Library libs.fset
Require Import Recdef.
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
Require Import edone bcase base.
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
Require Import edone bcase base.
Finite Sets over choice types and countable types
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Set Nonrecursive Elimination Schemes.
We build finite sets over choice types and countable types by chosing a
unique, duplicate free list as canonical representative of every set.
Section FinSets.
Variable T : choiceType.
Definition fset_axiom (el : seq T) := uniq el && (el == choose (perm_eq el) el).
Record fset_type := Fset { elements :> seq T ; _ : fset_axiom elements}.
Definition fset_of of phant T := fset_type.
Identity Coercion type_of_fset_of : fset_of >-> fset_type.
Canonical Structure fset_subType := [subType for elements by fset_type_rect].
Canonical Structure fset_eqType := EqType _ [eqMixin of fset_type by <:].
Canonical Structure fset_predType := mkPredType (fun (X : fset_type) x ⇒ nosimpl x \in elements X).
Canonical Structure fset_choiceType := Eval hnf in ChoiceType _ [choiceMixin of fset_type by <:].
End FinSets.
Additional Canonical Structures in case T is a countType.
This allows sets of sets of countTypes
Canonical Structure fset_countType (T : countType) :=
Eval hnf in CountType _ [countMixin of fset_type T by <:].
Canonical Structure fset_subCountType (T : countType) :=
Eval hnf in [subCountType of fset_type T].
Notation for fsets using Phant to allow the type checker to infer
the Caonical Structure for the element type
Notation "{ 'fset' T }" := (fset_of (Phant T))
(at level 0, format "{ 'fset' T }") : type_scope.
Section Extensionality.
Variables T : choiceType.
Lemma fset_eq X Y : X =i Y → X == Y :> {fset T}.
Proof.
move: X Y ⇒ [xs ax_xs] [ys ax_ys] /= H.
change (xs == ys). change (xs =i ys) in H.
case/andP : ax_xs ax_ys ⇒ xs1 /eqP → /andP [ys1 /eqP ->].
have ext : perm_eq xs =1 perm_eq ys by apply/perm_eqlP ; rewrite uniq_perm_eq //=.
rewrite (eq_choose ext). apply/eqP. apply: choose_id ⇒ //. exact: perm_eqlE.
Qed.
Lemma fset_ext X Y : X =i Y → X = Y :> {fset T}.
Proof. move ⇒ ?. apply/eqP. exact: fset_eq. Qed.
End Extensionality.
In conntrast to finite sets over finite types, where sets are constructed
from predicates, we contruct sets from seqences by chosing a ducplicate free
equivalent.
Section SetOfSeq.
Variable (T : choiceType).
Definition fseq (xs : seq T) : seq T :=
let e := undup xs in choose (perm_eq e) e.
Lemma fseq_perm_eq xs : perm_eq (undup xs) (fseq xs).
Proof. exact: chooseP. Qed.
Lemma fseq_uniq xs : uniq (fseq xs).
Proof. by rewrite -(perm_eq_uniq (fseq_perm_eq xs)) undup_uniq. Qed.
Lemma fseq_axiom (xs : seq T) : fset_axiom (fseq xs).
Proof.
rewrite /fset_axiom /= fseq_uniq /= {1}/fseq /=. apply/eqP.
have P := perm_eqlP (fseq_perm_eq xs).
rewrite -(eq_choose P). apply: choose_id ⇒ //. exact: fseq_perm_eq.
Qed.
Definition set_of xs : {fset T} := Fset (fseq_axiom xs).
Lemma set_ofE x xs : (x \in set_of xs) = (x \in xs).
Proof.
rewrite -[x \in set_of xs]/(x \in fseq xs) -[x \in xs]mem_undup.
symmetry. exact: (perm_eq_mem (fseq_perm_eq _)).
Qed.
Lemma funiq (X : {fset T}) : uniq X.
Proof. case: X ⇒ s H. by case/andP : (H). Qed.
Lemma set_of_uniq (s : seq T) : uniq s → perm_eq (set_of s) s.
Proof. move ⇒ U. apply: uniq_perm_eq (funiq _) U _ ⇒ x. exact: set_ofE. Qed.
End SetOfSeq.
Global Opaque set_of.
Primitive operations
Local Notation sep_def := (fun T X p ⇒ @set_of T (filter p (elements X))).
Local Notation fsetU_def := (fun T X Y ⇒ @set_of T (elements X ++ elements Y)).
Local Notation fset1_def := (fun T x ⇒ @set_of T [:: x]).
Local Notation fset0_def := (fun T ⇒ @set_of T [::]).
Local Notation fimset_def :=
(fun (aT rT : choiceType) f X ⇒ @set_of rT (@map aT rT f (elements X))).
Local Notation fimset2_def := (fun (aT aT' rT : choiceType) f X Y ⇒
@set_of rT (@allpairs aT aT' rT f (elements X) (elements Y))).
Module Type FsetType.
Implicit Types (T aT rT : choiceType).
Parameter sep : ∀ T, {fset T} → pred T → {fset T}.
Axiom sepE : sep = sep_def.
Parameter fsetU : ∀ T, {fset T} → {fset T} → {fset T}.
Axiom fsetUE : fsetU = fsetU_def.
Parameter fset0_ : ∀ T, {fset T}.
Axiom fset0E : fset0_ = fset0_def.
Parameter fset1 : ∀ T, T→ {fset T}.
Axiom fset1E : fset1 = fset1_def.
Parameter fimset : ∀ aT rT, (aT → rT) → {fset aT} → {fset rT}.
Axiom fimsetE : fimset = fimset_def.
Parameter fimset2 : ∀ aT aT' rT, (aT → aT' → rT) → {fset aT} → {fset aT'} → {fset rT}.
Axiom fimset2E : fimset2 = fimset2_def.
End FsetType.
Module Fset : FsetType.
Implicit Types (T aT rT : choiceType).
Definition sep := sep_def.
Lemma sepE : sep = sep_def. by []. Qed.
Definition fsetU := fsetU_def.
Lemma fsetUE : fsetU = fsetU_def. by []. Qed.
Definition fset0_ := fset0_def.
Lemma fset0E : @fset0_ = fset0_def. by []. Qed.
Definition fset1 := fset1_def.
Lemma fset1E : fset1 = fset1_def. by []. Qed.
Definition fimset := fimset_def.
Lemma fimsetE : fimset = fimset_def. by []. Qed.
Definition fimset2 := fimset2_def.
Lemma fimset2E : fimset2 = fimset2_def. by []. Qed.
End Fset.
Export Fset.
Notation "[ 'fset' x 'in' X | P ]" := (sep X (fun x ⇒ P))
(at level 0, x, X at level 99, format "[ 'fset' x 'in' X | P ]").
Definition fsetI (T : choiceType) (X Y : {fset T}) := [fset x in X | x \in Y].
Definition fsetD (T : choiceType) (X Y : {fset T}) := [fset x in X | x \notin Y].
Definition subset (T : choiceType) (X Y : {fset T}) := all (mem Y) X.
Definition proper (T : choiceType) (X Y : {fset T}) := subset X Y && ~~ subset Y X.
Definition fsetX (T T' : choiceType) (X : {fset T}) (Y : {fset T'}) := fimset2 pair X Y.
Prenex Implicits fsetU.
Notation "X `|` Y" := (fsetU X Y) (at level 52, left associativity).
Notation "X `&` Y" := (fsetI X Y) (at level 48, left associativity).
Notation "X `\` Y" := (fsetD X Y) (at level 48, left associativity).
Notation "X `<=` Y" := (subset X Y) (at level 70 ,no associativity).
Notation "X `<` Y" := (proper X Y) (at level 70, no associativity).
Notation "[ 'fset' x ]" := (fset1 x) (at level 0,x at level 99, format "[ 'fset' x ]" ).
Notation fset0 := (@fset0_ _).
Notation "f `@` X" := (fimset f X) (at level 45).
Notation "x |` X" := ([fset x] `|` X) (at level 52, left associativity).
Notation "X `x` Y" := (fsetX X Y) (at level 44, left associativity).
This is left recursive to avoid having an explicit fset0 at the end
Notation "[ 'fset' x1 ; x2 ; .. ; xn ]" := (fsetU .. (x1 |` [fset x2]) .. [fset xn])
(at level 0, x1 at level 99, format "[ 'fset' x1 ; x2 ; .. ; xn ]").
Notation "[ 'fset' x1 , x2 , .. , xn & X ]" := (x1 |` (x2 |` .. (xn |` X) ..))
(at level 0, x1 at level 99, format "[ 'fset' x1 , x2 , .. , xn & X ]").
Notation "[ 'all' x 'in' s , p ]" := (all (fun x ⇒ p) s)
(at level 0, x at level 99, format "[ 'all' x 'in' s , p ]").
Notation "[ 'some' x 'in' s , p ]" := (has (fun x ⇒ p) s)
(at level 0, x at level 99, format "[ 'some' x 'in' s , p ]").
Notation "[ 'fset' E | x <- X ]" := (fimset (fun x ⇒ E) X)
(at level 0, E, x at level 99, format "[ '[hv' 'fset' E '/ ' | x <- X ] ']'").
Notation "[ 'fset' E | a <- A , b <- B ]" :=
(fimset2 (fun a b ⇒ E) A B) (at level 0, E, a, b at level 99).
Definition fimset3 (aT1 aT2 aT3 rT : choiceType) (f : aT1 → aT2 → aT3 → rT) X Y Z :=
[fset f x y.1 y.2 | x <- X, y <- Y `x` Z].
Notation "[ 'fset' E | a <- A , b <- B , c <- C ]" :=
(fimset3 (fun a b c ⇒ E) A B C) (at level 0, E, a, b, c at level 99).
(at level 0, x1 at level 99, format "[ 'fset' x1 ; x2 ; .. ; xn ]").
Notation "[ 'fset' x1 , x2 , .. , xn & X ]" := (x1 |` (x2 |` .. (xn |` X) ..))
(at level 0, x1 at level 99, format "[ 'fset' x1 , x2 , .. , xn & X ]").
Notation "[ 'all' x 'in' s , p ]" := (all (fun x ⇒ p) s)
(at level 0, x at level 99, format "[ 'all' x 'in' s , p ]").
Notation "[ 'some' x 'in' s , p ]" := (has (fun x ⇒ p) s)
(at level 0, x at level 99, format "[ 'some' x 'in' s , p ]").
Notation "[ 'fset' E | x <- X ]" := (fimset (fun x ⇒ E) X)
(at level 0, E, x at level 99, format "[ '[hv' 'fset' E '/ ' | x <- X ] ']'").
Notation "[ 'fset' E | a <- A , b <- B ]" :=
(fimset2 (fun a b ⇒ E) A B) (at level 0, E, a, b at level 99).
Definition fimset3 (aT1 aT2 aT3 rT : choiceType) (f : aT1 → aT2 → aT3 → rT) X Y Z :=
[fset f x y.1 y.2 | x <- X, y <- Y `x` Z].
Notation "[ 'fset' E | a <- A , b <- B , c <- C ]" :=
(fimset3 (fun a b c ⇒ E) A B C) (at level 0, E, a, b, c at level 99).
Section OperationsTheory.
Variable aT1 aT2 aT3 T T': choiceType.
Implicit Types X Y Z : {fset T}.
Implicit Types x y z : T.
Lemma fset0F : set_of [::] = fset0 :> {fset T}.
Proof. by rewrite fset0E. Qed.
Lemma fset1F x : set_of [:: x] = [fset x] :> {fset T}.
Proof. by rewrite fset1E. Qed.
For fset0 and fset1 we know the repesentative
Lemma fset1Es x : [fset x] = [:: x] :> seq T.
Proof. rewrite fset1E. apply: perm_eq_small ⇒ //. exact: set_of_uniq. Qed.
Lemma fset0Es : fset0 = [::] :> seq T.
Proof. rewrite fset0E. apply: perm_eq_small ⇒ //. exact: set_of_uniq. Qed.
Lemma in_sep X p x : x \in [fset y in X | p y] = (x \in X) && (p x).
Proof. by rewrite sepE set_ofE mem_filter andbC. Qed.
Lemma in_fsetU x X Y : (x \in X `|` Y) = (x \in X) || (x \in Y).
Proof. by rewrite fsetUE set_ofE mem_cat. Qed.
Lemma in_fsetD x X Y : (x \in X `\` Y) = (x \in X) && (x \notin Y).
Proof. exact: in_sep. Qed.
Lemma in_fsetI x X Y : (x \in X `&` Y) = (x \in X) && (x \in Y).
Proof. exact: in_sep. Qed.
Lemma in_fset0 x : (x \in fset0) = false.
Proof. by rewrite fset0E set_ofE. Qed.
Lemma in_fset1 x y : (x \in [fset y]) = (x == y).
Proof. by rewrite fset1E set_ofE inE. Qed.
Lemma fset11 x : (x \in [fset x]).
Proof. by rewrite in_fset1 eqxx. Qed.
Definition in_fset := (in_sep,in_fsetU,in_fset0,fset11,in_fset1).
Definition inE := (in_fset,inE).
Section Laws.
Variables X Y Z : {fset T}.
Lemma fsetUA : X `|` (Y `|` Z) = X `|` Y `|` Z.
Proof. apply: fset_ext ⇒ x; by rewrite !inE; bcase. Qed.
Lemma fsetUC : X `|` Y = Y `|` X.
Proof. apply: fset_ext ⇒ x; by rewrite !inE; bcase. Qed.
Lemma fsetIA : X `&` (Y `&` Z) = X `&` Y `&` Z.
Proof. apply: fset_ext ⇒ x; by rewrite !inE; bcase. Qed.
Lemma fsetIC : X `&` Y = Y `&` X.
Proof. apply: fset_ext ⇒ x; by rewrite !inE; bcase. Qed.
Lemma fsetIUr : X `&` (Y `|` Z) = (X `&` Y) `|` (X `&` Z).
Proof. apply: fset_ext ⇒ x; rewrite !inE; bcase. Qed.
Lemma fsetIUl : (Y `|` Z) `&` X = (Y `&` X) `|` (Z `&` X).
Proof. apply: fset_ext ⇒ x; rewrite !inE; bcase. Qed.
Lemma fsetUIr : X `|` (Y `&` Z) = (X `|` Y) `&` (X `|` Z).
Proof. apply: fset_ext ⇒ x; rewrite !inE; bcase. Qed.
Lemma fsetUIl : (Y `&` Z) `|` X = (Y `|` X) `&` (Z `|` X).
Proof. apply: fset_ext ⇒ x; rewrite !inE; bcase. Qed.
Lemma fset1U x : x \in X → X = x |` X.
Proof.
move ⇒ inX. apply/fset_ext ⇒ y. rewrite !inE.
by case (boolP (y == x)) ⇒ //= /eqP →.
Qed.
Lemma fset1U1 x : x \in x |` X.
Proof. by rewrite inE fset11. Qed.
Lemma fsetUP x : reflect (x \in X ∨ x \in Y) (x \in X `|` Y).
Proof. rewrite !inE. exact: (iffP orP). Qed.
Lemma fsetU1P y x : reflect (y = x ∨ y \in X) (y \in x |` X).
Proof. rewrite !inE. exact:predU1P. Qed.
End Laws.
Lemma fsetUCA (A B C : {fset T}) : A `|` (B `|` C) = B `|` (A `|` C).
Proof. by rewrite !fsetUA [A `|` B]fsetUC. Qed.
Proof. rewrite fset1E. apply: perm_eq_small ⇒ //. exact: set_of_uniq. Qed.
Lemma fset0Es : fset0 = [::] :> seq T.
Proof. rewrite fset0E. apply: perm_eq_small ⇒ //. exact: set_of_uniq. Qed.
Lemma in_sep X p x : x \in [fset y in X | p y] = (x \in X) && (p x).
Proof. by rewrite sepE set_ofE mem_filter andbC. Qed.
Lemma in_fsetU x X Y : (x \in X `|` Y) = (x \in X) || (x \in Y).
Proof. by rewrite fsetUE set_ofE mem_cat. Qed.
Lemma in_fsetD x X Y : (x \in X `\` Y) = (x \in X) && (x \notin Y).
Proof. exact: in_sep. Qed.
Lemma in_fsetI x X Y : (x \in X `&` Y) = (x \in X) && (x \in Y).
Proof. exact: in_sep. Qed.
Lemma in_fset0 x : (x \in fset0) = false.
Proof. by rewrite fset0E set_ofE. Qed.
Lemma in_fset1 x y : (x \in [fset y]) = (x == y).
Proof. by rewrite fset1E set_ofE inE. Qed.
Lemma fset11 x : (x \in [fset x]).
Proof. by rewrite in_fset1 eqxx. Qed.
Definition in_fset := (in_sep,in_fsetU,in_fset0,fset11,in_fset1).
Definition inE := (in_fset,inE).
Section Laws.
Variables X Y Z : {fset T}.
Lemma fsetUA : X `|` (Y `|` Z) = X `|` Y `|` Z.
Proof. apply: fset_ext ⇒ x; by rewrite !inE; bcase. Qed.
Lemma fsetUC : X `|` Y = Y `|` X.
Proof. apply: fset_ext ⇒ x; by rewrite !inE; bcase. Qed.
Lemma fsetIA : X `&` (Y `&` Z) = X `&` Y `&` Z.
Proof. apply: fset_ext ⇒ x; by rewrite !inE; bcase. Qed.
Lemma fsetIC : X `&` Y = Y `&` X.
Proof. apply: fset_ext ⇒ x; by rewrite !inE; bcase. Qed.
Lemma fsetIUr : X `&` (Y `|` Z) = (X `&` Y) `|` (X `&` Z).
Proof. apply: fset_ext ⇒ x; rewrite !inE; bcase. Qed.
Lemma fsetIUl : (Y `|` Z) `&` X = (Y `&` X) `|` (Z `&` X).
Proof. apply: fset_ext ⇒ x; rewrite !inE; bcase. Qed.
Lemma fsetUIr : X `|` (Y `&` Z) = (X `|` Y) `&` (X `|` Z).
Proof. apply: fset_ext ⇒ x; rewrite !inE; bcase. Qed.
Lemma fsetUIl : (Y `&` Z) `|` X = (Y `|` X) `&` (Z `|` X).
Proof. apply: fset_ext ⇒ x; rewrite !inE; bcase. Qed.
Lemma fset1U x : x \in X → X = x |` X.
Proof.
move ⇒ inX. apply/fset_ext ⇒ y. rewrite !inE.
by case (boolP (y == x)) ⇒ //= /eqP →.
Qed.
Lemma fset1U1 x : x \in x |` X.
Proof. by rewrite inE fset11. Qed.
Lemma fsetUP x : reflect (x \in X ∨ x \in Y) (x \in X `|` Y).
Proof. rewrite !inE. exact: (iffP orP). Qed.
Lemma fsetU1P y x : reflect (y = x ∨ y \in X) (y \in x |` X).
Proof. rewrite !inE. exact:predU1P. Qed.
End Laws.
Lemma fsetUCA (A B C : {fset T}) : A `|` (B `|` C) = B `|` (A `|` C).
Proof. by rewrite !fsetUA [A `|` B]fsetUC. Qed.
Separation
Lemma sepU X Y p :
[fset x in X `|` Y | p x] = [fset x in X | p x] `|` [fset x in Y | p x].
Proof. apply: fset_ext ⇒ x. rewrite !inE. by bcase. Qed.
Lemma sep0 p : [fset x in fset0 | p x] = fset0 :> {fset T}.
Proof. by rewrite sepE fset0Es fset0E. Qed.
Lemma sep1 (a : T) (p : pred T) :
[fset x in [fset a] | p x] = if p a then [fset a] else fset0.
Proof. rewrite sepE fset1Es /= fun_if fset1E fset0E. by case: (p a). Qed.
Lemma sepP (p : pred T) X x : reflect (x \in X ∧ p x) (x \in [fset x in X | p x]).
Proof. rewrite !inE. exact: andP. Qed.
[fset x in X `|` Y | p x] = [fset x in X | p x] `|` [fset x in Y | p x].
Proof. apply: fset_ext ⇒ x. rewrite !inE. by bcase. Qed.
Lemma sep0 p : [fset x in fset0 | p x] = fset0 :> {fset T}.
Proof. by rewrite sepE fset0Es fset0E. Qed.
Lemma sep1 (a : T) (p : pred T) :
[fset x in [fset a] | p x] = if p a then [fset a] else fset0.
Proof. rewrite sepE fset1Es /= fun_if fset1E fset0E. by case: (p a). Qed.
Lemma sepP (p : pred T) X x : reflect (x \in X ∧ p x) (x \in [fset x in X | p x]).
Proof. rewrite !inE. exact: andP. Qed.
Empty Set
Lemma fset0Vmem X : ( X = fset0 ) + { x | x \in X }.
Proof.
case: X ⇒ [[|x xs] ax_xs];[left|right;∃ x;exact: mem_head].
apply: fset_ext ⇒ x; by rewrite inE !unfold_in.
Qed.
Lemma emptyPn X : reflect (∃ x , x \in X) (X != fset0).
Proof.
apply: introP ⇒ [|/negPn/eqP→ [x]]; last by rewrite in_fset0.
case (fset0Vmem X) ⇒ [ → | [ x inX ] ]; by [rewrite eqxx |∃ x].
Qed.
Lemma fsetU0 X : X `|` fset0 = X.
Proof. apply: fset_ext ⇒ x; by rewrite !inE. Qed.
Lemma fset0U X : fset0 `|` X = X.
Proof. by rewrite fsetUC fsetU0. Qed.
Lemma fsetI0 X : fset0 `&` X = fset0.
Proof. apply: fset_ext ⇒ x; by rewrite !inE. Qed.
Lemma fset0I X : X `&` fset0 = fset0.
Proof. by rewrite fsetIC fsetI0. Qed.
Lemma fsetD0 X : X `\` fset0 = X.
Proof. apply: fset_ext ⇒ x. by rewrite !inE. Qed.
Imset
Lemma fimsetP X (f : T → T') a :
reflect (exists2 x, x \in X & a = f x) (a \in f `@` X).
Proof. rewrite fimsetE set_ofE. exact: mapP. Qed.
Lemma in_fimset x X (f : T → T') : (x \in X) → (f x \in f `@` X).
Proof. move ⇒ H. apply/fimsetP. by ∃ x. Qed.
Variables (A : {fset aT1}) (B : {fset aT2}) (C : {fset aT3}).
CoInductive fimset2_spec (rT : choiceType) f (y : rT) : Prop :=
fImset_spec a b : y = f a b → a \in A → b \in B → fimset2_spec f y.
Lemma fimset2P (rT : choiceType) f (y : rT) :
reflect (fimset2_spec f y) (y \in fimset2 f A B).
Proof.
rewrite fimset2E set_ofE. apply: (iffP (allpairsP _ _ _ _)).
case ⇒ [[a b] /= [? ? ?]]. exact: fImset_spec.
case ⇒ a b ×. ∃ (a,b). by split.
Qed.
Lemma mem_fimset2 (rT : choiceType) (f : aT1 → aT2 → rT) a b :
a \in A → b \in B → f a b \in fimset2 f A B.
Proof. move ⇒ inA inB. apply/fimset2P. exact: fImset_spec. Qed.
Definition injective2 (f : aT1 → aT2 → T) :=
∀ a1 a2 b1 b2, f a1 b1 = f a2 b2 → a1 = a2 ∧ b1 = b2.
Lemma in_fimset2 (f : aT1 → aT2 → T) a b :
injective2 f → (f a b \in fimset2 f A B) = (a \in A) && (b \in B).
Proof.
move ⇒ f_inj. apply/idP/idP; last by case/andP; exact: mem_fimset2.
case/fimset2P ⇒ a' b' /f_inj [-> ->]. by bcase.
Qed.
Lemma in_fimset2F (f g : aT1 → aT2 → T) a b :
(∀ a b a' b', f a b ≠ g a' b') → (f a b \in fimset2 g A B = false).
Proof. move ⇒ H. apply/negbTE. apply/negP. by case/fimset2P ⇒ ? ? /H. Qed.
Cross Product
Lemma in_fsetX a b : ((a,b) \in A `x` B) = (a \in A) && (b \in B).
Proof.
apply/fimset2P/idP ⇒ [[? ? [-> ->] → ->] //|/andP []].
exact: fImset_spec.
Qed.
Lemma fsetXP a b : reflect (a \in A ∧ b \in B) ((a,b) \in A `x` B).
Proof. rewrite in_fsetX. exact: andP. Qed.
Lemma subP (T1 : choiceType) (X Y : {fset T1}) : reflect {subset X ≤ Y} (X `<=` Y).
Proof. exact: allP. Qed.
Lemma subPn X Y : reflect (exists2 x, x \in X & x \notin Y) (~~ (X `<=` Y)).
Proof. exact: allPn. Qed.
Lemma subxx X : X `<=` X.
Proof. exact/subP. Qed.
Hint Resolve subxx.
Lemma sub_trans Y X Z : X `<=` Y → Y `<=` Z → X `<=` Z.
Proof. move ⇒ /subP ? /subP ?. by apply/subP ⇒ x; eauto. Qed.
Lemma eqEsub X Y : (X == Y) = (X `<=` Y) && (Y `<=` X).
Proof.
apply/eqP/andP ⇒ [-> //|[/subP H1 /subP H2]].
apply: fset_ext ⇒ x. apply/idP/idP; auto.
Qed.
Lemma sub0x X : fset0 `<=` X.
Proof. apply/subP ⇒ x. by rewrite in_fset0. Qed.
Lemma subx0 X : X `<=` fset0 = (X == fset0).
Proof. by rewrite eqEsub sub0x. Qed.
Lemma fsubUr X Y : X `<=` Y `|` X.
Proof. apply/subP;move ⇒ x. by rewrite inE ⇒ →. Qed.
Lemma fsubUl X Y : X `<=` X `|` Y.
Proof. apply/subP;move ⇒ x. by rewrite inE ⇒ →. Qed.
Lemma fsubIl X Y : (X `&` Y) `<=` X.
Proof. apply/subP ⇒ x. by rewrite inE; bcase. Qed.
Lemma fsubIr X Y : (X `&` Y) `<=` Y.
Proof. apply/subP ⇒ x. by rewrite inE; bcase. Qed.
Lemma fsubDl X Y : X `\` Y `<=` X.
Proof. apply/subP;move ⇒ x. by rewrite inE ; bcase. Qed.
Hint Resolve sub0x fset11 fsubUr fsubUl fsubDl.
Lemma subsep X (P : pred T) : [fset x in X | P x] `<=` X.
Proof. apply/subP ⇒ x. by rewrite inE; bcase. Qed.
Lemma sep_sub X X' p q : X `<=` X' → {in X, subpred p q} →
[fset x in X | p x] `<=` [fset x in X' | q x].
Proof.
move ⇒ /subP subX sub_p. apply/subP ⇒ x.
rewrite !inE ⇒ /andP [? ?]. rewrite subX //=. exact: sub_p.
Qed.
Lemma sep_sep X p q : [fset x in sep X p | q x] = [fset x in X | p x && q x].
Proof. apply: fset_ext ⇒ x. by rewrite !in_sep andbA. Qed.
Lemma sepS X Y p : X `<=` Y → [fset x in X | p x] `<=` [fset x in Y | p x].
Proof. move ⇒ S. by apply: sep_sub S _ ⇒ ?. Qed.
Lemma fsubUset X Y Z : (X `|` Y `<=` Z) = (X `<=` Z) && (Y `<=` Z).
Proof.
apply/idP/andP ⇒ [H | [H1 H2]].
- by split; apply: sub_trans _ H; rewrite ?fsubUl ?fsubUr.
- apply/subP ⇒ x. rewrite in_fset; case/orP; move: x; exact/subP.
Qed.
Lemma fsubUsetP X Y Z: reflect ((X `<=` Z) ∧ (Y `<=` Z)) (X `|` Y `<=` Z).
Proof. rewrite fsubUset. exact: (iffP andP). Qed.
Lemma fsetUSU X X' Y Y' : X `<=` X' → Y `<=` Y' → X `|` Y `<=` X' `|` Y'.
Proof.
move ⇒ H1 H2.
by rewrite fsubUset (sub_trans H1 _) ?(sub_trans H2 _) // ?fsubUl ?fsubUr.
Qed.
Lemma fsetSU X Y Z : X `<=` Y → X `|` Z `<=` Y `|` Z.
Proof. move ⇒ H. exact: fsetUSU H (subxx _). Qed.
Lemma fsetUS X Y Z : X `<=` Y → Z `|` X `<=` Z `|` Y.
Proof. exact: fsetUSU (subxx _). Qed.
Lemma fsub1 x X : ([fset x] `<=` X) = (x \in X).
Proof. apply/subP/idP ⇒ [|H y]; first by apply. by rewrite !inE ⇒ /eqP →. Qed.
Lemma fsetDSS X X' Y Y' : X `<=` X' → Y' `<=` Y → X `\` Y `<=` X' `\` Y'.
Proof. move⇒ HX /subP HY. apply: sep_sub ⇒ // x _. exact: contra (HY _). Qed.
Lemma fsetDS X Y Z : X `<=` Y → Z `\` Y `<=` Z `\` X.
Proof. exact: fsetDSS. Qed.
Definition fsetCK Y X : X `<=` Y → Y `\` (Y `\` X) = X.
Proof.
move/subP ⇒ S. apply: fset_ext ⇒ x. rewrite !inE.
case e: (x \in X) ⇒ //=; by rewrite ?andbT ?andbN ?S.
Qed.
Lemma fsetUD X Y : Y `<=` X → Y `|` (X `\` Y) = X.
Proof.
move/subP ⇒ sub. apply: fset_ext ⇒ x. rewrite !inE.
case e: (x \in Y) ⇒ //=. by rewrite (sub _ e).
Qed.
Lemma fsetUD1 x X : x \in X → x |` (X `\` [fset x]) = X.
Proof. move ⇒ H. by rewrite fsetUD // fsub1. Qed.
Lemma properE X Y : X `<` Y → exists2 x, (x \in Y) & (x \notin X).
Proof. by case/andP ⇒ _ /subPn. Qed.
Lemma properEneq X Y : (X `<` Y) = (X != Y) && (X `<=` Y).
Proof. rewrite /proper eqEsub. by case e : (X `<=` Y). Qed.
Lemma properD1 X x : x \in X → X `\` [fset x] `<` X.
Proof.
move ⇒ H. rewrite /proper fsubDl /=. apply/subPn.
by ∃ x; rewrite ?in_fset; bcase.
Qed.
Lemma fproperU X Y : (X `<` Y `|` X) = ~~ (Y `<=` X).
Proof. by rewrite /proper fsubUr /= fsubUset subxx andbT. Qed.
Lemma fproper1 x X : (X `<` x |` X) = (x \notin X).
Proof. by rewrite fproperU fsub1. Qed.
Lemma fimsetS X Y (f : T → T') : X `<=` Y → f `@` X `<=` f `@` Y.
Proof. move/subP ⇒ S. apply/subP ⇒ y /fimsetP [x /S inX ->]. exact: in_fimset. Qed.
Powerset - Definition suggested by Georges Gonthier
Definition powerset X : {fset {fset T}} :=
let e := elements X in
let mT := ((size e).-tuple bool) in
set_of (map (fun m : mT ⇒ set_of (mask m e)) (enum {: mT})).
Lemma powersetE X Y : (X \in powerset Y) = (X `<=` Y).
Proof.
case: Y ⇒ ys ax_ys. rewrite /powerset !set_ofE /=.
apply/mapP/subP ⇒ [ [ t t1 ->] x | H ] /=.
- rewrite set_ofE. exact: mem_mask.
- ∃ [tuple of map (mem X) (in_tuple ys)]; first by rewrite !mem_enum.
apply: fset_ext ⇒ x. rewrite set_ofE /= -filter_mask mem_filter /=.
case: (boolP (x \in X)) ⇒ // inX. by rewrite H.
Qed.
Lemma powersetP X Y : reflect {subset X ≤ Y} (X \in powerset Y).
Proof. rewrite powersetE. exact: subP. Qed.
Lemma powersetU X1 X2 (X3 : {fset T}) :
(X1 `|` X2 \in powerset X3) = (X1 \in powerset X3) && (X2 \in powerset X3).
Proof. by rewrite !powersetE fsubUset. Qed.
Lemma sub_power X Y Z : X `<=` Y → Y \in powerset Z → X \in powerset Z.
Proof. rewrite !powersetE. exact: sub_trans. Qed.
Lemma power_sub X Z Z' : X \in powerset Z → Z `<=` Z' → X \in powerset Z'.
Proof. rewrite !powersetE. exact: sub_trans. Qed.
Lemma power_mon X Y : X `<=` Y → powerset X `<=` powerset Y.
Proof. move ⇒ H. apply/subP ⇒ ? ?. exact: power_sub H. Qed.
Lemma fsubsetU X Z Z' : (X `<=` Z) || (X `<=` Z') → (X `<=` Z `|` Z').
Proof. case/orP ⇒ H; exact: sub_trans H _. Qed.
Quantification
Lemma allU X Y p : all p (X `|` Y) = all p X && all p Y.
Proof.
rewrite -all_cat. apply/idP/idP; apply: sub_all_dom ⇒ ?; by rewrite mem_cat !inE.
Qed.
Lemma all_fset1 x p : all p [fset x] = p x.
Proof. by rewrite fset1Es /=. Qed.
Lemma all_fset0 (p : pred T) : all p fset0.
Proof. by rewrite fset0Es. Qed.
Lemma has_fset1 x p : has p [fset x] = p x.
Proof. by rewrite fset1Es /=. Qed.
Lemma has_fset0 (p : pred T) : has p fset0 = false.
Proof. by rewrite fset0Es. Qed.
Lemma all_subP (U : {fset T}) (P : pred _) :
reflect (∀ X, X `<=` U → P X) (all P (powerset U)).
Proof.
apply: (iffP allP) ⇒ [H X /subP sub| H X]. apply H; exact/powersetP.
move/powersetP ⇒ /subP. exact: H.
Qed.
End OperationsTheory.
Hint Resolve sub0x fset11 fsubUr fsubUl fsubDl subsep.
Arguments subP [T1 X Y].
Prenex Implicits subP.
Section Fimset3.
Variables (aT1 aT2 aT3 rT : choiceType) (f : aT1 → aT2 → aT3 → rT).
Variables (A : {fset aT1}) (B : {fset aT2}) (C : {fset aT3}).
CoInductive fimset3_spec x : Prop :=
fImset3_spec a b c : x = f a b c → a \in A → b \in B → c \in C → fimset3_spec x.
Lemma fimset3P x :
reflect (fimset3_spec x) (x \in [fset f a b c | a <- A , b <- B , c <- C]).
Proof.
apply: (iffP (fimset2P _ _ _ _)) ⇒ [[a [b c] /= ? ? ] | [a b c → H H1 H2] ].
- rewrite in_fsetX ⇒ /andP [? ?]. exact: fImset3_spec.
- apply: (@fImset_spec _ _ _ _ _ _ _ _ (b,c)) H _ ⇒ //. by rewrite in_fsetX H1 H2.
Qed.
Lemma mem_fimset3 a b c:
a \in A → b \in B → c \in C → f a b c \in fimset3 f A B C.
Proof. move ⇒ H1 H2 H3. apply/fimset3P. exact: fImset3_spec. Qed.
End Fimset3.
TODO: if T is a finite type, then {fset T} should also be a finite type.
This means there is a universal set and one can form unrestricted
comprehensions. Hence, for finite T, {fset T} behaves like {set T}.
Definition fsetT {T : finType} := set_of (enum T).
Lemma in_fsetT (T : finType) (x : T) : x \in fsetT.
Proof. by rewrite set_ofE mem_enum. Qed.
Definition fset (T: finType) (q : pred T) := [fset x in fsetT | q x].
Lemma fsetE (T: finType) (q : pred T) x : x \in fset q = q x.
Proof. by rewrite in_sep in_fsetT. Qed.
Big Unions
Lemma big_sep (T R : choiceType) (idx : R) (op : Monoid.com_law idx) (F : T → R) (X : {fset T}) p:
\big[op/idx]_(i <- [fset x in X | p x]) F i = \big[op/idx]_(i <- X | p i) F i.
Proof.
rewrite -(big_filter _ p). apply: eq_big_perm.
apply: uniq_perm_eq; try by rewrite ?filter_uniq // funiq.
move ⇒ x. by rewrite !inE mem_filter andbC.
Qed.
Canonical Structure fsetU_law (T : choiceType) :=
Monoid.Law (@fsetUA T) (@fset0U T) (@fsetU0 T).
Canonical Structure fsetU_comlaw (T : choiceType) :=
Monoid.ComLaw (@fsetUC T).
Notation "\bigcup_( x 'in' X | P ) F" :=
(\big[fsetU/fset0]_(x <- elements X | P) F) (at level 41).
Notation "\bigcup_( x 'in' X ) F" :=
(\bigcup_( x in X | true ) F) (at level 41).
Lemma cupP (T T' : choiceType) (X : {fset T}) (P : pred T) (F : T → {fset T'}) y :
reflect (∃ x, [&& x \in X , P x & y \in F x]) (y \in \bigcup_(x in X | P x) F x).
Proof.
apply: (iffP idP) ⇒ [|[x] /and3P [X1 X2 X3]].
- pose Y := [fset x in X | P x && (y \in F x)].
case (fset0Vmem Y) ⇒ [Y0|[x]]; last by rewrite inE; ∃ x.
rewrite (bigID (fun z ⇒ y \in F z)) -big_sep /= -/Y Y0 fset0Es big_nil fset0U.
move ⇒ H. exfalso. move: H. apply/negP.
apply big_ind ⇒ [|? ?|? /andP[//]]; rewrite !inE ?negb_or; bcase.
- by rewrite (big_rem x) //= X2 inE X3.
Qed.
Lemma bigU1 (T T' : choiceType) (X : {fset T}) (F : T → {fset T'}) x :
x \in X → F x `<=` \bigcup_(x in X) F x.
Proof. move ⇒ H. apply/subP ⇒ y Hy. apply/cupP. ∃ x. by rewrite H Hy. Qed.
Section Size.
Variable T : choiceType.
Implicit Types X Y : {fset T}.
Lemma sizes0 : @size T fset0 = 0.
Proof. by rewrite fset0Es. Qed.
Lemma subset_size X Y : X `<=` Y → size X ≤ size Y.
Proof. move /subP. exact: uniq_leq_size (funiq _). Qed.
Lemma subsize_eq X Y : X `<=` Y → size Y ≤ size X → X = Y.
Proof. move ⇒ /subP S H. apply: fset_ext. apply leq_size_perm ⇒ //. exact: funiq. Qed.
Lemma sizes_eq0 X : (size X == 0) = (X == fset0).
Proof.
apply/idP/eqP ⇒ [|->]; last by rewrite sizes0.
rewrite -leqn0 -sizes0 ⇒ H. symmetry. exact: subsize_eq.
Qed.
Lemma size_gt0P X : reflect (∃ x, x \in X) (0 < size X).
Proof. rewrite lt0n sizes_eq0. exact: emptyPn. Qed.
Lemma size_sep X (p : pred T) : size [fset x in X | p x] ≤ size X.
Proof. exact: subset_size (subsep _ _). Qed.
Lemma properW X Y : X `<` Y → X `<=` Y.
Proof. by case/andP. Qed.
Lemma proper_size X Y : X `<` Y → size X < size Y.
Proof.
rewrite properEneq ltn_neqAle ⇒ /andP [H1 H2].
rewrite subset_size // andbT eqn_leq. apply/negP ⇒ /andP [_ H].
by rewrite (subsize_eq H2 H) eqxx in H1.
Qed.
Lemma size_of_uniq (T0 : choiceType) (s : seq T0) : uniq s → size (set_of s) = size s.
Proof. move/set_of_uniq. exact: perm_eq_size. Qed.
Lemma powerset_size X : size (powerset X) = 2 ^ (size X).
Proof.
rewrite /powerset size_of_uniq.
- by rewrite size_map -cardE card_tuple card_bool.
- rewrite map_inj_uniq ?enum_uniq //.
move: (elements X) (funiq X) ⇒ {X} s uniq_s m1 m2 ⇒ H.
have {H} E : mask m1 s =i mask m2 s. move ⇒ x. by rewrite -set_ofE H set_ofE.
apply/eqP. apply: mask_inj E; by rewrite // size_tuple.
Qed.
End Size.
Definition const aT rT (c:rT) (f : aT → rT) := ∀ x, f x = c.
Section FSum.
Variables (T : choiceType) (w : T → nat).
Implicit Types X Y : {fset T}.
Definition fdisj X Y := X `&` Y == fset0.
Definition fsum X := \sum_(x <- X) w x.
Lemma fsumID p X : fsum X = fsum [fset x in X | p x ] + fsum [fset x in X | ~~ p x].
Proof. by rewrite /fsum (bigID p) /= !big_sep. Qed.
Lemma fsum1 x : fsum [fset x] = w x.
Proof. by rewrite /fsum fset1Es big_seq1. Qed.
Lemma fsum0 : fsum fset0 = 0.
Proof. by rewrite /fsum fset0Es big_nil. Qed.
Lemma fsumS X p : fsum [fset x in X | p x] = fsum X - fsum [fset x in X | ~~ p x].
Proof. by rewrite [fsum X](fsumID p) addnK. Qed.
Lemma fsumI X Y : fsum (X `&` Y) = fsum X - fsum (X `\` Y).
Proof. by rewrite fsumS. Qed.
Lemma fsumD X Y : fsum (X `\` Y) = fsum X - fsum (X `&` Y).
Proof.
rewrite fsumS (_ : [fset x in X | _] = X `&` Y) //.
apply: fset_ext ⇒ x. by rewrite !inE negbK.
Qed.
Lemma fsumU X Y : fsum (X `|` Y) = fsum X + fsum Y - fsum (X `&` Y).
Proof. apply/eqP.
rewrite [fsum (_ `|` _)](fsumID (mem X)) /=.
rewrite (_ : [fset x in X `|` Y | x \in X] = X);
last by apply: fset_ext ⇒ x; rewrite !inE; bcase.
rewrite (_ : [fset x in X `|` Y | x \notin X] = Y `\` X);
last by apply: fset_ext ⇒ x; rewrite !inE; bcase.
rewrite fsumD addnBA fsetIC //. by rewrite fsetIC fsumI leq_subr.
Qed.
Lemma fsumDsub X Y : Y `<=` X → fsum (X `\` Y) = fsum X - fsum Y.
Proof.
move ⇒ /subP sub. rewrite fsumD [_ `&` _](_ : _ = Y) //. apply/eqP.
rewrite eqEsub fsubIr /=. apply/subP ⇒ x Hx. by rewrite inE Hx (sub _ Hx).
Qed.
Lemma fsum_const X n : {in X, const n w} → fsum X = n × size X.
Proof.
move ⇒ C. rewrite [fsum X](_ : _ = \sum_(x <- X) n).
- by rewrite big_const_seq count_predT iter_addn_0.
- rewrite /fsum !big_seq. exact: congr_big.
Qed.
Lemma fsum_eq0 X : fsum X = 0 → {in X, const 0 w}.
Proof.
case: X ⇒ r i.
suff {i} : \sum_(x <- r) w x = 0 → {in r, const 0 w} by apply.
move/eqP. elim: r ⇒ [_|y r IHr] //=. rewrite big_cons addn_eq0 ⇒ /andP [/eqP H /IHr H'].
move ⇒ x. rewrite inE. case/orP ⇒ [/eqP ->|] //. exact: H'.
Qed.
Lemma fsum_sub X Y : X `<=` Y → fsum X ≤ fsum Y.
Proof.
move ⇒ sub. rewrite [fsum Y](fsumID (mem X)) [Z in _ ≤ fsum Z + _](_ : _ = X) ?leq_addr //=.
apply: fset_ext ⇒ x. rewrite inE. move/subP : sub ⇒ /(_ x) ?. apply/andP/idP; tauto.
Qed.
Lemma fsum_replace X Y Z : fsum Z < fsum Y → Y `<=` X → fsum (Z `|` X `\` Y) < fsum X.
Proof.
move ⇒ ltn sub. rewrite fsumU (fsumDsub sub). apply: leq_ltn_trans (leq_subr _ _) _.
rewrite -ltn_subRL. apply: ltn_sub2l ⇒ //. apply: leq_trans ltn _. exact: fsum_sub.
Qed.
End FSum.
cardinality versions of some fsum lemmas
Lemma fsum_const1 (T : choiceType) (X : {fset T}) : fsum (fun _ ⇒ 1) X = size X.
Proof. rewrite -[size X]mul1n. exact: fsum_const. Qed.
Lemma fsizeU (T : choiceType) (X Y : {fset T}) : size (X `|` Y) ≤ size X + size Y.
Proof. by rewrite -[size (_ `|` _)]fsum_const1 fsumU !fsum_const1 leq_subr. Qed.
Lemma fsizeU1 (T : choiceType) x (X : {fset T}) : size (x |` X) ≤ (size X).+1.
Proof. rewrite -addn1 addnC. apply: leq_trans (fsizeU _ _) _. by rewrite fset1Es. Qed.
Lemma fimsetU (aT rT : choiceType) (f : aT → rT) (A B : {fset aT}) :
[fset f x | x <- A `|` B] = [fset f x | x <- A] `|` [fset f x | x <- B].
Proof.
apply/eqP. rewrite eqEsub fsubUset !fimsetS ?fsubUl ?fsubUr ?andbT //.
apply/subP ⇒ x /fimsetP [a] /fsetUP [H|H] ->; by rewrite inE (in_fimset _ H).
Qed.
Lemma fimset1 (aT rT : choiceType) (f : aT → rT) a : [fset f x | x <- [fset a]] = [fset f a].
Proof. by rewrite fimsetE fset1Es fset1E. Qed.
Lemma fimset0 (aT rT : choiceType) (f : aT → rT) : [fset f x | x <- fset0 ] = fset0.
Proof. by rewrite fimsetE fset0Es fset0E. Qed.
Lemma fimsetU1 (aT rT : choiceType) (f : aT → rT) (B : {fset aT}) a :
[fset f x | x <- a |` B] = f a |` [fset f x | x <- B].
Proof. by rewrite fimsetU fimset1. Qed.
Section Pick.
Variables (T:choiceType) (p : pred T) (X : {fset T}).
Definition fpick :=
if fset0Vmem [fset x in X | p x] is inr (exist x _) then Some x else None.
CoInductive fpick_spec : option T → Type :=
| fPick x : p x → x \in X → fpick_spec (Some x)
| fNopick : (∀ x, x \in X → ~~ p x) → fpick_spec None.
Lemma fpickP : fpick_spec (fpick).
Proof.
rewrite /fpick; case (fset0Vmem _) ⇒ [H|[x Hx]].
- constructor ⇒ x Hx. apply: contraT. rewrite negbK ⇒ px.
suff: x \in fset0 by rewrite inE. rewrite -H !inE; bcase.
- rewrite inE in Hx; constructor; bcase.
Qed.
End Pick.
Lemma wf_leq X (f : X → nat) : well_founded (fun x y ⇒ f x < f y).
Proof. by apply: (@Wf_nat.well_founded_lt_compat _ f) ⇒ x y /ltP. Qed.
Lemma nat_size_ind (X:Type) (P : X → Type) (f : X → nat) :
(∀ x, (∀ y, (f y < f x) → P y) → P x) → ∀ x, P x.
Proof. move ⇒ H. apply: well_founded_induction_type; last exact H. exact: wf_leq. Qed.
Lemma slack_ind (T : choiceType) (P : {fset T} → Type) (U : {fset T}):
(∀ X, (∀ Y, Y `<=` U → X `<` Y → P Y) → X `<=` U → P X)-> ∀ X, X `<=` U → P X.
Proof.
move ⇒ H. apply (nat_size_ind (f := fun X ⇒ size U - size X) (P := fun X ⇒ X `<=` U → P X)).
move ⇒ X IH. apply: H ⇒ Y inU. move/proper_size ⇒ H. apply: IH (inU).
apply: ltn_sub2l ⇒ //. apply: leq_trans H _. exact: subset_size.
Qed.
Lemma iter_fix T (F : T → T) x k n :
iter k F x = iter k.+1 F x → k ≤ n → iter n F x = iter n.+1 F x.
Proof.
move ⇒ e. elim: n. rewrite leqn0. by move/eqP<-.
move ⇒ n IH. rewrite leq_eqVlt; case/orP; first by move/eqP<-.
move/IH ⇒ /= IHe. by rewrite -!IHe.
Qed.
Least Fixpoints
Section Fixpoints.
Variables (T : choiceType) (U : {fset T}) (F : {fset T} → {fset T}).
Definition monotone := ∀ X Y, X `<=` Y → F X `<=` F Y.
Definition bounded := ∀ X, X `<=` U → F X `<=` U.
Hypothesis (F_mono : monotone) (F_bound : bounded).
Definition lfp := iter (size U) F fset0.
Lemma lfp_ind_aux (P : {fset T} → Type) : P fset0 → (∀ s , P s → P (F s)) → P lfp.
Proof. move ⇒ P0 Pn. rewrite /lfp. elim: (size U) ⇒ //= n. exact: Pn. Qed.
Lemma lfp_ind (P : T → Type) :
(∀ x X, (∀ y, y \in X → P y) → x \in F X → P x) → ∀ x, x \in lfp → P x.
Proof. move ⇒ H. apply lfp_ind_aux ⇒ [?| X IH x]; [by rewrite in_fset0| exact: H]. Qed.
Lemma iterFsub1 n : iter n F fset0 `<=` iter n.+1 F fset0.
Proof. elim: n ⇒ //= n IH. exact: F_mono. Qed.
Lemma iterFsub n m : n ≤ m → iter n F fset0 `<=` iter m F fset0.
Proof.
move/subnK<-. elim: (m-n) ⇒ {m} [|m IHm]; first exact: subxx.
apply: sub_trans IHm _. rewrite addSn. exact: iterFsub1.
Qed.
Lemma iterFbound n : iter n F fset0 `<=` U.
Proof. elim: n ⇒ //= n. exact: F_bound. Qed.
Lemma lfpE : lfp = F lfp.
Proof.
suff: ∃ k : 'I_(size U).+1 , iter k F fset0 == iter k.+1 F fset0.
case ⇒ k /eqP E. apply: iter_fix E _. exact: leq_ord.
apply/existsP. apply: contraT. rewrite negb_exists ⇒ /forallP H.
have: ∀ k , k ≤ (size U).+1 → k ≤ size (iter k F fset0).
elim ⇒ // n IHn Hn. apply: leq_ltn_trans (IHn (ltnW Hn)) _. apply: proper_size.
rewrite properEneq iterFsub1 andbT. exact: (H (Ordinal Hn)).
move/(_ (size U).+1 (leqnn _)). rewrite leqNgt ltnS subset_size //.
exact: iterFbound.
Qed.
Lemma lfp_level_aux x : x \in lfp → ∃ n, x \in iter n.+1 F fset0.
Proof. move ⇒ lf. ∃ (size U). apply/subP : lf. exact: iterFsub1. Qed.
Should be level but this is not picked up by coqdoc
Definition levl (x : T) (lx : x \in lfp) := ex_minn (lfp_level_aux lx).
Lemma level_max (x : T) (lx : x \in lfp) : levl lx < size U.
Proof.
rewrite /levl. case: (ex_minnP _) ⇒ m m1 m2.
move: lx. rewrite /lfp. case: (size U) ⇒ //=. by rewrite inE.
Qed.
Lemma level1 (x : T) (lx : x \in lfp) : x \in iter (levl lx).+1 F fset0.
Proof. rewrite /levl. by case: (ex_minnP _). Qed.
Lemma level2 (x y : T) (lx : x \in lfp) :
y \in iter (levl lx) F fset0 → ∃ ly, @levl y ly < levl lx.
Proof.
move ⇒ iter_y.
have ly : y \in lfp.
move: iter_y. apply: (subP (iterFsub _)). apply: ltnW. exact: level_max.
∃ ly. rewrite {1}/levl. case: (ex_minnP _) ⇒ m m1 m2.
move: iter_y. case e: (levl lx) ⇒ [|n]; first by rewrite /= inE.
exact: m2.
Qed.
End Fixpoints.
Lemma level_max (x : T) (lx : x \in lfp) : levl lx < size U.
Proof.
rewrite /levl. case: (ex_minnP _) ⇒ m m1 m2.
move: lx. rewrite /lfp. case: (size U) ⇒ //=. by rewrite inE.
Qed.
Lemma level1 (x : T) (lx : x \in lfp) : x \in iter (levl lx).+1 F fset0.
Proof. rewrite /levl. by case: (ex_minnP _). Qed.
Lemma level2 (x y : T) (lx : x \in lfp) :
y \in iter (levl lx) F fset0 → ∃ ly, @levl y ly < levl lx.
Proof.
move ⇒ iter_y.
have ly : y \in lfp.
move: iter_y. apply: (subP (iterFsub _)). apply: ltnW. exact: level_max.
∃ ly. rewrite {1}/levl. case: (ex_minnP _) ⇒ m m1 m2.
move: iter_y. case e: (levl lx) ⇒ [|n]; first by rewrite /= inE.
exact: m2.
Qed.
End Fixpoints.
Greatest Fixpoints
Section GreatestFixpoint.
Variables (T : choiceType) (U : {fset T}) (F : {fset T} → {fset T}).
Hypothesis (F_mono : monotone F) (F_bound : bounded U F).
Local Notation "~` A" := (U `\` A) (at level 0).
Let F' A := ~` (F ~` A).
Let mono_F' : monotone F'.
Proof. move ⇒ A B H. by rewrite /F' fsetDS ?F_mono ?fsetDS. Qed.
Let bounded_F' : bounded U F'.
Proof. move ⇒ A H. by rewrite /F' fsubDl. Qed.
Definition gfp := ~` (lfp U F').
Lemma gfpE : gfp = F gfp.
Proof. by rewrite /gfp {1}(lfpE _) ?fsetCK ?F_bound. Qed.
Lemma gfp_ind_aux (P : {fset T} → Type) : P U → (∀ s , P s → P (F s)) → P gfp.
Proof.
move ⇒ PU Pn. rewrite /gfp /F'.
apply lfp_ind_aux ⇒ [|A]; rewrite ?fsetD0 ?fsetCK ?F_bound //. exact: Pn.
Qed.
Lemma gfp_ind (P : T → Type) :
(∀ x X, (∀ y, y \in U → P y → y \in X) → P x → x \in F X) →
∀ x, x \in U → P x → x \in gfp.
Proof. move ⇒ H. apply gfp_ind_aux ⇒ [//|*]. exact: H. Qed.
End GreatestFixpoint.
Section FsetConnect.
Variables (T : choiceType) (S : {fset T}) (e : rel T).
Definition restrict := [rel a b : seq_sub S | e (val a) (val b)].
Definition connect_in (x y : T) :=
[∃ a, ∃ b, [&& val a == x, val b == y & connect restrict a b]].
Lemma connect_in0 (x : T) : x \in S → connect_in x x.
Proof. move ⇒ inS. do 2 (apply/existsP; ∃ (SeqSub x inS)). by rewrite /= eqxx connect0. Qed.
Lemma connect_in1 (x y : T) : x \in S → y \in S → e x y → connect_in x y.
Proof.
move ⇒ x_inS y_inS xy.
apply/existsP; ∃ (SeqSub _ x_inS). apply/existsP; ∃ (SeqSub _ y_inS).
by rewrite /= !eqxx connect1.
Qed.
Lemma connect_in_trans (z x y : T) : connect_in x z → connect_in z y → connect_in x y.
Proof.
rewrite /connect_in.
move ⇒ /existsP [a] /existsP [b] /and3P [/eqP ? /eqP ? ?] /existsP [?] /existsP [c] /and3P [/eqP H /eqP ? R].
subst. apply/existsP; ∃ a. apply/existsP; ∃ c. rewrite !eqxx /=.
apply: connect_trans _ R. by rewrite (val_inj _ _ H).
Qed.
Lemma connect_inP x y :
reflect (∃ p : seq T, [/\ all (mem S) (x::p), path e x p & y = last x p])
(connect_in x y).
Proof.
apply: (iffP idP).
- case/existsP ⇒ a. case/existsP ⇒ b. case/and3P ⇒ [/eqP ? /eqP ?]. subst.
case/connectP ⇒ p P1 P2. ∃ (map val p). rewrite /= ssvalP /=.
elim: p a P1 P2 ⇒ //= [? _ → //| c p IHp a]. case/andP ⇒ [He ?] ?.
rewrite ssvalP He //=. exact: IHp.
- case ⇒ p. elim: p x ⇒ /=.
+ move ⇒ x [/andP [inS _] ? ->]. exact: connect_in0.
+ move ⇒ z p IHp x [/and3P [x_inS y_inS ?] /andP [? ?] ?].
apply: (@connect_in_trans z); first exact: connect_in1. by apply: IHp; rewrite y_inS.
Qed.
End FsetConnect.
Section Maximal.
Variable (T : choiceType) (U : {fset T}) (P : pred {fset T}).
Definition maximalb (M : {fset T}) := P M && [all Y in powerset U, (M `<` Y) ==> ~~ P Y].
Definition maximal (M : {fset T}) := P M ∧ ∀ Y, Y `<=` U → M `<` Y → ~~ P Y.
Lemma maximalP M : reflect (maximal M) (maximalb M).
Proof.
apply: (iffP andP) ⇒ [[H1 /all_subP H2]|[H1 H2]]; split ⇒ //.
- move ⇒ Y inU. apply/implyP. exact: H2.
- apply/all_subP ⇒ Y inU. apply/implyP. exact: H2.
Qed.
Lemma ex_max X : X `<=` U → P X → ∃ M, [/\ X `<=` M , M `<=` U & maximal M].
Proof.
move: X. apply: slack_ind ⇒ X IH inU pX.
case/boolP :(maximalb X) ⇒ [/maximalP|]; first by ∃ X; rewrite subxx.
rewrite negb_and pX. case/allPn ⇒ Y. rewrite powersetE negb_imply negbK ⇒ H1 /andP [H2 pY].
case: (IH _ H1 H2 pY) ⇒ M [YM MU Hm]. ∃ M. split ⇒ //. apply: (sub_trans _ YM). exact: properW.
Qed.
End Maximal.
Section Pruning.
Variables (T:choiceType) (p : T → {fset T} → bool).
Implicit Types (S : {fset T}).
Function prune S {measure size} :=
if fpick (p^~ S) S is Some x then prune (S `\` [fset x]) else S.
Proof.
move ⇒ S x. case: (fpickP _) ⇒ // ? Hp inS [?]. subst.
apply/leP. apply: proper_size. exact: properD1.
Qed.
Lemma prune_myind (P : {fset T} → Type) S :
P S →
(∀ x S0, p x S0 → x \in S0 → P S0 → S0 `<=` S → P (S0 `\` [fset x])) →
P (prune S).
Proof.
move: S. apply: (nat_size_ind (f := fun X : {fset T} ⇒ size X)) ⇒ S IH Hp Hstep.
rewrite prune_equation. case: (fpickP _) ⇒ // x px inS. apply: IH.
- apply: proper_size. exact: properD1.
- apply: Hstep ⇒ //. exact: subxx.
- move ⇒ y S' py inS' PS' sub. apply: Hstep ⇒ //. apply: sub_trans sub _.
exact: fsubDl.
Qed.
Lemma prune_sub S : prune S `<=` S.
Proof.
apply prune_myind; first by rewrite subxx.
move ⇒ x S' _ _ _. apply: sub_trans. exact: fsubDl.
Qed.
Lemma pruneE x S : x \in prune S → ~~ p x (prune S).
Proof.
move: S. apply: (nat_size_ind (f := fun X : {fset T} ⇒ size X)) ⇒ S IH.
rewrite prune_equation. case: (fpickP _) ⇒ [y pyS yinS|]; last exact.
apply: IH. apply: proper_size. exact: properD1.
Qed.
End Pruning.
Legacy/compatibility
Definition feqEsub := eqEsub.
Lemma set_of_nilp (T : choiceType) (s : seq T) : (set_of s == fset0) = (nilp s).
Proof.
apply/idP/nilP; last by rewrite fset0E;move→.
apply: contraTeq. case: s ⇒ // a l _.
apply/emptyPn; ∃ a. by rewrite set_ofE inE eqxx.
Qed.
Section AutoLemmas.
Variables (T T':choiceType).
Implicit Types (X Y Z : {fset T}).
Lemma fsubU_auto X Y Z : (X `<=` Z) → (Y `<=` Z) → (X `|` Y `<=` Z).
Proof. rewrite fsubUset. by move ⇒ → →. Qed.
Lemma fsub1_auto x X : x \in X → ([fset x] `<=` X).
Proof. by rewrite fsub1. Qed.
Lemma fsetU_auto1 x X Y : x \in X → x \in X `|` Y.
Proof. by rewrite inE ⇒ →. Qed.
Lemma fsetU_auto2 x X Y : x \in Y → x \in X `|` Y.
Proof. by rewrite inE ⇒ →. Qed.
Lemma fsetU_auto3 X Y Z : X `<=` Y → X `<=` Y `|` Z.
Proof. move ⇒ H. apply: sub_trans H _. by rewrite fsubUl. Qed.
Lemma fsetU_auto4 X Y Z : X `<=` Y → X `<=` Z `|` Y.
Proof. move ⇒ H. apply: sub_trans H _. by rewrite fsubUr. Qed.
End AutoLemmas.
Hint Resolve subxx fsetUSU fsubUl fsubUr fsubU_auto fsub1_auto
fsetU_auto1 fsetU_auto2 fsetU_auto3 fsetU_auto4 fset11 fset1U1 : fset.
Hint Extern 4 (is_true _) ⇒ (match goal with [ H : is_true (_ `|` _ `<=` _) |- _ ] ⇒ case/fsubUsetP : H end) : fset .
Hint Extern 4 (is_true _) ⇒ (match goal with [ H : is_true ((_ \in _) && (_ \in _))|- _ ] ⇒ case/andP : H end) : fset .
Hint Extern 4 (is_true _) ⇒
match goal with
| [ H : is_true ((_ \in _) && (_ \in _)) |- _] ⇒ case/andP : H
end : fset.