Require Import Undecidability.FOL.Util.Syntax.
Require Import Undecidability.FOL.Util.FullTarski.
Require Import Undecidability.FOL.Util.FullDeduction.
Require Import Undecidability.FOL.ZF.
Import Vector.VectorNotations.
Require Import List.
Existing Instance falsity_on.
Inductive FST_Funcs : Type :=
| eset : FST_Funcs
| adj : FST_Funcs.
Definition FST_fun_ar (f : FST_Funcs) : nat :=
match f with
| eset => 0
| adj => 2
end.
Instance FST_func_sig : funcs_signature :=
{| syms := FST_Funcs; ar_syms := FST_fun_ar; |}.
Notation "x ∈ y" := (atom _ ZF_pred_sig elem ([x; y])) (at level 35) : syn.
Notation "x ≡ y" := (atom (Σ_preds := ZF_pred_sig) equal ([x; y])) (at level 35) : syn.
Notation "∅" := (func FST_func_sig eset ([])) : syn.
Notation "x ::: y" := (func FST_func_sig adj ([x; y])) (at level 31) : syn.
Definition sub x y :=
∀ $0 ∈ x`[↑] ~> $0 ∈ y`[↑].
Notation "x ⊆ y" := (sub x y) (at level 34) : syn.
Definition ax_ext :=
∀ ∀ $1 ⊆ $0 ~> $0 ⊆ $1 ~> $1 ≡ $0.
Definition ax_eset :=
∀ ¬ ($0 ∈ ∅).
Definition ax_adj :=
∀ ∀ ∀ $0 ∈ $1 ::: $2 <~> $0 ≡ $1 ∨ $0 ∈ $2.
Definition FST :=
ax_ext :: ax_eset :: ax_adj :: nil.
Definition ax_ind phi :=
phi[∅..]
~> (∀ ∀ phi[$0 .: (fun n => $(2+n))] ~> phi[$1 .: (fun n => $(2+n))] ~> phi[$0 ::: $1 .: (fun n => $(2+n))])
~> ∀ phi.
Inductive FSTI : form -> Prop :=
| FST_base phi : In phi FST -> FSTI phi
| FST_ind phi : FSTI (ax_ind phi).
Definition ax_refl :=
∀ $0 ≡ $0.
Definition ax_sym :=
∀ ∀ $1 ≡ $0 ~> $0 ≡ $1.
Definition ax_trans :=
∀ ∀ ∀ $2 ≡ $1 ~> $1 ≡ $0 ~> $2 ≡ $0.
Definition ax_eq_elem :=
∀ ∀ ∀ ∀ $3 ≡ $1 ~> $2 ≡ $0 ~> $3 ∈ $2 ~> $1 ∈ $0.
Definition FSTeq :=
ax_refl :: ax_sym :: ax_trans :: ax_eq_elem :: FST.
Inductive FSTIeq : form -> Prop :=
| FSTeq_base phi : In phi FSTeq -> FSTIeq phi
| FSTeq_ind phi : FSTIeq (ax_ind phi).
Notation extensional M :=
(forall x y, @i_atom _ ZF_pred_sig _ M equal ([x; y]) <-> x = y).
Definition entailment_FST phi :=
forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, In psi FST -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_FSTeq phi :=
forall D (M : interp D) (rho : nat -> D), (forall sigma psi, In psi FSTeq -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_FSTI phi :=
forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, FSTI psi -> sigma ⊨ psi) -> rho ⊨ phi.
Definition deduction_FST phi :=
FSTeq ⊢I phi.
Definition deduction_FSTI phi :=
FSTIeq ⊢TI phi.