Require Import Undecidability.FOL.Util.Syntax Undecidability.FOL.Util.Syntax_facts.
Export FragmentSyntax.
From Undecidability Require Import Shared.ListAutomation.
Import ListAutomationNotations.
Require Import Vector.

Local Set Implicit Arguments.
Local Unset Strict Implicit.

Local Notation vec := Vector.t.

Section fixb.

  Context {Σ_funcs : funcs_signature}.
  Context {Σ_preds : preds_signature}.
  Context {ff : falsity_flag}.

  Fixpoint impl (A : list form) phi :=
    match A with
    | [] => phi
    | psi :: A => bin Impl psi (impl A phi)
    end.

End fixb.

Notation "A ==> phi" := (impl A phi) (right associativity, at level 55).

Tarski Semantics

Section Tarski.

  Context {Σ_funcs : funcs_signature}.
  Context {Σ_preds : preds_signature}.


  Section Semantics.

    Variable domain : Type.

    Class interp := B_I
      {
        i_func : forall f : syms, vec domain (ar_syms f) -> domain ;
        i_atom : forall P : preds, vec domain (ar_preds P) -> Prop ;
      }.

    Definition env := nat -> domain.

    Context {I : interp}.

    Fixpoint eval (rho : env) (t : term) : domain :=
      match t with
      | var s => rho s
      | func f v => i_func (Vector.map (eval rho) v)
      end.

    Fixpoint sat {ff : falsity_flag} (rho : env) (phi : form) : Prop :=
      match phi with
      | atom P v => i_atom (Vector.map (eval rho) v)
      | falsity => False
      | bin Impl phi psi => sat rho phi -> sat rho psi
      | quant All phi => forall d : domain, sat (d .: rho) phi
      end.

  End Semantics.

  Notation "rho ⊨ phi" := (sat rho phi) (at level 20).

  Section Substs.

    Variable D : Type.
    Variable I : interp D.

    Lemma eval_ext rho xi t :
      (forall x, rho x = xi x) -> eval rho t = eval xi t.
    Proof.
      intros H. induction t; cbn.
      - now apply H.
      - f_equal. apply map_ext_in. now apply IH.
    Qed.

    Lemma eval_comp rho xi t :
      eval rho (subst_term xi t) = eval (xi >> eval rho) t.
    Proof.
      induction t; cbn.
      - reflexivity.
      - f_equal. rewrite map_map. apply map_ext_in, IH.
    Qed.

    Lemma sat_ext {ff : falsity_flag} rho xi phi :
      (forall x, rho x = xi x) -> rho phi <-> xi phi.
    Proof.
      induction phi as [ | b P v | | ] in rho, xi |- *; cbn; intros H.
      - reflexivity.
      - erewrite map_ext; try reflexivity. intros t. now apply eval_ext.
      - specialize (IHphi1 rho xi). specialize (IHphi2 rho xi). destruct b0; intuition.
      - destruct q.
        + split; intros H' d; eapply IHphi; try apply (H' d). 1,2: intros []; cbn; intuition.
    Qed.

    Lemma sat_ext' {ff : falsity_flag} rho xi phi :
      (forall x, rho x = xi x) -> rho phi -> xi phi.
    Proof.
      intros Hext H. rewrite sat_ext. exact H.
      intros x. now rewrite (Hext x).
    Qed.

    Lemma sat_comp {ff : falsity_flag} rho xi phi :
      rho (subst_form xi phi) <-> (xi >> eval rho) phi.
    Proof.
      induction phi as [ | b P v | | ] in rho, xi |- *; cbn.
      - reflexivity.
      - erewrite map_map, map_ext; try reflexivity. intros t. apply eval_comp.
      - specialize (IHphi1 rho xi). specialize (IHphi2 rho xi). destruct b0; intuition.
      - destruct q.
        + setoid_rewrite IHphi. split; intros H d; eapply sat_ext. 2, 4: apply (H d).
          all: intros []; cbn; trivial; now setoid_rewrite eval_comp.
    Qed.

    Lemma sat_subst {ff : falsity_flag} rho sigma phi :
      (forall x, eval rho (sigma x) = rho x) -> rho phi <-> rho (subst_form sigma phi).
    Proof.
      intros H. rewrite sat_comp. apply sat_ext. intros x. now rewrite <- H.
    Qed.

    Lemma sat_single {ff : falsity_flag} (rho : nat -> D) (Phi : form) (t : term) :
      (eval rho t .: rho) Phi <-> rho subst_form (t..) Phi.
    Proof.
      rewrite sat_comp. apply sat_ext. now intros [].
    Qed.

    Lemma impl_sat {ff : falsity_flag} A rho phi :
      sat rho (A ==> phi) <-> ((forall psi, psi el A -> sat rho psi) -> sat rho phi).
    Proof.
      induction A; cbn; firstorder congruence.
    Qed.

    Lemma impl_sat' {ff : falsity_flag} A rho phi :
      sat rho (A ==> phi) -> ((forall psi, psi el A -> sat rho psi) -> sat rho phi).
    Proof.
      eapply impl_sat.
    Qed.

  End Substs.

End Tarski.

Arguments sat {_ _ _ _ _} _ _, {_ _ _} _ {_} _ _.
Arguments interp {_ _} _, _ _ _.

Notation "p ⊨ phi" := (sat _ p phi) (at level 20).
Notation "p ⊫ A" := (forall psi, psi el A -> sat _ p psi) (at level 20).

Section Defs.

  Context {Σ_funcs : funcs_signature}.
  Context {Σ_preds : preds_signature}.
  Context {ff : falsity_flag}.

  Definition valid_ctx A phi := forall D (I : interp D) rho, (forall psi, psi el A -> rho psi) -> rho phi.
  Definition valid phi := forall D (I : interp D) rho, rho phi.
  Definition valid_L A := forall D (I : interp D) rho, rho A.
  Definition satis phi := exists D (I : interp D) rho, rho phi.
  Definition fullsatis A := exists D (I : interp D) rho, rho A.

End Defs.


Section TM.

  Context {Σ_funcs : funcs_signature}.
  Context {Σ_preds : preds_signature}.

  Instance TM : interp unit :=
    {| i_func := fun _ _ => tt; i_atom := fun _ _ => True; |}.

  Fact TM_sat (rho : nat -> unit) (phi : form falsity_off) :
    rho phi.
  Proof.
    revert rho. remember falsity_off as ff. induction phi; cbn; trivial.
    - discriminate.
    - destruct b0; auto.
    - destruct q; firstorder.
  Qed.

End TM.