Finite Set Theory with Adjunction Operation

Axiomatisations


Require Import Undecidability.FOL.Util.Syntax.
Require Import Undecidability.FOL.Util.FullTarski.
Require Import Undecidability.FOL.Util.FullDeduction.
Require Import Undecidability.FOL.ZF.
Import Vector.VectorNotations.
Require Import List.



Existing Instance falsity_on.

Inductive FST_Funcs : Type :=
| eset : FST_Funcs
| adj : FST_Funcs.

Definition FST_fun_ar (f : FST_Funcs) : nat :=
  match f with
  | eset => 0
  | adj => 2
  end.

Instance FST_func_sig : funcs_signature :=
  {| syms := FST_Funcs; ar_syms := FST_fun_ar; |}.


Notation "x ∈ y" := (atom _ ZF_pred_sig elem ([x; y])) (at level 35) : syn.
Notation "x ≡ y" := (atom (Σ_preds := ZF_pred_sig) equal ([x; y])) (at level 35) : syn.

Notation "∅" := (func FST_func_sig eset ([])) : syn.
Notation "x ::: y" := (func FST_func_sig adj ([x; y])) (at level 31) : syn.

Definition sub x y :=
   $0 x`[] ~> $0 y`[].

Notation "x ⊆ y" := (sub x y) (at level 34) : syn.

Definition ax_ext :=
   $1 $0 ~> $0 $1 ~> $1 $0.

Definition ax_eset :=
   ¬ ($0 ).

Definition ax_adj :=
   $0 $1 ::: $2 <~> $0 $1 $0 $2.


Definition FST :=
  ax_ext :: ax_eset :: ax_adj :: nil.

Definition ax_ind phi :=
  phi[..]
   ~> ( phi[$0 .: (fun n => $(2+n))] ~> phi[$1 .: (fun n => $(2+n))] ~> phi[$0 ::: $1 .: (fun n => $(2+n))])
   ~> phi.

Inductive FSTI : form -> Prop :=
| FST_base phi : In phi FST -> FSTI phi
| FST_ind phi : FSTI (ax_ind phi).


Definition ax_refl :=
   $0 $0.

Definition ax_sym :=
   $1 $0 ~> $0 $1.

Definition ax_trans :=
   $2 $1 ~> $1 $0 ~> $2 $0.

Definition ax_eq_elem :=
   $3 $1 ~> $2 $0 ~> $3 $2 ~> $1 $0.

Definition FSTeq :=
  ax_refl :: ax_sym :: ax_trans :: ax_eq_elem :: FST.

Inductive FSTIeq : form -> Prop :=
| FSTeq_base phi : In phi FSTeq -> FSTIeq phi
| FSTeq_ind phi : FSTIeq (ax_ind phi).


Notation extensional M :=
  (forall x y, @i_atom _ ZF_pred_sig _ M equal ([x; y]) <-> x = y).

Definition entailment_FST phi :=
  forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, In psi FST -> sigma psi) -> rho phi.

Definition entailment_FSTeq phi :=
  forall D (M : interp D) (rho : nat -> D), (forall sigma psi, In psi FSTeq -> sigma psi) -> rho phi.

Definition entailment_FSTI phi :=
  forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, FSTI psi -> sigma psi) -> rho phi.

Definition deduction_FST phi :=
  FSTeq I phi.

Definition deduction_FSTI phi :=
  FSTIeq TI phi.