From Undecidability.FOLP Require Export unscoped.
Class Signature := B_S { Funcs : Type; fun_ar : Funcs -> nat ;
Preds : Type; pred_ar : Preds -> nat }.
Section fix_sig.
Context {Sigma : Signature}.
Inductive term : Type :=
| var_term : (nat) -> term
| Func : forall (f : Funcs), Vector.t term (fun_ar f) -> term .
Definition congr_Func { f : Funcs } { s0 : Vector.t term (fun_ar f) } { t0 : Vector.t term (fun_ar f)} (H1 : s0 = t0) : Func f s0 = Func f t0 :=
(eq_trans) (eq_refl) ((ap) (fun x => Func f x) H1).
Fixpoint subst_term (sigmaterm : (nat) -> term ) (s : term ) : _ :=
match s with
| var_term s => sigmaterm s
| Func f s0 => Func f (Vector.map (subst_term sigmaterm) s0)
end.
Definition up_term_term (sigma : (nat) -> term ) : _ :=
(scons) ((var_term ) (var_zero)) ((funcomp) (subst_term ((funcomp) (var_term ) (shift))) sigma).
Definition upId_term_term (sigma : (nat) -> term ) (Eq : forall x, sigma x = (var_term ) x) : forall x, (up_term_term sigma) x = (var_term ) x :=
fun n => match n with
| S fin_n => (ap) (subst_term ((funcomp) (var_term ) (shift))) (Eq fin_n)
| 0 => eq_refl
end.
Fixpoint idSubst_term (sigmaterm : (nat) -> term ) (Eqterm : forall x, sigmaterm x = (var_term ) x) (s : term ) : subst_term sigmaterm s = s :=
match s with
| var_term s => Eqterm s
| Func f s0 => congr_Func ((vec_id (idSubst_term sigmaterm Eqterm)) s0)
end.
Definition upExt_term_term (sigma : (nat) -> term ) (tau : (nat) -> term ) (Eq : forall x, sigma x = tau x) : forall x, (up_term_term sigma) x = (up_term_term tau) x :=
fun n => match n with
| S fin_n => (ap) (subst_term ((funcomp) (var_term) (shift))) (Eq fin_n)
| 0 => eq_refl
end.
Fixpoint ext_term (sigmaterm : (nat) -> term ) (tauterm : (nat) -> term ) (Eqterm : forall x, sigmaterm x = tauterm x) (s : term ) : subst_term sigmaterm s = subst_term tauterm s :=
match s with
| var_term s => Eqterm s
| Func f s0 => congr_Func ((vec_ext (ext_term sigmaterm tauterm Eqterm)) s0)
end.
Fixpoint compSubstSubst_term (sigmaterm : (nat) -> term ) (tauterm : (nat) -> term ) (thetaterm : (nat) -> term ) (Eqterm : forall x, ((funcomp) (subst_term tauterm) sigmaterm) x = thetaterm x) (s : term ) : subst_term tauterm (subst_term sigmaterm s) = subst_term thetaterm s :=
match s with
| var_term s => Eqterm s
| Func f s0 => congr_Func ((vec_comp (compSubstSubst_term sigmaterm tauterm thetaterm Eqterm)) s0)
end.
Definition up_subst_subst_term_term (sigma : (nat) -> term ) (tauterm : (nat) -> term ) (theta : (nat) -> term ) (Eq : forall x, ((funcomp) (subst_term tauterm) sigma) x = theta x) : forall x, ((funcomp) (subst_term (up_term_term tauterm)) (up_term_term sigma)) x = (up_term_term theta) x :=
fun n => match n with
| S fin_n => (eq_trans) (compSubstSubst_term ((funcomp) (var_term) (shift)) (up_term_term tauterm) ((funcomp) (up_term_term tauterm) (shift)) (fun x => eq_refl) (sigma fin_n)) ((eq_trans) ((eq_sym) (compSubstSubst_term tauterm ((funcomp) (var_term) (shift)) ((funcomp) (subst_term ((funcomp) (var_term ) (shift))) tauterm) (fun x => eq_refl) (sigma fin_n))) ((ap) (subst_term ((funcomp) (var_term ) (shift))) (Eq fin_n)))
| 0 => eq_refl
end.
Lemma instId_term : subst_term (var_term ) = (@id) (term ) .
Proof. exact ((FunctionalExtensionality.functional_extensionality _ _ ) (fun x => idSubst_term (var_term ) (fun n => eq_refl) (((@id) (term )) x))). Qed.
Lemma varL_term (sigmaterm : (nat) -> term ) : (funcomp) (subst_term sigmaterm) (var_term ) = sigmaterm .
Proof. exact ((FunctionalExtensionality.functional_extensionality _ _ ) (fun x => eq_refl)). Qed.
Lemma compComp_term (sigmaterm : (nat) -> term ) (tauterm : (nat) -> term ) (s : term ) : subst_term tauterm (subst_term sigmaterm s) = subst_term ((funcomp) (subst_term tauterm) sigmaterm) s .
Proof. exact (compSubstSubst_term sigmaterm tauterm (_) (fun n => eq_refl) s). Qed.
Lemma compComp'_term (sigmaterm : (nat) -> term ) (tauterm : (nat) -> term ) : (funcomp) (subst_term tauterm) (subst_term sigmaterm) = subst_term ((funcomp) (subst_term tauterm) sigmaterm) .
Proof. exact ((FunctionalExtensionality.functional_extensionality _ _ ) (fun n => compComp_term sigmaterm tauterm n)). Qed.
Inductive form : Type :=
| Fal : form
| Pred : forall (P : Preds), Vector.t term (pred_ar P) -> form
| Impl : form -> form -> form
| Conj : form -> form -> form
| Disj : form -> form -> form
| All : form -> form
| Ex : form -> form .
Definition congr_Fal : Fal = Fal :=
eq_refl.
Definition congr_Pred { P : Preds } { s0 : Vector.t term (pred_ar P) } { t0 : Vector.t term (pred_ar P) } (H1 : s0 = t0) : Pred P s0 = Pred P t0 :=
(eq_trans) (eq_refl) ((ap) (fun x => Pred P x) H1).
Definition congr_Impl { s0 : form } { s1 : form } { t0 : form } { t1 : form } (H1 : s0 = t0) (H2 : s1 = t1) : Impl s0 s1 = Impl t0 t1 :=
(eq_trans) ((eq_trans) (eq_refl) ((ap) (fun x => Impl x (_)) H1)) ((ap) (fun x => Impl (_) x) H2).
Definition congr_Conj { s0 : form } { s1 : form } { t0 : form } { t1 : form } (H1 : s0 = t0) (H2 : s1 = t1) : Conj s0 s1 = Conj t0 t1 :=
(eq_trans) ((eq_trans) (eq_refl) ((ap) (fun x => Conj x (_)) H1)) ((ap) (fun x => Conj (_) x) H2).
Definition congr_Disj { s0 : form } { s1 : form } { t0 : form } { t1 : form } (H1 : s0 = t0) (H2 : s1 = t1) : Disj s0 s1 = Disj t0 t1 :=
(eq_trans) ((eq_trans) (eq_refl) ((ap) (fun x => Disj x (_)) H1)) ((ap) (fun x => Disj (_) x) H2).
Definition congr_All { s0 : form } { t0 : form } (H1 : s0 = t0) : All s0 = All t0 :=
(eq_trans) (eq_refl) ((ap) (fun x => All x) H1).
Definition congr_Ex { s0 : form } { t0 : form } (H1 : s0 = t0) : Ex s0 = Ex t0 :=
(eq_trans) (eq_refl) ((ap) (fun x => Ex x) H1).
Fixpoint subst_form (sigmaterm : (nat) -> term ) (s : form ) : _ :=
match s with
| Fal => Fal
| Pred P s0 => Pred P ((Vector.map (subst_term sigmaterm)) s0)
| Impl s0 s1 => Impl ((subst_form sigmaterm) s0) ((subst_form sigmaterm) s1)
| Conj s0 s1 => Conj ((subst_form sigmaterm) s0) ((subst_form sigmaterm) s1)
| Disj s0 s1 => Disj ((subst_form sigmaterm) s0) ((subst_form sigmaterm) s1)
| All s0 => All ((subst_form (up_term_term sigmaterm)) s0)
| Ex s0 => Ex ((subst_form (up_term_term sigmaterm)) s0)
end.
Fixpoint idSubst_form (sigmaterm : (nat) -> term ) (Eqterm : forall x, sigmaterm x = (var_term ) x) (s : form ) : subst_form sigmaterm s = s :=
match s with
| Fal => congr_Fal
| Pred P s0 => congr_Pred ((vec_id (idSubst_term sigmaterm Eqterm)) s0)
| Impl s0 s1 => congr_Impl ((idSubst_form sigmaterm Eqterm) s0) ((idSubst_form sigmaterm Eqterm) s1)
| Conj s0 s1 => congr_Conj ((idSubst_form sigmaterm Eqterm) s0) ((idSubst_form sigmaterm Eqterm) s1)
| Disj s0 s1 => congr_Disj ((idSubst_form sigmaterm Eqterm) s0) ((idSubst_form sigmaterm Eqterm) s1)
| All s0 => congr_All ((idSubst_form (up_term_term sigmaterm) (upId_term_term (_) Eqterm)) s0)
| Ex s0 => congr_Ex ((idSubst_form (up_term_term sigmaterm) (upId_term_term (_) Eqterm)) s0)
end.
Fixpoint ext_form (sigmaterm : (nat) -> term ) (tauterm : (nat) -> term ) (Eqterm : forall x, sigmaterm x = tauterm x) (s : form ) : subst_form sigmaterm s = subst_form tauterm s :=
match s with
| Fal => congr_Fal
| Pred P s0 => congr_Pred ((vec_ext (ext_term sigmaterm tauterm Eqterm)) s0)
| Impl s0 s1 => congr_Impl ((ext_form sigmaterm tauterm Eqterm) s0) ((ext_form sigmaterm tauterm Eqterm) s1)
| Conj s0 s1 => congr_Conj ((ext_form sigmaterm tauterm Eqterm) s0) ((ext_form sigmaterm tauterm Eqterm) s1)
| Disj s0 s1 => congr_Disj ((ext_form sigmaterm tauterm Eqterm) s0) ((ext_form sigmaterm tauterm Eqterm) s1)
| All s0 => congr_All ((ext_form (up_term_term sigmaterm) (up_term_term tauterm) (upExt_term_term (_) (_) Eqterm)) s0)
| Ex s0 => congr_Ex ((ext_form (up_term_term sigmaterm) (up_term_term tauterm) (upExt_term_term (_) (_) Eqterm)) s0)
end.
Fixpoint compSubstSubst_form (sigmaterm : (nat) -> term ) (tauterm : (nat) -> term ) (thetaterm : (nat) -> term ) (Eqterm : forall x, ((funcomp) (subst_term tauterm) sigmaterm) x = thetaterm x) (s : form ) : subst_form tauterm (subst_form sigmaterm s) = subst_form thetaterm s :=
match s with
| Fal => congr_Fal
| Pred P s0 => congr_Pred ((vec_comp (compSubstSubst_term sigmaterm tauterm thetaterm Eqterm)) s0)
| Impl s0 s1 => congr_Impl ((compSubstSubst_form sigmaterm tauterm thetaterm Eqterm) s0) ((compSubstSubst_form sigmaterm tauterm thetaterm Eqterm) s1)
| Conj s0 s1 => congr_Conj ((compSubstSubst_form sigmaterm tauterm thetaterm Eqterm) s0) ((compSubstSubst_form sigmaterm tauterm thetaterm Eqterm) s1)
| Disj s0 s1 => congr_Disj ((compSubstSubst_form sigmaterm tauterm thetaterm Eqterm) s0) ((compSubstSubst_form sigmaterm tauterm thetaterm Eqterm) s1)
| All s0 => congr_All ((compSubstSubst_form (up_term_term sigmaterm) (up_term_term tauterm) (up_term_term thetaterm) (up_subst_subst_term_term (_) (_) (_) Eqterm)) s0)
| Ex s0 => congr_Ex ((compSubstSubst_form (up_term_term sigmaterm) (up_term_term tauterm) (up_term_term thetaterm) (up_subst_subst_term_term (_) (_) (_) Eqterm)) s0)
end.
Lemma instId_form : subst_form (var_term ) = (@id) (form ) .
Proof. exact ((FunctionalExtensionality.functional_extensionality _ _ ) (fun x => idSubst_form (var_term ) (fun n => eq_refl) (((@id) (form )) x))). Qed.
Lemma compComp_form (sigmaterm : (nat) -> term ) (tauterm : (nat) -> term ) (s : form ) : subst_form tauterm (subst_form sigmaterm s) = subst_form ((funcomp) (subst_term tauterm) sigmaterm) s .
Proof. exact (compSubstSubst_form sigmaterm tauterm (_) (fun n => eq_refl) s). Qed.
Lemma compComp'_form (sigmaterm : (nat) -> term ) (tauterm : (nat) -> term ) : (funcomp) (subst_form tauterm) (subst_form sigmaterm) = subst_form ((funcomp) (subst_term tauterm) sigmaterm) .
Proof. exact ((FunctionalExtensionality.functional_extensionality _ _ ) (fun n => compComp_form sigmaterm tauterm n)). Qed.
End fix_sig.
Instance Subst_term (Sigma : Signature) : Subst1 ((nat) -> term ) (term ) (term ) := @subst_term Sigma.
Instance Subst_form (Sigma : Signature) : Subst1 ((nat) -> term ) (form ) (form ) := @subst_form Sigma.
Instance VarInstance_term (Sigma : Signature) : Var ((nat) ) (term ) := @var_term Sigma.
Notation "x '__term'" := (var_term x) (at level 5, format "x __term") : subst_scope.
Notation "x '__term'" := (@ids (_) (_) VarInstance_term x) (at level 5, only printing, format "x __term") : subst_scope.
Notation "'var'" := (var_term) (only printing, at level 1) : subst_scope.
Class Up_term X Y := up_term : X -> Y.
Notation "↑__term" := (up_term) (only printing) : subst_scope.
Notation "↑__term" := (up_term_term) (only printing) : subst_scope.
Instance Up_term_term (Sigma : Signature) : Up_term (_) (_) := @up_term_term Sigma.
Notation "s [ sigmaterm ]" := (subst_term sigmaterm s) (at level 7, left associativity, format "s '/' [ sigmaterm ]", only printing) : subst_scope.
Notation "s [ sigmaterm ]" := (subst_form sigmaterm s) (at level 7, left associativity, format "s '/' [ sigmaterm ]", only printing) : subst_scope.
Ltac auto_unfold := repeat unfold subst1, subst2, Subst1, Subst2, ids, Subst_term, Subst_form, VarInstance_term.
Tactic Notation "auto_unfold" "in" "*" := repeat unfold subst1, subst2, Subst1, Subst2, ids, Subst_term, Subst_form, VarInstance_term in *.
Ltac asimpl' := repeat first [progress rewrite ?instId_term| progress rewrite ?term| progress rewrite ?compComp_term| progress rewrite ?compComp'_term| progress rewrite ?instId_form| progress rewrite ?form| progress rewrite ?compComp_form| progress rewrite ?compComp'_form| progress rewrite ?varL_term| progress (unfold up_ren, up_term_term)| progress (cbn [subst_term subst_form])| fsimpl].
Ltac asimpl := repeat try unfold_funcomp; auto_unfold in *; asimpl'; repeat try unfold_funcomp.
Tactic Notation "asimpl" "in" hyp(J) := revert J; asimpl; intros J.
Tactic Notation "auto_case" := auto_case (asimpl; cbn; eauto).
Tactic Notation "asimpl" "in" "*" := auto_unfold in *; repeat first [progress rewrite ?instId_term in *| progress rewrite ?term in *| progress rewrite ?compComp_term in *| progress rewrite ?compComp'_term in *| progress rewrite ?instId_form in *| progress rewrite ?form in *| progress rewrite ?compComp_form in *| progress rewrite ?compComp'_form in *| progress rewrite ?varL_term in *| progress (unfold up_ren, up_term_term)| progress (cbn [subst_term subst_form] in *)| fsimpl in *].