Require Import Prelim singleTM.
(* ** More preliminary lemmas *)
Lemma inductive_count (S:eqType) (Y:eqType) A (s:S) n (f: S -> Y):
Injective f -> count A s = n -> count (map (fun a:S => f a) A) (f s) = n.
Proof.
intros inj. revert n. induction A; intros n HC.
- destruct n; try discriminate HC. reflexivity.
- simpl in *. decide (s=a). rewrite e in *. destruct n. discriminate HC. inversion HC.
decide (f a = f a); try contradiction. rewrite (IHA n H0). now rewrite H0.
decide (f s = f a). apply inj in e. contradiction. now apply IHA.
Qed.
Lemma diff_constructors_count_zero (F X Y:eqType) (A: list F) (f: F -> X) (g: Y -> X) x:
(forall a b, f a <> g b) -> count (map (fun (a:F) => f a) A) (g x) = 0.
Proof.
intros dis. induction A. auto. cbn. decide (g x = f a).
exfalso. apply (dis a x). symmetry. assumption. assumption.
Qed.
Lemma notInZero (X: eqType) (x: X) A :
not (x el A) <-> count A x = 0.
Proof.
split; induction A.
- reflexivity.
- intros H. cbn in *. dec.
+ exfalso. apply H. left. congruence.
+ apply IHA. intros F. apply H. now right.
- tauto.
- cbn. dec.
+ subst a. omega.
+ intros H [E | E].
* now symmetry in E.
* tauto.
Qed.
Lemma in_sing {X} (x y:X) :
x el [y] -> x = y.
Proof.
cbn. intros [[]|[]]. reflexivity.
Qed.
Lemma in_concat_iff A l (a:A) : a el concat l <-> exists l', a el l' /\ l' el l.
Proof.
induction l; cbn.
- intuition. now destruct H.
- rewrite in_app_iff, IHl. firstorder subst. auto.
Qed.
(* Definition of String rewriting with finite types *)
(* String Rewriting **)
Section string_rewriting.
Variable sig: Type.
Definition rule : Type := list sig * list sig.
Definition srs := list rule.
Implicit Types (a b c: sig) (x y z u v: list sig)
(r: list sig* list sig) (R S: srs).
Inductive rew' : srs -> list sig -> list sig -> Prop:=
|rewR R x u y v : (u,v) el R -> rew' R (x++u++y) (x++v++y).
Hint Constructors rew'.
Inductive rewt' (S: srs) (x: list sig) : list sig -> Prop :=
|rewt'Refl : rewt' S x x
|rewt'Rule y z : rew' S x y -> rewt' S y z -> rewt' S x z.
Hint Constructors rewt'.
Instance rewt'Trans R :
PreOrder (rewt' R).
Proof.
split.
- econstructor.
- intros ? ? ? ? ?.
induction H. auto. now apply rewt'Rule with (y:= y), IHrewt'.
Qed.
Lemma subset_rewriting S R x y:
S <<= R -> rewt' S x y -> rewt' R x y.
Proof.
intros Sub H. induction H. auto. apply rewt'Rule with (y:=y).
inv H. apply rewR with (x:=x0) (u:=u) (v:=v). now apply Sub. exact IHrewt'.
Qed.
Lemma rewrite_app R x y z:
rewt' R x y -> rewt' R (z++x) (z++y).
Proof.
induction 1. auto. inv H. revert IHrewt'. apply rewt'Rule.
rewrite app_assoc. setoid_rewrite app_assoc at 2. now apply rewR.
Qed.
Lemma rewrite_right R x y z :
rewt' R x y -> rew' R y z -> rewt' R x z.
Proof.
intros. induction H; eauto.
Qed.
Lemma rewt'_ind_left :
forall (S : srs) x (P : list sig -> Prop),
(P x) ->
(forall y z : list sig, rewt' S x y -> rew' S y z -> P y -> P z) -> forall l : list sig, rewt' S x l -> P l.
Proof.
intros. induction H1; eauto 10 using rewt'.
Qed.
End string_rewriting.
Definition SR_fin (S: sigT (fun (sig:finType) => (prod (prod (srs sig) (list sig)) (list sig)))) :=
match (projT2 S) with
|(rules,x,y) => rewt' rules x y
end.
Section Fix_TM.
Variable sig : finType.
Variable T : (sTM sig).
Definition conf :Type := mconfig sig (states T).
Instance eq_dec_states : eq_dec (states T).
Proof. exact _. Defined.
Inductive rsig' : Type := hash | dollar | sigma (s: sig).
Instance eq_dec_rsig' : eq_dec rsig'.
Proof.
intros. hnf. decide equality. apply eq_dec_sig.
Defined.
Instance finType_rsig': finTypeC (EqType rsig').
Proof.
exists (hash::dollar::(List.map (fun s => sigma s) (elem sig))).
intros x. destruct x; cbn. induction (elem sig); auto. induction (elem sig); auto.
apply inductive_count. intros x y; now inversion 1. apply (@enum_ok sig (class sig) s).
Defined.
Inductive rsig : Type := state (q: states T) | symb (s: (FinType (EqType rsig'))).
Definition sym : sig -> rsig := fun s => symb (sigma s).
Notation "#" := (symb hash).
Notation "$" := (symb dollar).
Global Instance eq_dec_rsig : eq_dec rsig.
Proof.
intros. hnf. decide equality. apply eq_dec_states.
apply eq_dec_rsig'.
Defined.
Lemma state_count_one q:
count (map (fun s : states T => state s) (elem (states T))) (state q) = 1.
Proof.
apply inductive_count. intros x y; now inversion 1.
apply (@enum_ok (states T) (class (states T)) q).
Qed.
Lemma symb_count_one s:
count (map (fun s0 : FinType (EqType rsig') => symb s0)
(elem (FinType (EqType rsig')))) (symb s) = 1.
Proof.
apply inductive_count. intros x y; now inversion 1.
apply (@enum_ok (FinType (EqType rsig')) (class (FinType (EqType rsig'))) s).
Qed.
Global Instance finType_rsig: finTypeC (EqType rsig).
Proof.
exists ((map (fun s => state s) (elem (states T)))
++ (map (fun s => symb s) (elem (FinType (EqType rsig'))))). intros x. destruct x.
- rewrite <- countSplit. rewrite state_count_one.
now rewrite (@diff_constructors_count_zero (FinType (EqType rsig'))
(EqType rsig) (states T) (elem (FinType (EqType (rsig')))) symb state).
- rewrite <- countSplit. rewrite symb_count_one.
now rewrite (@diff_constructors_count_zero (states T)).
Defined.
Definition rsig_finType : finType := (@FinType (EqType rsig) finType_rsig).
Definition halting_states : list (states T) :=
List.filter (fun s => halt s) (elem (states T)).
Definition not_halting_states : list (states T) :=
List.filter (fun s => negb (halt s)) (elem (states T)).
Lemma not_halting (q: states T) :
halt q = false <-> q el not_halting_states.
Proof.
split. unfold not_halting_states. rewrite filter_In.
intros H. split. auto. now rewrite H. unfold not_halting_states.
rewrite filter_In. intros [H1 H2]. now destruct (halt q).
Qed.
Lemma halting (q: states T) :
halt q = true <-> q el halting_states.
Proof.
split. unfold halting_states. rewrite filter_In.
intros H. split. auto. now rewrite H. unfold halting_states.
rewrite filter_In. intros []. auto.
Qed.
(* ** Encoding of Configurations **)
Definition mk_srconf (c: conf): list rsig :=
match (ctape c) with
| niltape _ => [state (cstate c);#;$]
| leftof s r => [state(cstate c); #]++ (List.map sym (s::r))++[$]
| rightof s l => [#]++(List.map sym (List.rev (s::l)))++[state(cstate c);$]
| midtape l s r => [#]++(List.map sym (List.rev l))++ [(state(cstate c))]
++ (List.map sym (s::r))++[$]
end.
Lemma sym_inj : Injective sym.
Proof.
intros x y. now inversion 1.
Qed.
Lemma state_not_sym A B q e l:
A++[state q] = B ++sym e::(List.map sym l) -> False.
Proof.
revert B e. induction l; intros B e H; cbn in *.
- apply last_app_eq in H as [H HE]. inv HE.
- apply (IHl (B++[sym e]) a). now rewrite <- app_assoc.
Qed.
Lemma midtape_state A B q1 q2 l r:
A ++ (state q1)::B = List.map sym l++(state q2)::(List.map sym r)
-> A = List.map sym l /\ B = (List.map sym r) /\ q1 = q2.
Proof.
revert r A B. induction l; intros r A B H; cbn in *.
- destruct A. rewrite app_nil_l in H. inv H. now split. inv H. exfalso.
assert ((state q1) el (A++(state q1)::B) -> False). intros H. rewrite H2 in H.
apply in_map_iff in H as [x [? ?]]. inv H. apply H. auto.
- destruct A. rewrite app_nil_l in H. inv H. inv H. destruct (IHl r A B H2).
subst. now split.
Qed.
Lemma mk_srconf_inj (c1 c2: conf) :
mk_srconf c1 = mk_srconf c2 <-> c1 = c2.
Proof.
split.
- unfold mk_srconf. destruct (ctape c1) eqn: H,(ctape c2) eqn: H'; try inversion 1;
subst; destruct c1,c2; cbn in *; subst; try reflexivity.
+ apply app_inv_tail in H4. apply map_inj in H4. now subst. apply sym_inj.
+ change [state cstate;$] with ([state cstate]++[$]) in H2.
change [state cstate0;$] with ([state cstate0]++[$]) in H2.
rewrite !app_assoc in H2. apply app_inv_tail in H2.
apply last_app_eq in H2 as [H3 H2]. repeat rewrite map_app in H3.
apply last_app_eq in H3 as [H3 HE]. inv H2. inv HE. rewrite map_inj in H3.
rewrite rev_eq in H3. now subst. apply sym_inj.
+ change [state cstate; $] with ([state cstate]++[$]) in H2.
rewrite !app_assoc, !app_comm_cons in H2. rewrite app_assoc in H2.
apply last_app_eq in H2 as [H2 _]. exfalso.
change (state cstate0::sym e0::List.map sym l1)
with ([state cstate0]++sym e0::List.map sym l1) in H2.
rewrite app_assoc in H2. apply (state_not_sym H2).
+ change [state cstate0; $] with ([state cstate0]++[$]) in H2.
rewrite !app_assoc, !app_comm_cons in H2. rewrite app_assoc in H2.
apply last_app_eq in H2 as [H2 _]. symmetry in H2.
change (state cstate::sym e::List.map sym l0)
with ([state cstate]++sym e::List.map sym l0) in H2.
rewrite app_assoc in H2. exfalso. apply (state_not_sym H2).
+ rewrite !app_comm_cons in H2. rewrite! app_assoc in H2. apply last_app_eq in H2 as [H2 _].
assert (List.map sym (List.rev l) ++ state cstate :: List.map sym (e::l0) =
List.map sym (List.rev l1) ++ state cstate0 :: List.map sym (e0::l2)) as H3 by auto.
apply midtape_state in H3 as [H3 [H4 H5]]. inv H4. apply map_inj in H6.
subst. apply map_inj in H3. rewrite rev_eq in H3. now subst. apply sym_inj. apply sym_inj.
- now intros <-.
Qed.
(* ** Definition of Rewrite Rules Simulating a Transition **)
Definition get_rules_left (q1 q2: states T) (old new: option sig) : list (list rsig * list rsig):=
match old,new with
|None,None => List.map (fun c => ([sym c; state q1; $], [state q2; sym c; $])) (elem sig)
|None,Some b => List.map (fun c => ([sym c; state q1; $], [state q2; sym c; sym b; $])) (elem sig)
|Some a,None => List.map (fun c => ([sym c; state q1; sym a], [state q2; sym c; sym a])) (elem sig)
|Some a,Some b => List.map (fun c => ([sym c; state q1; sym a], [state q2; sym c; sym b])) (elem sig)
end.
Definition get_rules_right (q1 q2: states T) : list (list rsig * list rsig) :=
List.map (fun a => ([state q1; #; sym a],[#; state q2; sym a])) (elem sig).
Definition get_rules (q1 q2: states T) (old new: option sig) (m: move) :
list (list rsig * list rsig) :=
match old,new,m with
|None,None,L => [([state q1; #],[state q2; #])] ++ (get_rules_left q1 q2 None None)
|None,None,N => [([state q1; #],[state q2; #]);([state q1; $],[state q2; $])]
|None,None,R => [([state q1; #;$],[state q2; #;$]); ([state q1; $],[state q2; $])]
++ (get_rules_right q1 q2)
|None,Some b,L => [([state q1; #],[state q2; #; sym b])] ++ (get_rules_left q1 q2 None (Some b))
|None,Some b,N => [([state q1; #],[#; state q2; sym b]); ([state q1; $],[state q2; sym b; $])]
|None,Some b,R => [([state q1; #],[#; sym b; state q2]); ([state q1; $],[sym b; state q2; $])]
|Some a,None,L => [([#;state q1; sym a],[state q2; #; sym a])]
++ (get_rules_left q1 q2 (Some a) None)
|Some a,None,N => [([state q1; sym a],[state q2; sym a])]
|Some a,None,R => [([state q1; sym a],[sym a; state q2])]
|Some a,Some b,L => [([#; state q1; sym a],[state q2; #; sym b])]
++ (get_rules_left q1 q2 (Some a) (Some b))
|Some a,Some b,N => [([state q1; sym a],[state q2; sym b])]
|Some a,Some b,R => [([state q1; sym a],[sym b; state q2])]
end.
Definition TMrules : list (list rsig * list rsig) :=
List.concat ((List.map (fun q1 => match trans (q1,None) with
|(q2,(o,m)) => get_rules q1 q2 None o m
end) not_halting_states) ++
(List.map (fun (P: states T * sig) => let (q1,s) := P in match trans (q1,Some s) with
|(q2,(o,m)) => get_rules q1 q2 (Some s) o m
end)
(list_prod not_halting_states (elem sig)))).
(* ** Correctness Proof **)
Lemma get_rules_el_TMrules (q1 q2: states T) (old new: option sig) (m: move) :
halt q1 = false -> (trans (q1,old) = (q2,(new,m)))
-> get_rules q1 q2 old new m <<= TMrules.
Proof.
intros HF HT. intros s HS. apply in_concat_iff. exists (get_rules q1 q2 old new m).
split. assumption. apply in_app_iff. destruct old.
- right. apply in_map_iff. exists (q1,e). rewrite HT. split. reflexivity.
apply in_prod_iff. split. now apply not_halting. auto.
- left. apply in_map_iff. exists q1. rewrite HT. split. auto. now apply not_halting.
Qed.
Lemma rewrite_step_conf (c1: conf) :
(halt (cstate c1) = false) -> rew' TMrules (mk_srconf c1) (mk_srconf (step c1)).
Proof.
intros H. unfold mk_srconf. destruct (ctape c1) eqn: CT; unfold step; rewrite CT; cbn.
- destruct (trans (cstate c1, None)) as (q2,(new,mov)) eqn: TC;
assert (Sub: get_rules (cstate c1) q2 None new mov <<= TMrules)
by (now apply get_rules_el_TMrules). destruct new as [new| ]; destruct mov; cbn.
+ apply rewR with (x:=[]) (u:= [state (cstate c1);#]) (v:=[state q2;#;sym new]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1);#]) (v:= [#;sym new; state q2]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #]) (v:=[#; state q2; sym new]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #]) (v:=[state q2; #]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #; $])(v:=[state q2; #; $]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #]) (v:=[state q2; #]).
firstorder.
- destruct (trans (cstate c1, None)) as (q2,(new,mov)) eqn: TC;
assert (Sub: get_rules (cstate c1) q2 None new mov <<= TMrules)
by (now apply get_rules_el_TMrules). destruct new as [new| ]; destruct mov; cbn.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #]) (v:=[state q2; #; sym new]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #]) (v:=[#; sym new; state q2]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #]) (v:=[#; state q2; sym new]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #])(v:=[state q2; #]).
firstorder.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #; sym e]) (v:=[#; state q2; sym e]).
apply Sub. cbn. right. right. unfold get_rules_right. apply in_map_iff. exists e. now split.
+ apply rewR with (x:=[]) (u:= [state (cstate c1); #]) (v:=[state q2; #]).
firstorder.
- destruct (trans (cstate c1, None)) as (q2,(new,mov)) eqn: TC;
assert (Sub: get_rules (cstate c1) q2 None new mov <<= TMrules)
by (now apply get_rules_el_TMrules). destruct new as [new| ]; destruct mov; cbn.
+ rewrite map_app. rewrite <- app_assoc.
apply rewR with (x:=#::List.map sym (List.rev l)) (u:= [sym e; state (cstate c1); $])
(v:=[state q2; sym e; sym new;$]).
apply Sub. cbn. right. apply in_map_iff. exists e. now split.
+ rewrite !map_app. setoid_rewrite <- app_assoc at 2.
apply rewR with (x:=#::List.map sym (List.rev l) ++[sym e]) (u:= [state (cstate c1); $])
(v:=[sym new; state q2;$]). firstorder.
+ apply rewR with (x:=#::List.map sym (List.rev l++[e])) (u:= [state (cstate c1); $])
(v:=[state q2; sym new; $]). firstorder.
+ rewrite map_app. rewrite <- app_assoc.
apply rewR with (x:=#::List.map sym (List.rev l)) (u:= [sym e; state (cstate c1); $])
(v:=[state q2; sym e;$]).
apply Sub. cbn. right. apply in_map_iff. exists e. now split.
+ apply rewR with (x:=#::List.map sym (List.rev l++[e])) (u:= [state (cstate c1); $])
(v:=[state q2; $]). firstorder.
+ apply rewR with (x:=#::List.map sym (List.rev l++[e])) (u:= [state (cstate c1); $])
(v:=[state q2; $]). firstorder.
- destruct (trans (cstate c1, Some e)) as (q2,(new,mov)) eqn: TC;
assert (Sub: get_rules (cstate c1) q2 (Some e) new mov <<= TMrules)
by (now apply get_rules_el_TMrules). destruct new as [new| ]; destruct mov; cbn.
+ destruct l; cbn.
* apply rewR with (x:=[]) (u:= [#; state (cstate c1) ; sym e]) (v:=[state q2; #; sym new]).
firstorder.
* rewrite map_app. rewrite <- app_assoc.
apply rewR with (x:=#::List.map sym (List.rev l))
(u:= [sym e0; state (cstate c1) ; sym e])
(v:=[state q2; sym e0; sym new]).
apply Sub. cbn. right. apply in_map_iff. exists e0. now split.
+ destruct l0; cbn.
* rewrite map_app. rewrite <- app_assoc.
apply rewR with (x:= # :: List.map sym (List.rev l))
(u:= [state (cstate c1) ; sym e]) (y:=[$])
(v:=[sym new; state q2]). firstorder.
* rewrite map_app. rewrite <- app_assoc.
apply rewR with (x:=#::List.map sym (List.rev l))
(u:= [state (cstate c1) ; sym e])
(v:=[sym new; state q2]). firstorder.
+ apply rewR with (x:=# :: List.map sym (List.rev l)) (u:= [state (cstate c1); sym e])
(v:=[state q2; sym new]). firstorder.
+ destruct l; cbn.
* apply rewR with (x:=[])
(u:= [#;state (cstate c1) ; sym e])
(v:=[state q2; #; sym e]). firstorder.
* rewrite map_app. rewrite <- app_assoc.
apply rewR with (x:=#::List.map sym (List.rev l))
(u:= [sym e0; state (cstate c1) ; sym e])
(v:=[state q2; sym e0; sym e]).
apply Sub. cbn. right. apply in_map_iff. exists e0. now split.
+ destruct l0; cbn.
* rewrite map_app. rewrite <- app_assoc.
apply rewR with (x:=# :: List.map sym (List.rev l))
(u:= [state (cstate c1) ; sym e])
(v:=[sym e; state q2]). firstorder.
* rewrite map_app. rewrite <- app_assoc.
apply rewR with (x:=#::List.map sym (List.rev l))
(u:= [state (cstate c1) ; sym e])
(v:=[sym e; state q2]). firstorder.
+ apply rewR with (x:=# :: List.map sym (List.rev l))
(u:= [state (cstate c1); sym e])
(v:=[state q2; sym e]). firstorder.
Qed.
Lemma state_eqlist A B C D q1 q2:
A ++(state q1)::B = C++(state q2)::D
-> (exists (E F: list rsig'), C = List.map symb E /\ D = List.map symb F)
-> A = C /\ B = D /\ q1 = q2.
Proof.
revert C. induction A; intros C H HA; destruct C; try rewrite !app_nil_l in H.
- inv H. now split.
- inv H. destruct HA as [E [F [H1 H2]]]. destruct E; inv H1.
- rewrite <- app_comm_cons in H. inv H. destruct HA as [E [F [H1 H2]]].
exfalso. assert ((state q1) el (A++(state q1)::B) -> False). intros H.
rewrite H2 in H. apply in_map_iff in H as [x [? ?]]. inv H. apply H. auto.
- inv H. specialize (IHA C H2). destruct HA as [E [F [H3 H4]]]. destruct E,F.
inv H3. inv H3. cbn in H3. inv H3. destruct IHA as [<- [<- <-]]. exists E, []. now split.
now split. cbn in H3. inv H3. destruct IHA as [<- [<- <-]]. exists E, (r1::F). now split.
now split.
Qed.
Fact map_symb_sigma A :
List.map symb (List.map sigma A) = List.map sym A.
Proof.
induction A. auto. cbn. now rewrite <- IHA.
Qed.
(* Automation for rewrite_step_halt Lemma. ListInv mainly eliminates contradictory
assumptions while state_inv also solves cases *)
Ltac listInv :=
cbn in *;
match goal with
| [H: sym _ = sym _ |- _ ] => inv H
| [H: [] = _ ::_ |- _ ] => inv H
| [H: _::_ = _::_ |- _ ] => inv H
| [H: []++ _ = _ |- _ ] => rewrite app_nil_l in H
| [H: _ ++[] = _ |- _ ] => rewrite app_nil_r in H
| [H: _ = []++ _ |- _ ] => rewrite app_nil_l in H
| [H: _ = _ ++[] |- _ ] => rewrite app_nil_r in H
| [H: [] = List.map sym ?L |- _ ] => destruct L eqn: ?
| [H: List.rev ?L = [] |- _] => apply rev_nil in H
| [H: _ ++ _::_ = [] |- _ ] => symmetry in H; now apply app_cons_not_nil in H
| [H: [] = List.map _ (List.rev (_) ++ ?e) |- _ ] =>
apply map_app in H; now apply app_cons_not_nil in H
| [H: _ ++ [#] = List.map sym (List.rev _ ++ ?e) |- _ ] =>
rewrite map_app in H; let E:= fresh "E" in apply last_app_eq in H as [_ E]; inv E
| [H: ?x ++ [_] = #::(List.map sym ?L) |- _ ] => destruct x eqn: ?
| [H: _ ++ [#] = List.map sym (List.rev ?L) |- _ ] => destruct L eqn: ?
| [H: _ ++ [sym _] = List.map sym (List.rev ?L) |- _ ] => destruct L eqn:?
| [H: _ ++ [sym _] = List.map sym (_ ++ [_]) |- _ ] =>
rewrite map_app in H; apply last_app_eq in H as [? ?]
| [H: ?A ++ _::_ = _::_ |- _ ] => destruct A eqn: ?
end; subst.
Ltac rep_listInv := repeat listInv.
Ltac confeq :=
unfold step; unfold mk_srconf;
match goal with
| [ |- (_::_ = _::_) /\ _ ] => split
| [ |- (_::_ = _::_)] => reflexivity
| [H: ctape _ = _ |- (_ = _) /\ _ ] => rewrite H
| [H: trans(_,_) = _ |- _ ] => rewrite H
| [H: _ |- mk_mconfig _ _ = mk_mconfig _ _ /\ _ ] => split
| [ |- mk_mconfig _ _ = mk_mconfig _ _ ] => reflexivity
| [H: (?q,_) el list_prod not_halting_states _ |- halt ?q = false ] =>
apply in_prod_iff in H as [? _]; now apply not_halting
| [H: _ el not_halting_states |- halt _ = false] => now apply not_halting
end; subst; cbn in *; try now rewrite !map_app, <- !app_assoc.
Ltac rep_confeq := repeat confeq.
Ltac state_inv :=
unfold get_rules_right in *;
match goal with
|[H: ?x ++ ?z::(state ?q)::?y = ?a::(?A++(state _ )::_) |- _] =>
cbn in H; change (x++z::state q::y) with (x++[z]++(state q)::y) in H; rewrite app_assoc in H;
rewrite app_comm_cons in H; eapply state_eqlist in H as [? [? ?]]
|[H: ?x ++ state _ :: ?y = state _ ::_ |- _ = _ /\ _ ] =>
apply state_eqlist with (A:= x) (B:= y) (C:= []) in H as [? [? ?]]
|[H: ?x ++ ?z::state ?q :: ?y = state _ ::_ |- _ = _ /\ _ ] =>
change (x++z::state q::y) with (x++[z]++state q::y) in H; rewrite app_assoc in H;
apply state_eqlist with (A:=x++[z]) (B:= y) (C:= []) in H as [? [? ?]]
|[H: ?x ++(state _ )::?y = ?a::(?A ++ (state _ )::_) |- _ ] =>
cbn in H; rewrite app_comm_cons in H; eapply state_eqlist in H as [? [? ?]]
|[H: (_,_) el List.map _ _ |- (_ = _) /\ _] => apply in_map_iff in H as [? [? ?]]
|[H: (_,_) = (_,_) |- _ ] => inv H
|[H: _ |- exists E F, [] = _ /\ [#;$] = _ ] => exists [],[hash; dollar]; now split
|[H: _ |- exists E F, [] = _ /\ #::sym ?e::List.map sym ?L++[$] = _ ] =>
exists [],(hash::sigma e::List.map sigma L++[dollar]); split; auto; cbn;
rewrite map_app, map_symb_sigma; now cbn
|[H: _ |- exists E F, #::(List.map sym ?A) = _ /\ [$] = _ ] =>
exists (hash::(List.map sigma A)), [dollar]; split; auto; cbn;
rewrite !map_app, map_symb_sigma; now cbn
|[H: _ |- exists E F, #::(List.map sym ?A) = _ /\ sym ?e::(List.map sym ?L)++[$] = _ ] =>
exists (hash::(List.map sigma A)), (sigma e::(List.map sigma L)++[dollar]);
split; cbn; try rewrite map_app; now rewrite map_symb_sigma
end.
Ltac solve_inv := repeat (state_inv || confeq || listInv).
Lemma rewrite_step_halt (c1: conf) y:
rew' TMrules (mk_srconf c1) y -> (y = (mk_srconf (step c1)) /\ (halt (cstate c1) = false)).
Proof.
intros H. remember (mk_srconf c1) as a. inv H.
apply in_concat_iff in H0 as [L [EL HL]]. unfold mk_srconf in H2.
destruct (ctape c1) eqn: CT1; cbn in *; apply in_app_iff in HL as [HL|HL];
try apply in_map_iff in HL as [z [HZ ZF]]; try (destruct z as (q1, old));
try (destruct (trans(z,None)) as (qz,(o,m)) eqn: TZ +
destruct (trans (q1, Some old)) as (q2, (o, m)) eqn: TZ);
destruct o as [new| ]; destruct m; cbn in HZ; subst; destruct EL;
try apply in_sing in H; try inv H; solve_inv; destruct l0; cbn; rep_confeq.
Qed.
Lemma rewrite_steps_halt (c1: conf) y:
rewt' TMrules (mk_srconf c1) y -> exists c2, y = (mk_srconf c2).
Proof.
intros H. induction H using rewt'_ind_left.
- eauto.
- destruct IHrewt' as [? ->]. eapply rewrite_step_halt in H0 as [-> ?]. eauto.
Qed.
Theorem reach_rewrite (c1 c2:conf):
reach c1 c2 <-> rewt' TMrules (mk_srconf c1) (mk_srconf c2).
Proof.
split.
- induction 1. constructor. apply rewt'Rule with (y:=(mk_srconf (step c))).
+ now apply rewrite_step_conf.
+ assumption.
- remember (mk_srconf c1) as y. remember (mk_srconf c2) as b.
intros H. revert Heqy. revert c1. induction H; intros c1 Heqy; subst.
+ apply mk_srconf_inj in Heqy. subst. constructor.
+ apply rewrite_step_halt in H as [H1 H]. subst.
apply reachS. apply IHrewt'; auto. assumption.
Qed.
Definition reduction_reach_rewrite (p: conf * conf) :=
let (c1,c2) := p in (TMrules, mk_srconf c1, mk_srconf c2).
End Fix_TM.
Require Import Definitions.
Theorem reduction_reach_sr : Reach ⪯ SR_fin.
Proof. exists (fun S
=> existT (fun (sig:finType) => (prod (prod (srs sig) (list sig)) (list sig)))
(rsig_finType (projT1 (projT2 S)))
(reduction_reach_rewrite (projT2 (projT2 S)))).
intros [sig [M [c1 c2]]]. unfold Reach, SR. cbn. apply reach_rewrite.
Qed.
Definition trans_R (Sigma : finType) (R : srs Sigma) :=
map (fun '(x,y) => (map (@index Sigma) x, map (@index Sigma) y)) R.
Lemma red_rew (Sigma : finType) (R : srs Sigma) (x0 y : list Sigma) :
rew' R x0 y <-> rew (trans_R R) (map (index (X:=Sigma)) x0) (map (index (X:=Sigma)) y).
Proof.
split.
- intros []. cbn. autorewrite with list. econstructor.
eapply in_map_iff. exists (u/v). eauto.
- inversion 1. unfold trans_R in H.
symmetry in H0. eapply map_app_inv in H0 as (x0' & x0'' & -> & <- & (y' & y'' & -> & <- & <-) % map_app_inv ).
unfold trans_R in H2. eapply in_map_iff in H2 as ([] & ? & ?). inv H0.
rewrite <- !map_app in H1. enough (l = y' /\ x0' ++ l0 ++ y'' = y) as [-> <-].
now econstructor.
+ split; eapply map_inj; eauto using inj_index.
Qed.
Lemma rew_inv (Sigma : finType) (R : srs Sigma) (x0 : list Sigma) y' :
rew (trans_R R) (map (index (X:=Sigma)) x0) y' -> exists y, y' = (map (index (X:=Sigma)) y).
Proof.
inversion 1; subst. unfold trans_R in H1. eapply in_map_iff in H1 as ([] & ? & ?). inv H1.
symmetry in H0. eapply map_app_inv in H0 as (x0' & x0'' & ? & ? & (y' & y'' & ? & ? & ?) % map_app_inv ); subst.
rewrite map_inj in H4; eauto using inj_index. subst.
eexists. rewrite <- !map_app. reflexivity.
Qed.
Lemma nrewt_ind_left :
forall (R : SRS) s (P : string -> Prop),
(P s) ->
(forall y z : string, rewt R s y -> rew R y z -> P y -> P z) -> forall s0 : string, rewt R s s0 -> P s0.
Proof.
intros. induction H1; eauto 10 using rewt.
Qed.
Lemma rewt_inv (Sigma : finType) (R : srs Sigma) (x0 : list Sigma) y' :
rewt (trans_R R) (map (index (X:=Sigma)) x0) y' -> exists y, y' = (map (index (X:=Sigma)) y) /\ rewt' R x0 y.
Proof.
intros. induction H using nrewt_ind_left.
- eauto using rewt'.
- destruct IHrewt as (? & -> & ?). pose proof H0. eapply rew_inv in H0 as [? ->].
exists x1. eapply red_rew in H2. split; try reflexivity. eapply rewrite_right; eauto.
Qed.
Lemma red_rewt (Sigma : finType) (R : srs Sigma) (x0 y : list Sigma) :
rewt' R x0 y <-> rewt (trans_R R) (map (index (X:=Sigma)) x0) (map (index (X:=Sigma)) y).
Proof.
split.
- induction 1. reflexivity.
eapply red_rew in H. eauto using rewt.
- intros. eapply rewt_inv in H as (? & ? & ?). enough (x = y). subst. eassumption.
eapply map_inj; eauto using inj_index.
Qed.
Lemma reduction : SR_fin ⪯ SR.
Proof.
exists (fun '(existT _ sig (Rs,x,y)) => (trans_R Rs, map (@index sig) x, map (@index sig) y)).
intros [Sigma ((R, x0), y)]. cbn. eapply red_rewt.
Qed.
Definition SRH' '(Rs, x, A) := exists y, rewt Rs x y /\ exists a, a el A /\ a el y.
Lemma mk_srconf_state:
forall (sig : finType) (M : sTM sig) (x : conf M) (x0 : states M), state x0 el mk_srconf x -> x0 = cstate x.
Proof.
intros sig M x x0 H2. unfold mk_srconf in *. destruct _; cbn in *; rewrite ?in_app_iff in *.
- intuition; congruence.
- intuition; try congruence. inv H. eapply in_map_iff in H0 as (? & ? & ?). inv H. inv H0. inv H. inv H.
- intuition; try congruence. eapply in_map_iff in H0 as (? & ? & ?). inv H. inv H0. inv H. reflexivity. inv H. inv H0. inv H0.
- intuition; try congruence. eapply in_map_iff in H0 as (? & ? & ?). inv H. cbn in *. intuition. now inv H. inv H0.
eapply in_app_iff in H0. intuition. eapply in_map_iff in H as (? & ? & ?). inv H. inv H. inv H0. inv H0.
Qed.
Lemma halt_SRH' : Halt ⪯ SRH'.
Proof.
exists (fun '(existT2 _ _ sig M t) => (trans_R (@TMrules sig M), map (@index (FinType (EqType (rsig M)))) (@mk_srconf sig M (@initc sig M t)), map (@index (FinType (EqType (rsig M)))) (map (@state sig M) (@halting_states sig M)))).
intros [sig M]. cbn. unfold Halt, Halt. cbn. split; intros []; intuition.
- eapply reach_rewrite in H1.
eapply red_rewt in H1. eexists. split. eassumption. exists (index (state (cstate x))).
rewrite !in_map_iff. intuition; eexists.
+ rewrite in_map_iff. intuition. eexists; intuition. eapply halting. eauto.
+ intuition. unfold mk_srconf. destruct _; cbn; eauto.
- destruct H1. intuition. destruct (rewt_inv H0) as [? [-> ?]].
pose proof H.
eapply rewrite_steps_halt in H as [? ->].
eapply in_map_iff in H1 as (? & <- & ?). eapply in_map_iff in H2 as (? & ? & ?).
eapply inj_index in H1 as ->. eapply in_map_iff in H as (? & <- & ?).
eapply halting in H. eapply mk_srconf_state in H2. subst.
exists x. cbn. intuition.
eapply reach_rewrite. eassumption.
Qed.
Lemma rewt_R_fresh (R : SRS) (x : string) (A l : list symbol) :
rewt (R ++ map (fun a : symbol => [a] / [fresh (sym R ++ x)]) A) x l -> ~ fresh (sym R ++ x) el l -> rewt R x l.
Proof.
induction 1 using nrewt_ind_left; intros.
- reflexivity.
- inv H0. eapply in_app_iff in H2 as [|].
+ eapply rewt_left. eapply IHrewt.
* intros [ | [|] % in_app_iff ] %in_app_iff; eapply H1; eauto.
eapply sym_word_l in H2; eauto. edestruct fresh_spec with (l := sym R ++ x); eauto.
* eauto using rew.
+ eapply in_map_iff in H0 as (? & ? & ?). inv H0. destruct H1; eauto.
Qed.
Lemma SRH'_SRH : SRH' ⪯ SRH.
Proof.
exists (fun '(P, x, A) => (P ++ map (fun a => [a] / [fresh (sym P ++ x)]) A, x, fresh (sym P ++ x))).
intros [ [R x] A]. cbn. firstorder.
- eapply in_split in H1 as (? & ? & ->). exists (x2 ++ [fresh (sym R ++ x)] ++ x3). split.
+ transitivity (x2 ++ [x1] ++ x3). eapply rewt_subset. eassumption. eauto.
eauto 9 using rew, rewt.
+ eauto.
- revert H0. induction H using nrewt_ind_left; intros.
+ edestruct fresh_spec with (l := sym R ++ x); eauto.
+ edestruct (@in_dec nat (ltac:(intros; decide equality)) (fresh (sym R ++ x)) y).
firstorder. inv H0. eapply in_app_iff in H2 as [|].
* destruct n. rewrite !in_app_iff in H1. intuition; eauto.
eapply sym_word_R in H1; eauto. edestruct fresh_spec with (l := sym R ++ x); eauto.
* eapply in_map_iff in H0 as (? & ? & ?); inv H0. exists (x0 ++ [x1] ++ y0).
split; firstorder. eapply rewt_R_fresh; eauto.
Qed.
Lemma Halt_SRH : Halt ⪯ SRH.
Proof.
eapply reduces_transitive. eapply halt_SRH'. eapply SRH'_SRH.
Qed.