Set Implicit Arguments.
Require Import Morphisms Lia List.
From Undecidability.HOU Require Import calculus.calculus.
Import ListNotations.
Set Default Proof Using "Type".
Section Constants.
Section ConstantsOfTerm.
Context {X: Const}.
Implicit Types (s t: exp X).
Fixpoint consts s :=
match s with
| var x => nil
| const c => [c]
| lambda s => consts s
| app s t => consts s ++ consts t
end.
Definition Consts S := (flat_map consts S).
Lemma Consts_consts s S:
s ∈ S -> consts s ⊆ Consts S.
Proof.
unfold Consts; eauto using flat_map_in_incl.
Qed.
Lemma Consts_montone S T:
S ⊆ T -> Consts S ⊆ Consts T.
Proof.
unfold Consts; eauto using flat_map_incl.
Qed.
Lemma consts_ren delta s:
consts (ren delta s) = consts s.
Proof.
induction s in delta |-*; cbn; intuition; congruence.
Qed.
Lemma vars_subst_consts x s sigma:
x ∈ vars s -> consts (sigma x) ⊆ consts (sigma • s).
Proof.
intros H % vars_varof; induction H in sigma |-*; cbn; intuition.
rewrite <-IHvarof; cbn; unfold funcomp; now rewrite consts_ren.
Qed.
Lemma consts_subst_in x sigma s:
x ∈ consts (sigma • s) -> x ∈ consts s \/
exists y, y ∈ vars s /\ x ∈ consts (sigma y).
Proof.
induction s in sigma |-*.
- right; exists f; intuition.
- cbn; intuition.
- intros H % IHs; cbn -[vars]; intuition.
destruct H0 as [[]]; cbn -[vars] in *; intuition.
right. exists n. intuition.
unfold funcomp in H1; now rewrite consts_ren in H1.
- cbn; simplify; intuition.
+ specialize (IHs1 _ H0); intuition.
destruct H as [y]; right; exists y; intuition.
+ specialize (IHs2 _ H0); intuition.
destruct H as [y]; right; exists y; intuition.
Qed.
Lemma consts_subset_step s t:
s > t -> consts t ⊆ consts s.
Proof.
induction 1; cbn; intuition.
subst. unfold beta.
intros x ? % consts_subst_in; simplify; intuition.
destruct H as [[|y] ?]; cbn in *; intuition.
Qed.
Lemma consts_subset_steps s t:
s >* t -> consts t ⊆ consts s.
Proof.
induction 1; firstorder using consts_subset_step.
Qed.
Lemma consts_subst_vars sigma s:
consts (sigma • s) ⊆ consts s ++ Consts (map sigma (vars s)).
Proof.
intros x [|[y]] % consts_subst_in; simplify; intuition.
right; eapply Consts_consts; eauto using in_map.
Qed.
Lemma consts_Lam k s:
consts (Lambda k s) === consts s.
Proof.
induction k; cbn; intuition.
Qed.
Lemma consts_AppL S t:
consts (AppL S t) === Consts S ++ consts t.
Proof.
induction S; cbn; intuition.
rewrite IHS; now rewrite app_assoc.
Qed.
Lemma consts_AppR s T:
consts (AppR s T) === consts s ++ Consts T.
Proof.
induction T; cbn; intuition.
rewrite IHT. intuition.
split; intros c; simplify; intuition.
Qed.
End ConstantsOfTerm.
Section ConstantSubstitution.
Implicit Types (X Y Z : Const).
Fixpoint subst_consts {X Y} (kappa: X -> exp Y) s :=
match s with
| var x => var x
| const c => kappa c
| lambda s => lambda (subst_consts (kappa >> ren shift) s)
| app s t => (subst_consts kappa s) (subst_consts kappa t)
end.
Lemma ren_subst_consts_commute X Y (zeta: X -> exp Y) delta s:
subst_consts (zeta >> ren delta) (ren delta s) = ren delta (subst_consts zeta s).
Proof.
induction s in delta, zeta |-*; cbn; eauto.
- f_equal. rewrite <-IHs. f_equal.
asimpl. reflexivity.
- now rewrite IHs1, IHs2.
Qed.
Lemma subst_consts_comp X Y Z (zeta: X -> exp Y) (kappa: Y -> exp Z) s:
subst_consts kappa (subst_consts zeta s) =
subst_consts (zeta >> subst_consts kappa) s.
Proof.
induction s in zeta, kappa |-*; cbn; eauto.
- f_equal. rewrite IHs. f_equal. fext.
unfold funcomp at 4; unfold funcomp at 4.
intros; rewrite <-ren_subst_consts_commute.
reflexivity.
- now rewrite IHs1, IHs2.
Qed.
Lemma subst_consts_ident Y zeta s:
(forall x: Y, x ∈ consts s -> zeta x = const x) -> subst_consts zeta s = s.
Proof.
intros; induction s in zeta, H |-*; cbn; eauto.
eapply H; cbn; eauto.
rewrite IHs; eauto.
unfold funcomp; now intros x -> % H.
rewrite IHs1, IHs2; eauto.
all: intros; apply H; cbn; simplify; intuition.
Qed.
Lemma subst_const_comm {X Y} (zeta: X -> exp Y) sigma delta s:
(forall x, sigma (delta x) = var x) ->
subst_consts zeta (sigma • s) = (sigma >> subst_consts zeta) • (subst_consts (zeta >> ren delta) s).
Proof.
induction s in zeta, sigma, delta |-*; intros H; cbn.
- reflexivity.
- unfold funcomp; asimpl.
rewrite idSubst_exp; eauto.
intros y; unfold funcomp; cbn.
rewrite H; reflexivity.
- f_equal. erewrite IHs with (delta := 0 .: delta >> shift).
2: intros []; cbn; unfold funcomp; eauto; rewrite H; reflexivity.
f_equal; [| now asimpl].
fext; intros []; cbn; eauto.
unfold funcomp at 2.
now rewrite ren_subst_consts_commute.
- erewrite IHs1, IHs2; eauto.
Qed.
Global Instance step_subst_consts X Y:
Proper (Logic.eq ++> step ++> step) (@subst_consts X Y).
Proof.
intros ? zeta -> s t H; induction H in zeta |-*; cbn; eauto.
econstructor; subst; unfold beta.
erewrite subst_const_comm with (delta := shift).
f_equal. fext.
all: intros []; cbn; eauto.
Qed.
Global Instance steps_subst_consts X Y:
Proper (Logic.eq ++> star step ++> star step) (@subst_consts X Y).
Proof.
intros ? zeta -> s t H; induction H in zeta |-*; cbn; eauto; rewrite H; eauto.
Qed.
Global Instance equiv_subst_consts X Y:
Proper (Logic.eq ++> equiv step ++> equiv step) (@subst_consts X Y).
Proof.
intros ? zeta -> s t [v [H1 H2]] % church_rosser; eauto;
now rewrite H1, H2.
Qed.
Lemma subst_consts_consts X Y (zeta: X -> exp Y) (s: exp X):
consts (subst_consts zeta s) === Consts (map zeta (consts s)).
Proof.
unfold Consts; induction s in zeta |-*; cbn; simplify; intuition.
- rewrite IHs.
unfold funcomp; rewrite <-map_map, !flat_map_concat_map, map_map.
erewrite map_ext with (g := consts); intuition.
now rewrite consts_ren.
- rewrite IHs1, IHs2, !flat_map_concat_map; simplify.
now rewrite concat_app.
Qed.
Lemma consts_in_subst_consts X Y (kappa: X -> exp Y) c s:
c ∈ consts (subst_consts kappa s) -> exists d, d ∈ consts s /\ c ∈ consts (kappa d).
Proof.
rewrite subst_consts_consts.
unfold Consts; rewrite in_flat_map; intros [e []]; mapinj.
exists x; intuition.
Qed.
Lemma subst_consts_up Y Z (zeta: Y -> exp Z) (sigma: fin -> exp Y):
up (sigma >> subst_consts zeta) = up sigma >> subst_consts (zeta >> ren shift).
Proof.
fext; intros []; cbn; eauto.
unfold funcomp at 1 2.
now rewrite <-ren_subst_consts_commute.
Qed.
Lemma subst_const_comm_id Y zeta sigma (s: exp Y):
subst_consts zeta s = s ->
(sigma >> subst_consts zeta) • s = subst_consts zeta (sigma • s).
Proof.
induction s in zeta, sigma |-*; cbn; eauto.
- injection 1 as H. f_equal.
rewrite <-IHs; eauto.
now rewrite subst_consts_up.
- injection 1 as H. f_equal; eauto.
Qed.
Lemma typing_constants X n Gamma s A :
Gamma ⊢(n) s : A -> forall c, c ∈ consts s -> ord (ctype X c) <= S n.
Proof.
induction 1; cbn; intuition; subst; eauto.
simplify in H1; intuition.
Qed.
Lemma typing_Consts X c n Gamma S' L:
Gamma ⊢₊(n) S' : L -> c ∈ Consts S' -> ord (ctype X c) <= S n.
Proof.
induction 1; cbn; simplify; intuition eauto using typing_constants.
Qed.
Lemma preservation_consts X Y Gamma s A (zeta: X -> exp Y):
Gamma ⊢ s : A -> (forall x, x ∈ consts s -> Gamma ⊢ zeta x : ctype X x) ->
Gamma ⊢ subst_consts zeta s : A.
Proof.
induction 1 in zeta |-*; cbn; eauto.
- intros H'. econstructor. eapply IHtyping.
intros; eapply preservation_under_renaming; eauto.
intros ?; cbn; eauto.
- intros H'. econstructor.
eapply IHtyping1; intros ??; eapply H'; simplify; intuition.
eapply IHtyping2; intros ??; eapply H'; simplify; intuition.
Qed.
Lemma ordertyping_preservation_consts X Y n Gamma s A (zeta: X -> exp Y):
Gamma ⊢(n) s : A -> (forall x, x ∈ consts s -> Gamma ⊢(n) zeta x : ctype X x) ->
Gamma ⊢(n) subst_consts zeta s : A.
Proof.
induction 1 in zeta |-*; cbn; eauto.
- intros H'. econstructor. eapply IHordertyping.
intros; eapply ordertyping_preservation_under_renaming; eauto.
intros ?; cbn; eauto.
- intros H'. econstructor.
eapply IHordertyping1; intros ??; eapply H'; simplify; intuition.
eapply IHordertyping2; intros ??; eapply H'; simplify; intuition.
Qed.
Lemma subst_consts_Lambda Y Z (zeta: Y -> exp Z) k s:
subst_consts zeta (Lambda k s) = Lambda k (subst_consts (zeta >> ren (plus k)) s).
Proof.
induction k in zeta |-*; cbn; asimpl; eauto.
f_equal. rewrite IHk. f_equal. f_equal.
asimpl. fext; intros x; unfold funcomp; f_equal; fext; intros ?.
unfold shift; simplify; f_equal; lia.
Qed.
Lemma subst_consts_AppL X Y (tau: X -> exp Y) S t:
subst_consts tau (AppL S t) = AppL (map (subst_consts tau) S) (subst_consts tau t).
Proof.
induction S; cbn; congruence.
Qed.
Lemma subst_consts_AppR X Y (tau: X -> exp Y) s T:
subst_consts tau (AppR s T) = AppR (subst_consts tau s) (map (subst_consts tau) T).
Proof.
induction T; cbn; congruence.
Qed.
End ConstantSubstitution.
End Constants.
Require Import Morphisms Lia List.
From Undecidability.HOU Require Import calculus.calculus.
Import ListNotations.
Set Default Proof Using "Type".
Section Constants.
Section ConstantsOfTerm.
Context {X: Const}.
Implicit Types (s t: exp X).
Fixpoint consts s :=
match s with
| var x => nil
| const c => [c]
| lambda s => consts s
| app s t => consts s ++ consts t
end.
Definition Consts S := (flat_map consts S).
Lemma Consts_consts s S:
s ∈ S -> consts s ⊆ Consts S.
Proof.
unfold Consts; eauto using flat_map_in_incl.
Qed.
Lemma Consts_montone S T:
S ⊆ T -> Consts S ⊆ Consts T.
Proof.
unfold Consts; eauto using flat_map_incl.
Qed.
Lemma consts_ren delta s:
consts (ren delta s) = consts s.
Proof.
induction s in delta |-*; cbn; intuition; congruence.
Qed.
Lemma vars_subst_consts x s sigma:
x ∈ vars s -> consts (sigma x) ⊆ consts (sigma • s).
Proof.
intros H % vars_varof; induction H in sigma |-*; cbn; intuition.
rewrite <-IHvarof; cbn; unfold funcomp; now rewrite consts_ren.
Qed.
Lemma consts_subst_in x sigma s:
x ∈ consts (sigma • s) -> x ∈ consts s \/
exists y, y ∈ vars s /\ x ∈ consts (sigma y).
Proof.
induction s in sigma |-*.
- right; exists f; intuition.
- cbn; intuition.
- intros H % IHs; cbn -[vars]; intuition.
destruct H0 as [[]]; cbn -[vars] in *; intuition.
right. exists n. intuition.
unfold funcomp in H1; now rewrite consts_ren in H1.
- cbn; simplify; intuition.
+ specialize (IHs1 _ H0); intuition.
destruct H as [y]; right; exists y; intuition.
+ specialize (IHs2 _ H0); intuition.
destruct H as [y]; right; exists y; intuition.
Qed.
Lemma consts_subset_step s t:
s > t -> consts t ⊆ consts s.
Proof.
induction 1; cbn; intuition.
subst. unfold beta.
intros x ? % consts_subst_in; simplify; intuition.
destruct H as [[|y] ?]; cbn in *; intuition.
Qed.
Lemma consts_subset_steps s t:
s >* t -> consts t ⊆ consts s.
Proof.
induction 1; firstorder using consts_subset_step.
Qed.
Lemma consts_subst_vars sigma s:
consts (sigma • s) ⊆ consts s ++ Consts (map sigma (vars s)).
Proof.
intros x [|[y]] % consts_subst_in; simplify; intuition.
right; eapply Consts_consts; eauto using in_map.
Qed.
Lemma consts_Lam k s:
consts (Lambda k s) === consts s.
Proof.
induction k; cbn; intuition.
Qed.
Lemma consts_AppL S t:
consts (AppL S t) === Consts S ++ consts t.
Proof.
induction S; cbn; intuition.
rewrite IHS; now rewrite app_assoc.
Qed.
Lemma consts_AppR s T:
consts (AppR s T) === consts s ++ Consts T.
Proof.
induction T; cbn; intuition.
rewrite IHT. intuition.
split; intros c; simplify; intuition.
Qed.
End ConstantsOfTerm.
Section ConstantSubstitution.
Implicit Types (X Y Z : Const).
Fixpoint subst_consts {X Y} (kappa: X -> exp Y) s :=
match s with
| var x => var x
| const c => kappa c
| lambda s => lambda (subst_consts (kappa >> ren shift) s)
| app s t => (subst_consts kappa s) (subst_consts kappa t)
end.
Lemma ren_subst_consts_commute X Y (zeta: X -> exp Y) delta s:
subst_consts (zeta >> ren delta) (ren delta s) = ren delta (subst_consts zeta s).
Proof.
induction s in delta, zeta |-*; cbn; eauto.
- f_equal. rewrite <-IHs. f_equal.
asimpl. reflexivity.
- now rewrite IHs1, IHs2.
Qed.
Lemma subst_consts_comp X Y Z (zeta: X -> exp Y) (kappa: Y -> exp Z) s:
subst_consts kappa (subst_consts zeta s) =
subst_consts (zeta >> subst_consts kappa) s.
Proof.
induction s in zeta, kappa |-*; cbn; eauto.
- f_equal. rewrite IHs. f_equal. fext.
unfold funcomp at 4; unfold funcomp at 4.
intros; rewrite <-ren_subst_consts_commute.
reflexivity.
- now rewrite IHs1, IHs2.
Qed.
Lemma subst_consts_ident Y zeta s:
(forall x: Y, x ∈ consts s -> zeta x = const x) -> subst_consts zeta s = s.
Proof.
intros; induction s in zeta, H |-*; cbn; eauto.
eapply H; cbn; eauto.
rewrite IHs; eauto.
unfold funcomp; now intros x -> % H.
rewrite IHs1, IHs2; eauto.
all: intros; apply H; cbn; simplify; intuition.
Qed.
Lemma subst_const_comm {X Y} (zeta: X -> exp Y) sigma delta s:
(forall x, sigma (delta x) = var x) ->
subst_consts zeta (sigma • s) = (sigma >> subst_consts zeta) • (subst_consts (zeta >> ren delta) s).
Proof.
induction s in zeta, sigma, delta |-*; intros H; cbn.
- reflexivity.
- unfold funcomp; asimpl.
rewrite idSubst_exp; eauto.
intros y; unfold funcomp; cbn.
rewrite H; reflexivity.
- f_equal. erewrite IHs with (delta := 0 .: delta >> shift).
2: intros []; cbn; unfold funcomp; eauto; rewrite H; reflexivity.
f_equal; [| now asimpl].
fext; intros []; cbn; eauto.
unfold funcomp at 2.
now rewrite ren_subst_consts_commute.
- erewrite IHs1, IHs2; eauto.
Qed.
Global Instance step_subst_consts X Y:
Proper (Logic.eq ++> step ++> step) (@subst_consts X Y).
Proof.
intros ? zeta -> s t H; induction H in zeta |-*; cbn; eauto.
econstructor; subst; unfold beta.
erewrite subst_const_comm with (delta := shift).
f_equal. fext.
all: intros []; cbn; eauto.
Qed.
Global Instance steps_subst_consts X Y:
Proper (Logic.eq ++> star step ++> star step) (@subst_consts X Y).
Proof.
intros ? zeta -> s t H; induction H in zeta |-*; cbn; eauto; rewrite H; eauto.
Qed.
Global Instance equiv_subst_consts X Y:
Proper (Logic.eq ++> equiv step ++> equiv step) (@subst_consts X Y).
Proof.
intros ? zeta -> s t [v [H1 H2]] % church_rosser; eauto;
now rewrite H1, H2.
Qed.
Lemma subst_consts_consts X Y (zeta: X -> exp Y) (s: exp X):
consts (subst_consts zeta s) === Consts (map zeta (consts s)).
Proof.
unfold Consts; induction s in zeta |-*; cbn; simplify; intuition.
- rewrite IHs.
unfold funcomp; rewrite <-map_map, !flat_map_concat_map, map_map.
erewrite map_ext with (g := consts); intuition.
now rewrite consts_ren.
- rewrite IHs1, IHs2, !flat_map_concat_map; simplify.
now rewrite concat_app.
Qed.
Lemma consts_in_subst_consts X Y (kappa: X -> exp Y) c s:
c ∈ consts (subst_consts kappa s) -> exists d, d ∈ consts s /\ c ∈ consts (kappa d).
Proof.
rewrite subst_consts_consts.
unfold Consts; rewrite in_flat_map; intros [e []]; mapinj.
exists x; intuition.
Qed.
Lemma subst_consts_up Y Z (zeta: Y -> exp Z) (sigma: fin -> exp Y):
up (sigma >> subst_consts zeta) = up sigma >> subst_consts (zeta >> ren shift).
Proof.
fext; intros []; cbn; eauto.
unfold funcomp at 1 2.
now rewrite <-ren_subst_consts_commute.
Qed.
Lemma subst_const_comm_id Y zeta sigma (s: exp Y):
subst_consts zeta s = s ->
(sigma >> subst_consts zeta) • s = subst_consts zeta (sigma • s).
Proof.
induction s in zeta, sigma |-*; cbn; eauto.
- injection 1 as H. f_equal.
rewrite <-IHs; eauto.
now rewrite subst_consts_up.
- injection 1 as H. f_equal; eauto.
Qed.
Lemma typing_constants X n Gamma s A :
Gamma ⊢(n) s : A -> forall c, c ∈ consts s -> ord (ctype X c) <= S n.
Proof.
induction 1; cbn; intuition; subst; eauto.
simplify in H1; intuition.
Qed.
Lemma typing_Consts X c n Gamma S' L:
Gamma ⊢₊(n) S' : L -> c ∈ Consts S' -> ord (ctype X c) <= S n.
Proof.
induction 1; cbn; simplify; intuition eauto using typing_constants.
Qed.
Lemma preservation_consts X Y Gamma s A (zeta: X -> exp Y):
Gamma ⊢ s : A -> (forall x, x ∈ consts s -> Gamma ⊢ zeta x : ctype X x) ->
Gamma ⊢ subst_consts zeta s : A.
Proof.
induction 1 in zeta |-*; cbn; eauto.
- intros H'. econstructor. eapply IHtyping.
intros; eapply preservation_under_renaming; eauto.
intros ?; cbn; eauto.
- intros H'. econstructor.
eapply IHtyping1; intros ??; eapply H'; simplify; intuition.
eapply IHtyping2; intros ??; eapply H'; simplify; intuition.
Qed.
Lemma ordertyping_preservation_consts X Y n Gamma s A (zeta: X -> exp Y):
Gamma ⊢(n) s : A -> (forall x, x ∈ consts s -> Gamma ⊢(n) zeta x : ctype X x) ->
Gamma ⊢(n) subst_consts zeta s : A.
Proof.
induction 1 in zeta |-*; cbn; eauto.
- intros H'. econstructor. eapply IHordertyping.
intros; eapply ordertyping_preservation_under_renaming; eauto.
intros ?; cbn; eauto.
- intros H'. econstructor.
eapply IHordertyping1; intros ??; eapply H'; simplify; intuition.
eapply IHordertyping2; intros ??; eapply H'; simplify; intuition.
Qed.
Lemma subst_consts_Lambda Y Z (zeta: Y -> exp Z) k s:
subst_consts zeta (Lambda k s) = Lambda k (subst_consts (zeta >> ren (plus k)) s).
Proof.
induction k in zeta |-*; cbn; asimpl; eauto.
f_equal. rewrite IHk. f_equal. f_equal.
asimpl. fext; intros x; unfold funcomp; f_equal; fext; intros ?.
unfold shift; simplify; f_equal; lia.
Qed.
Lemma subst_consts_AppL X Y (tau: X -> exp Y) S t:
subst_consts tau (AppL S t) = AppL (map (subst_consts tau) S) (subst_consts tau t).
Proof.
induction S; cbn; congruence.
Qed.
Lemma subst_consts_AppR X Y (tau: X -> exp Y) s T:
subst_consts tau (AppR s T) = AppR (subst_consts tau s) (map (subst_consts tau) T).
Proof.
induction T; cbn; congruence.
Qed.
End ConstantSubstitution.
End Constants.