under a constructive system in
the sense of Bishop [5]. Bauer further developed synthetic computability based on
Hyland’s effective topos [3]. They all assume the axiom of countable choice, such
that the law of excludedmiddle cannot be assumed, otherwise one could construct
a non-computable function. Forster et al. [22, 16] used CIC as a constructive system
to study synthetic computability by assuming synthetic Church’s thesis.

Post’s Problem Post presented Post’s problem in 1944 [52], and before the solu-
tion given by Friedberg and Muchnik, the closest result is the Post-Kleene theo-
rem [37], in which they proved the existence of two limit computable predicates
that are Turing-incomparable. In 1956 and 1957, Friedberg and Muchnik inde-
pendently developed the priority method [27, 46], then solved Post’s problem by
constructing two semi-decidable predicates that are Turing-incomparable. After-
wards, more solutions were proposed, including the method we are following, i.e.,
the construction of low simple predicates, which is a by-product of Lerman and
Soare’s work in constructing d-simple set [44]. By reducing some constraints, the
construction in the paper gives a low simple predicate. Thismethod is simpler than
Friedberg-Muchnik’s construction, and is called the "simplest" solution in Soare’s
textbook [62]. Kučera proposes a solution without the priority method [39].
Forster and Jahn construct simple and hypersimple predicates in synthetic com-
putability [18, 33]. Through these constructions, they provide a synthetic solution
to Post’s problem with respect to many-one and truth-table degrees. However, in
this thesis, we consider Post’s problem with respect to Turing degrees. In Post’s
paper presenting Post’s problem, he already constructed simple predicates and hy-
persimple predicates but left the problemwith respect to Turing degrees open until
Friedberg and Muchnik solved it. Forster, Kirst, and Mück have mechanised the
proof of the Kleene-Post theorem in synthetic computability [35]. All their results
are mechanised in the Coq proof assistant.



66 Conclusion

Mechanisation of Synthetic Computability Mechanising synthetic computabil-
ity begins with Forster, Kirst, and Smolka’s work in the proof assistant Coq [22].
Their subsequent work establishes a Coq library of synthetic computability that has
mechanised the arithmetical hierarchy, the Kleene-Post’s theorem, and Post’s hi-
erarchy theorem, among other results [18, 21]. The results of this thesis, i.e., the
limit lemma and the existence of low simple predicates, will also be included in
this library. Swan’s work on oracle modalities is mechanised in the proof assistant
Agda [64].

Synthetic Oracle Computability The first definition of oracle computability was
given by Bauer [4], defining it as a form of continuity in the setting of the intuition-
istic effective topos. Later, Forster and Kirst describe a reformulation in construc-
tive type theory [16], along with another suggestion that enables the connection of
Post’s theorem and the arithmetical hierarchy [19].
However, all these definitions require an axiom not derived from the common ax-
iom of synthetic computability CT, thus leaving a gap in the consistency status.
Forster, Kirst, and Mück suggest another definition of oracle computability based
on sequential continuity [20], where the enumerability of oracle machines is de-
rived from CT. In this thesis, we use this definition of oracle computability.
Swan introduces another definition of oracle computability based on highermodal-
ities in homotopy type theory [64]. In this framework, he characterizes oracle com-
putations through 0-truncated ¬¬-sheafification.

7.3 Future Work
In this thesis, we have proved the existence of low simple predicates (see Corol-
lary 6.55), which provides a positive solution to Post’s problem in synthetic com-
putability theory. However, Friedberg and Muchnik’s original construction pro-
vides a positive solution to Post’s problem by constructing two semi-decidable and
Turing-incomparable degrees [27, 46]. Althoughwe havemechanised a solution to
Post’s problem, it would be a natural follow-up to mechanise Friedberg andMuch-
nik’s original construction in synthetic computability.
The twomain results in this thesis – the limit lemma and the existence of low simple
predicates. They are both proved by assuming the classical axiom LPO. Since LPO
is sufficient to prove both theorems, from the point of view of reverse constructive
mathematics, it will be an interesting question to find the classical axiom required
to precisely prove this theorem, i.e., to show that some theorem (e.g. the limit
lemma or existence of low simple predicates) are equivalent to this axiom under
our constructive setting.



7.3. Future Work 67

We introduce the definition of step-indexing for oracle machines (see Section 3.2).
However, in synthetic computability, depending on the definition of oracle com-
putability, one has different formulations to describe the step-indexed execution of
oracle machines. In future work, one can study step-indexed execution on top of
these different definitions of oracle computability [4, 64] and re-examine the con-
struction of low simple predicates.
We have discussed the prioritymethod in synthetic computability and have given a
construction of low simple predicates. Since the priority method is a fundamental
technique in computability theory, it has contributed to many significant results,
such as the Sacks’ splitting theorem and the Sacks’ jump inversion theorem [43,
55, 56]. It has also played a role in other areas, such as effective model theory and
complexity theory [2, 30]. Therefore, it would be interesting to mechanise more
results in synthetic computability to further bridge the gap betweenmechanisation
and paper proofs.





Bibliography

[1] Yohji Akama, Stefano Berardi, Susumu Hayashi, and Ulrich Kohlenbach. An
arithmetical hierarchy of the law of excluded middle and related principles.
In 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July
2004, Turku, Finland, Proceedings, pages 192–201. IEEE Computer Society, 2004.
doi:10.1109/LICS.2004.1319613.

[2] Eric Allender, Luke Friedman, and William I. Gasarch. Limits on the compu-
tational power of random strings. Inf. Comput., 222:80–92, 2013. URL: https:
//doi.org/10.1016/j.ic.2011.09.008, doi:10.1016/J.IC.2011.09.008.

[3] Andrej Bauer. First steps in synthetic computability theory. Electronic Notes
in Theoretical Computer Science, 155:5–31, 2006. doi:10.1016/j.entcs.2005.
11.049.

[4] Andrej Bauer. Synthetic mathematics with an excursion into computability
theory (slide set). University of Wisconsin Logic seminar, 2020. URL: http://
math.andrej.com/asset/data/madison-synthetic-computability-talk.
pdf.

[5] Errett Bishop. Foundations of constructive analysis. 1967.
[6] Douglas Bridges and Fred Richman. Varieties of ConstructiveMathematics. Lon-

don Mathematical Society Lecture Note Series. Cambridge University Press,
1987.

[7] Douglas Bridges and Fred Richman. Varieties of constructive mathematics, vol-
ume 97. Cambridge University Press, 1987.

[8] Mario Carneiro. Lean4lean: Towards a formalized metatheory for the lean
theorem prover. arXiv preprint arXiv:2403.14064, 2024.

[9] Liron Cohen, Yannick Forster, Dominik Kirst, Bruno da Rocha Paiva, and
Vincent Rahli. Separating Markov’s Principles. In 39th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’24), Talinn, Estonia, July 2024.

https://doi.org/10.1109/LICS.2004.1319613
https://doi.org/10.1016/j.ic.2011.09.008
https://doi.org/10.1016/j.ic.2011.09.008
https://doi.org/10.1016/J.IC.2011.09.008
https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1016/j.entcs.2005.11.049
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf


70 Bibliography

URL: https://inria.hal.science/hal-04584831, doi:10.1145/3661814.
3662104.

[10] S. Barry Cooper. Chapter 4 - local degree theory* *preparation of this paper
partially supported by e.p.s.r.c. research grants nos. gr/h91213 and gr/h02165,
and by ec human capital andmobility network complexity, logic and recursion
theory. In Edward R. Griffor, editor,Handbook of Computability Theory, volume
140 of Studies in Logic and the Foundations of Mathematics, pages 121–153. Else-
vier, 1999. URL: https://www.sciencedirect.com/science/article/pii/
S0049237X99800202, doi:10.1016/S0049-237X(99)80020-2.

[11] Thierry Coquand. Metamathematical investigations of a calculus of construc-
tions. Technical Report RR-1088, INRIA, 1989. URL: https://inria.hal.
science/inria-00075471.

[12] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95–120, 1988. doi:10.1016/0890-5401(88)90005-3.

[13] Thierry Coquand and Bassel Mannaa. The independence of markov’s prin-
ciple in type theory. Log. Methods Comput. Sci., 13(3), 2017. doi:10.23638/
LMCS-13(3:10)2017.

[14] Hannes Diener and Hajime Ishihara. Bishop-Style Constructive Reverse Mathe-
matics, pages 347–365. Springer International Publishing, Cham, 2021. doi:
10.1007/978-3-030-59234-9_10.

[15] Yannick Forster. Church’s thesis and related axioms in coq’s type theory. In
Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Confer-
ence onComputer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia
(Virtual Conference), volume 183 of LIPIcs, pages 21:1–21:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/
LIPIcs.CSL.2021.21, doi:10.4230/LIPICS.CSL.2021.21.

[16] Yannick Forster. Computability in constructive type theory. 2021. doi:10.
22028/D291-35758.

[17] Yannick Forster. Parametric church’s thesis: Synthetic computability with-
out choice. In Sergei N. Artëmov and Anil Nerode, editors, Logical Foun-
dations of Computer Science - International Symposium, LFCS 2022, Deerfield
Beach, FL, USA, January 10-13, 2022, Proceedings, volume 13137 of Lecture
Notes in Computer Science, pages 70–89. Springer, 2022. doi:10.1007/
978-3-030-93100-1\_6.

[18] Yannick Forster and Felix Jahn. Constructive and synthetic reducibility de-
grees: Post’s problem for many-one and truth-table reducibility in Coq. In

https://inria.hal.science/hal-04584831
https://doi.org/10.1145/3661814.3662104
https://doi.org/10.1145/3661814.3662104
https://www.sciencedirect.com/science/article/pii/S0049237X99800202
https://www.sciencedirect.com/science/article/pii/S0049237X99800202
https://doi.org/10.1016/S0049-237X(99)80020-2
https://inria.hal.science/inria-00075471
https://inria.hal.science/inria-00075471
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.23638/LMCS-13(3:10)2017
https://doi.org/10.23638/LMCS-13(3:10)2017
https://doi.org/10.1007/978-3-030-59234-9_10
https://doi.org/10.1007/978-3-030-59234-9_10
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://doi.org/10.4230/LIPICS.CSL.2021.21
https://doi.org/10.22028/D291-35758
https://doi.org/10.22028/D291-35758
https://doi.org/10.1007/978-3-030-93100-1_6
https://doi.org/10.1007/978-3-030-93100-1_6


Bibliography 71

CSL 2023-31st EACSL Annual Conference on Computer Science Logic, 2023. doi:
10.4230/LIPIcs.CSL.2023.21.

[19] Yannick Forster and Dominik Kirst. Synthetic Turing reducibility in construc-
tive type theory. 28th International Conference on Types for Proofs and Pro-
grams (TYPES 2022), 2022. URL: https://types22.inria.fr/files/2022/
06/TYPES_2022_paper_64.pdf.

[20] Yannick Forster, Dominik Kirst, and Niklas Mück. Oracle computability and
turing reducibility in the calculus of inductive constructions. In Chung-
Kil Hur, editor, Programming Languages and Systems - 21st Asian Symposium,
APLAS 2023, Taipei, Taiwan, November 26-29, 2023, Proceedings, volume 14405
of Lecture Notes in Computer Science, pages 155–181. Springer, 2023. doi:
10.1007/978-981-99-8311-7\_8.

[21] Yannick Forster, Dominik Kirst, and Niklas Mück. The Kleene-Post and Posts
theorem in the calculus of inductive constructions. 2024. doi:10.4230/
LIPIcs.CSL.2024.29.

[22] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidabil-
ity in coq, with an application to the entscheidungsproblem. In Assia Mah-
boubi and Magnus O. Myreen, editors, Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Por-
tugal, January 14-15, 2019, pages 38–51. ACM, 2019. doi:10.1145/3293880.
3294091.

[23] Yannick Forster, Fabian Kunze, and Maximilian Wuttke. Verified program-
ming of Turing machines in Coq. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 114–128, 2020.
doi:10.1145/3372885.3373816.

[24] Yannick Forster, Steven Schäfer, Simon Spies, andKathrin Stark. Call-by-push-
value in coq: operational, equational, and denotational theory. In Assia Mah-
boubi and Magnus O. Myreen, editors, Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Por-
tugal, January 14-15, 2019, pages 118–131. ACM, 2019. doi:10.1145/3293880.
3294097.

[25] Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as
a model of computation in coq. In Mauricio Ayala-Rincón and César A.
Muñoz, editors, Interactive Theorem Proving - 8th International Conference, ITP
2017, Brasília, Brazil, September 26-29, 2017, Proceedings, volume 10499 of Lec-
ture Notes in Computer Science, pages 189–206. Springer, 2017. doi:10.1007/
978-3-319-66107-0\_13.

https://doi.org/10.4230/LIPIcs.CSL.2023.21
https://doi.org/10.4230/LIPIcs.CSL.2023.21
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_64.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_64.pdf
https://doi.org/10.1007/978-981-99-8311-7_8
https://doi.org/10.1007/978-981-99-8311-7_8
https://doi.org/10.4230/LIPIcs.CSL.2024.29
https://doi.org/10.4230/LIPIcs.CSL.2024.29
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3372885.3373816
https://doi.org/10.1145/3293880.3294097
https://doi.org/10.1145/3293880.3294097
https://doi.org/10.1007/978-3-319-66107-0_13
https://doi.org/10.1007/978-3-319-66107-0_13


72 Bibliography

[26] Yannick Forster and Gert Smolka. Call-by-value lambda calculus as a model
of computation in coq. J. Autom. Reason., 63(2):393–413, 2019. URL: https://
doi.org/10.1007/s10817-018-9484-2, doi:10.1007/S10817-018-9484-2.

[27] Richard M Friedberg. Two recursively enumerable sets of incomparable de-
grees of unsolvability (solution of Post’s problem, 1944). Proceedings of the Na-
tional Academy of Sciences, 43(2):236–238, 1957. doi:10.1073/pnas.43.2.236.

[28] E. Mark Gold. Limiting recursion. J. Symb. Log., 30(1):28–48, 1965. doi:
10.2307/2270580.

[29] YUZHOU GU. (t)uring degrees, 2017. URL: https://www.math.ias.edu/
~yuzhougu/data/turing.pdf.

[30] Leo Harrington. Recursively presentable prime models. J. Symb. Log.,
39(2):305–309, 1974. doi:10.2307/2272643.

[31] William Alvin Howard. The formulae-as-types notion of construction. In
Haskell Curry, Hindley B., Seldin J. Roger, and P. Jonathan, editors, To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic
Press, 1980.

[32] Hajime Ishihara. Reverse mathematics in bishop?s constructive math-
ematics. Philosophia Scientiae, pages 43–59, 2006. doi:10.4000/
philosophiascientiae.406.

[33] Felix Jahn. Synthetic One-One, Many-One, and Truth-Table Reducibility in Coq.
PhD thesis, Bachelors thesis, Saarland University, 2020.

[34] Dominik Kirst, Yannick Forster, and Niklas Mück. Synthetic Versions of the
Kleene-Post and Posts Theorem. 28th International Conference on Types for
Proofs and Programs (TYPES 2022), 2022. URL: https://types22.inria.
fr/files/2022/06/TYPES_2022_paper_65.pdf.

[35] Dominik Kirst, Niklas Mück, and Yannick Forster. Synthetic versions of the
kleene-post and posts theorem.

[36] S. C. Kleene. Recursive predicates and quantifiers. Transactions of the Amer-
ican Mathematical Society, 53(1):41–73, 1943. URL: http://www.jstor.org/
stable/1990131.

[37] S. C. Kleene and Emil L. Post. The upper semi-lattice of degrees of recursive
unsolvability. Annals of Mathematics, 59(3):379–407, 1954. URL: http://www.
jstor.org/stable/1969708.

[38] GeorgKreisel. Mathematical logic. InGeorgKreisel, editor, Lectures onModern
Mathematics, pages 95–195. Wiley, 1965.

https://doi.org/10.1007/s10817-018-9484-2
https://doi.org/10.1007/s10817-018-9484-2
https://doi.org/10.1007/S10817-018-9484-2
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.2307/2270580
https://doi.org/10.2307/2270580
https://www.math.ias.edu/~yuzhougu/data/turing.pdf
https://www.math.ias.edu/~yuzhougu/data/turing.pdf
https://doi.org/10.2307/2272643
https://doi.org/10.4000/philosophiascientiae.406
https://doi.org/10.4000/philosophiascientiae.406
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_65.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_65.pdf
http://www.jstor.org/stable/1990131
http://www.jstor.org/stable/1990131
http://www.jstor.org/stable/1969708
http://www.jstor.org/stable/1969708


Bibliography 73

[39] Antonín Kučera. An alternative, priority-free, solution to post’s problem. In
Jozef Gruska, Branislav Rovan, and Juraj Wiedermann, editors, Mathematical
Foundations of Computer Science 1986, pages 493–500, Berlin, Heidelberg, 1986.
Springer Berlin Heidelberg.

[40] Fabian Kunze, Gert Smolka, and Yannick Forster. Formal small-step verifi-
cation of a call-by-value lambda calculus machine. In Sukyoung Ryu, edi-
tor, Programming Languages and Systems - 16th Asian Symposium, APLAS 2018,
Wellington, New Zealand, December 2-6, 2018, Proceedings, volume 11275 of Lec-
ture Notes in Computer Science, pages 264–283. Springer, 2018. doi:10.1007/
978-3-030-02768-1\_15.

[41] Alistair H. Lachlan. On the lattice of recursively enumerable sets. Trans-
actions of the American Mathematical Society, 130:1–37, 1968. URL: https:
//api.semanticscholar.org/CorpusID:5622297.

[42] Alistair H Lachlan. The priority method for the construction of recursively
enumerable sets. In Cambridge Summer School in Mathematical Logic: Held in
Cambridge/England, August 1–21, 1971, pages 299–310. Springer, 2006. doi:
10.1007/BFb0066779.

[43] Steffen Lempp. Priority arguments in computability theory, model theory,
and complexity theory. Lecture notes, 2012. URL: https://people.math.
wisc.edu/~slempp/papers/prio.pdf.

[44] Manuel Lerman and Robert Soare. d-simple sets, small sets, and degree
classes. Pacific Journal of Mathematics, 87(1):135–155, 1980. doi:10.2140/pjm.
1980.87.135.

[45] Andrzej Mostowski. On definable sets of positive integers. Fundamenta Math-
ematicae, 34(1):81–112, 1947. URL: http://eudml.org/doc/213118.

[46] Albert A Muchnik. On the unsolvability of the problem of reducibility in the
theory of algorithms. In Dokl. Akad. Nauk SSSR, volume 108, pages 194–197,
1956.

[47] Michael E. Mytilinaios and Theodore A. Slaman. 2-collection and the infi-
nite injury priority method. The Journal of Symbolic Logic, 53(1):212–221, 1988.
URL: http://www.jstor.org/stable/2274439.

[48] Takako Nemoto. Computability theory over intuitionistic logic. Logic Col-
loquium 2024, European Summer Meeting of the Association for Symbolic
Logic, Gothenburg, Sweden, 2024.

[49] Piergiorgio Odifreddi. Classical recursion theory: The theory of functions and sets
of natural numbers. Elsevier, 1992. doi:10.2307/2274492.

https://doi.org/10.1007/978-3-030-02768-1_15
https://doi.org/10.1007/978-3-030-02768-1_15
https://api.semanticscholar.org/CorpusID:5622297
https://api.semanticscholar.org/CorpusID:5622297
https://doi.org/10.1007/BFb0066779
https://doi.org/10.1007/BFb0066779
https://people.math.wisc.edu/~slempp/papers/prio.pdf
https://people.math.wisc.edu/~slempp/papers/prio.pdf
https://doi.org/10.2140/pjm.1980.87.135
https://doi.org/10.2140/pjm.1980.87.135
http://eudml.org/doc/213118
http://www.jstor.org/stable/2274439
https://doi.org/10.2307/2274492


74 Bibliography

[50] Christine Paulin-Mohring. Inductive definitions in the system coq - rules and
properties. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi
and Applications, International Conference on Typed Lambda Calculi and Applica-
tions, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings, vol-
ume 664 of Lecture Notes in Computer Science, pages 328–345. Springer, 1993.
URL: https://doi.org/10.1007/BFb0037116, doi:10.1007/BFB0037116.

[51] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi,MichaelGreenberg, CtlinHricu, VilhelmSjöberg, andBrent Yorgey.
Logical Foundations, volume 1 of Software Foundations. Electronic textbook,
2023. URL: http://softwarefoundations.cis.upenn.edu.

[52] Emil L Post. Recursively enumerable sets of positive integers and their deci-
sion problems. 1944. doi:10.1090/s0002-9904-1944-08111-1.

[53] Fred Richman. Church’s thesis without tears. The Journal of symbolic logic,
48(3):797–803, 1983. doi:10.2307/2273473.

[54] Hartley Rogers Jr. Theory of recursive functions and effective computability. MIT
press, 1987. doi:10.2307/2271523.

[55] Gerald E. Sacks. On the degrees less than 0. Annals of Mathematics, 77(2):211–
231, 1963. URL: http://www.jstor.org/stable/1970214.

[56] Gerald E Sacks. Recursive enumerability and the jump operator. Transactions
of the American Mathematical Society, 108(2):223–239, 1963.

[57] J. R. Shoenfield. On degrees of unsolvability. Annals ofMathematics, 69(3):644–
653, 1959. URL: http://www.jstor.org/stable/1970028.

[58] Joseph R Shoenfield. On degrees of unsolvability. Annals of mathematics,
69(3):644–653, 1959. doi:10.2307/1970028.

[59] Stephen G Simpson. Degrees of unsolvability: a survey of results. In Studies
in Logic and the Foundations of Mathematics, volume 90, pages 631–652. Elsevier,
1977. doi:10.1016/S0049-237X(08)71117-0.

[60] Gert Smolka. Computational Type Theory and Interactive Theorem Proving with
Coq. 2024.

[61] Robert I Soare. Recursively enumerable sets and degrees. Bulletin of the Amer-
ican Mathematical Society, 84(6):1149–1181, 1978.

[62] Robert I Soare. Turing computability. Theory and Applications of Computability.
Springer, 2016. doi:10.1007/978-3-642-31933-4.

[63] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick
Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Win-

https://doi.org/10.1007/BFb0037116
https://doi.org/10.1007/BFB0037116
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1090/s0002-9904-1944-08111-1
https://doi.org/10.2307/2273473
https://doi.org/10.2307/2271523
http://www.jstor.org/stable/1970214
http://www.jstor.org/stable/1970028
https://doi.org/10.2307/1970028
https://doi.org/10.1016/S0049-237X(08)71117-0
https://doi.org/10.1007/978-3-642-31933-4


Bibliography 75

terhalter. The metacoq project. Journal of automated reasoning, 64(5):947–999,
2020.

[64] Andrew W Swan. Oracle modalities. arXiv preprint arXiv:2406.05818, 2024.
doi:10.48550/arXiv.2406.05818.

[65] A.S. Troelstra and D. Dalen. Constructivism in Mathematics: An Introduction.
Number Vol. I in Constructivism inMathematics. North-Holland, 1988. URL:
https://books.google.de/books?id=EubuAAAAMAAJ.

[66] Alan M. Turing. Systems of Logic Based on Ordinals. PhD thesis, Princeton
University, NJ, USA, 1938. URL: https://doi.org/10.1112/plms/s2-45.1.
161, doi:10.1112/PLMS/S2-45.1.161.

https://doi.org/10.48550/arXiv.2406.05818
https://books.google.de/books?id=EubuAAAAMAAJ
https://doi.org/10.1112/plms/s2-45.1.161
https://doi.org/10.1112/plms/s2-45.1.161
https://doi.org/10.1112/PLMS/S2-45.1.161

	Abstract
	Introduction
	Contributions
	Outline

	Preliminaries
	The Calculus of Inductive Constructions
	Basic Notations
	Partial Functions

	Synthetic Computability
	Basic Definitions
	Church's Thesis
	Classical Logic


	Oracle Computability
	Synthetic Oracle Computability
	Oracle Computability
	Turing Reductions
	Turing Jump

	Step-Indexed Oracle Machines
	Step-Indexed Execution
	Use Functions


	Limit Computability
	Arithmetical Hierarchy
	Synthetic Limit Computability
	Limit Lemma

	Post's Problem
	Post's Problem
	Many-One Degrees
	Truth-Table Degrees
	Turing Degrees

	Friedberg-Muchnik Theorem
	Lerman and Soare's Construction

	Low Simple Predicates
	The Priority Method
	Construction
	Concrete Example: The Halting Problem

	Simple Extension
	Requirements
	Construction
	Verification

	Low Wall Functions
	Wall Functions
	Lowness
	Requirements
	Construction
	Verification


	Conclusion
	Mechanisation in Coq
	Related Work
	Future Work

	Bibliography

