Set Implicit Arguments.
Require Import RelationClasses Morphisms Wf List Lia Init.Nat Setoid.
From Undecidability.HOU Require Import calculus.calculus unification.unification.
From Undecidability.HOU.second_order Require Export diophantine_equations goldfarb.encoding goldfarb.multiplication.
Import ListNotations.
Set Default Proof Using "Type".
Section EquationEquivalences.
Variable (sigma: fin -> exp ag).
Hypothesis (N: forall x, normal (sigma x)).
Section Variables.
Lemma forward_vars x n: encodes (sigma (F x)) n -> sigma • fst (varEQ x) ≡ sigma • snd (varEQ x).
Proof.
intros H. unfold varEQ; cbn; unfold funcomp.
change shift with (add 1); rewrite ren_plus_combine, !H; cbn; unfold var_zero.
change (g a (var 1)) with (enc 1 (var 1)); now simplify.
Qed.
Lemma backward_vars x: sigma • fst (varEQ x) ≡ sigma • snd (varEQ x) -> exists n, encodes (sigma (F x)) n.
Proof using N.
cbn; simplify.
unfold funcomp; change shift with (add 1); rewrite ren_plus_combine; unfold var_zero; cbn.
intros H; eapply normal_forms_encodes in H; (eauto 2).
Qed.
End Variables.
Section Constants.
Variable (n: nat) (x: nat).
Hypothesis (Ex: encodes (sigma (F x)) n).
Lemma forward_consts: n = 1 -> sigma • fst (constEQ x) ≡ sigma • snd (constEQ x).
Proof using Ex.
cbn; unfold funcomp; change shift with (add 1); rewrite ren_plus_combine; unfold var_zero; cbn.
rewrite Ex; asimpl; now intros ->.
Qed.
Lemma backward_consts: sigma • fst (constEQ x) ≡ sigma • snd (constEQ x) -> n = 1.
Proof using Ex.
cbn.
unfold funcomp; change shift with (add 1); rewrite ren_plus_combine; unfold var_zero; cbn.
rewrite Ex. asimpl. intros ? % equiv_lam_elim % equiv_lam_elim.
eapply enc_injective;[| |eauto]; (eauto 2).
Qed.
End Constants.
Section Addition.
Variable (m n p: nat) (x y z: nat).
Hypothesis (Ex: encodes (sigma (F x)) m) (Ey: encodes (sigma (F y)) n) (Ez: encodes (sigma (F z)) p).
Lemma forward_add: m + n = p -> sigma • fst (addEQ x y z) ≡ sigma • snd (addEQ x y z).
Proof using Ex Ey Ez.
intros <-; cbn.
unfold funcomp; change shift with (add 1); rewrite !ren_plus_combine; unfold var_zero; cbn.
erewrite Ex, Ey, Ez; now simplify.
Qed.
Lemma backward_add:
sigma • fst (addEQ x y z) ≡ sigma • snd (addEQ x y z) -> m + n = p.
Proof using Ex Ey Ez.
cbn.
unfold funcomp; change shift with (add 1); rewrite !ren_plus_combine; unfold var_zero; cbn.
rewrite Ex, Ey, Ez; simplify; intros H % equiv_lam_elim % equiv_lam_elim.
rewrite <-enc_app in H.
eapply enc_injective;[| |eauto]; (eauto 2).
Qed.
End Addition.
Section Multiplication.
Variable (m n p: nat) (x y z: nat).
Hypothesis
(Ex: encodes (sigma (F x)) m) (Ey: encodes (sigma (F y)) n) (Ez: encodes (sigma (F z)) p).
Lemma forward_mul:
m * n = p -> sigma (G x y z) = T n m -> sigma • fst (mulEQ x y z) ≡ sigma • snd (mulEQ x y z).
Proof using Ex Ey Ez.
intros H1 H2. unfold mulEQ; cbn. unfold funcomp.
rewrite H2. change shift with (add 1); rewrite !ren_plus_combine; cbn [plus].
rewrite Ex, Ey, Ez. subst p. eapply G_forward.
Qed.
Lemma backward_mult:
sigma • fst (mulEQ x y z) ≡ sigma • snd (mulEQ x y z) -> m * n = p /\ sigma (G x y z) = T n m.
Proof using N Ex Ey Ez.
unfold mulEQ; cbn. unfold funcomp.
change shift with (add 1); rewrite !ren_plus_combine; cbn [plus].
rewrite Ex, Ey, Ez. intros H. apply G_iff in H; (eauto 2).
Qed.
End Multiplication.
End EquationEquivalences.
Section Forward.
Variables (E: list deq).
Definition gf n := lambda enc n (var 0).
Lemma tab_typing {X} n (f: nat -> exp X) g k Gamma:
(forall i, Gamma ⊢(n) f i : g i) -> Gamma ⊢₊(n) tab f k : tab g k.
Proof.
intros; induction k; cbn; (eauto 2).
eapply orderlisttyping_app; (eauto 2).
Qed.
Lemma gf_typing Gamma n: Gamma ⊢(2) gf n : alpha → alpha.
Proof.
econstructor. eapply enc_typing. eauto.
Qed.
Lemma GT_typing Gamma m n: Gamma ⊢(2) T n m : alpha → alpha → alpha → alpha.
Proof.
do 3 econstructor. eapply lin_typing; [|eauto].
rewrite repeated_tab. simplify.
eapply tab_typing.
intros; econstructor; cbn. econstructor.
all: eauto using enc_typing.
Qed.
Definition enc_sol (sigma: nat -> nat) (x: fin) :=
match partition_F_G x with
| inl (exist _ x _) => gf (sigma x)
| inr (exist _ (x,y,z) _) => T (sigma y) (sigma x)
end.
Lemma enc_sol_encodes theta h: encodes (enc_sol theta (F h)) (theta h).
Proof.
unfold enc_sol.
destruct partition_F_G as [[x ?]|[((x,y),z) ?]].
- eapply F_injective in e as ->.
intros t delta. unfold gf. cbn; rewrite stepBeta; asimpl; (eauto 2).
- exfalso; eapply disjoint_F_G; (eauto 2).
Qed.
Lemma enc_sol_T theta x y z: (enc_sol theta (G x y z)) = T (theta y) (theta x).
Proof.
unfold enc_sol.
destruct partition_F_G as [[x' ?]|[((x',y'),z') ?]].
- exfalso; eapply disjoint_F_G; (eauto 2).
- now eapply G_injective in y0 as (-> & -> & ->).
Qed.
Lemma typing_forward sigma:
(sigma ⊢⁺ₑ E) -> [] ⊩(2) enc_sol sigma : Gamma__deq E.
Proof.
eauto; intros ????; unfold enc_sol.
destruct partition_F_G as [[]|[((x & y) & z) ?]]; subst.
+ eapply nth_Gamma__deq_F in H0 as ->. eapply gf_typing.
+ eapply nth_Gamma__deq_G in H0 as ->. eapply GT_typing.
Qed.
Lemma H10_SU: H10 E -> SOU ag 2 (H10_to_SOU E).
Proof.
intros [sigma H].
exists []. exists (enc_sol sigma).
split. now eapply typing_forward.
intros s t; change s with (fst (s,t)) at 2; change t with (snd (s,t)) at 3.
remember (s,t) as e. clear Heqe s t.
intros H'; cbn in *. eapply in_Equations in H' as (d & ? & ?).
destruct d; cbn in *; intuition idtac; subst.
all: try eapply forward_add. all: try eapply forward_consts.
all: try eapply forward_mul.
all: try eapply forward_vars.
all: try eapply enc_sol_encodes.
all: eapply H in H0; inv H0; (eauto 2).
apply enc_sol_T.
Qed.
End Forward.
Section Backward.
Definition decode_subst (sigma: fin -> exp ag) (N: forall x, normal (sigma x)) (x: fin) :=
match dec_enc (N (F x)) with
| inl (exist _ n _) => n
| inr _ => 0
end.
Lemma decode_subst_encodes (sigma: fin -> exp ag) N x n:
encodes (sigma (F x)) n -> decode_subst sigma N x = n.
Proof.
intros H; unfold decode_subst.
destruct dec_enc as [[m H1]|H1].
- specialize (H a id); asimpl in H. rewrite H in H1. eapply enc_injective in H1 as []; (eauto 2).
- exfalso. eapply H1. exists n. specialize (H a id); asimpl in H. now rewrite H.
Qed.
Lemma SU_H10 E: SOU ag 2 (H10_to_SOU E) -> H10 E.
Proof.
rewrite SOU_NSOU; (eauto 2). intros (Delta & sigma & T & EQ & N).
exists (decode_subst sigma N). intros e H; pose (Q := eqs e).
assert (forall p, p ∈ Q -> sigma • fst p ≡ sigma • snd p) as EQs; [|clear EQ].
- intros [s t] G. eapply EQ.
eapply in_Equations. eauto.
- destruct e; econstructor; cbn in Q, EQs.
all: specialize (EQs (varEQ x)) as EQx; mp EQx; intuition idtac; eapply backward_vars in EQx as [n EQx]; (eauto 2).
2 - 3: specialize (EQs (varEQ y)) as EQy; mp EQy; intuition idtac; eapply backward_vars in EQy as [m EQy]; (eauto 2).
2 - 3: specialize (EQs (varEQ z)) as EQz; mp EQz; intuition idtac; eapply backward_vars in EQz as [p EQz]; (eauto 2).
all: repeat (erewrite decode_subst_encodes;[|eauto]).
+ eapply backward_consts; (eauto 4).
+ eapply backward_add; (eauto 1); eapply EQs; (eauto 5).
+ eapply backward_mult; (eauto 1); eapply EQs; intuition.
Qed.
End Backward.
Lemma Goldfarb': H10 ⪯ SOU ag 2.
Proof.
exists H10_to_SOU; intros x; split.
- eapply H10_SU.
- eapply SU_H10.
Qed.
Definition nileq: eq ag := (lambda lambda a, lambda lambda a).
Definition conseqs e1 e2 :=
match e1, e2 with
| (lambda lambda s1, lambda lambda t1), (lambda lambda s2, lambda lambda t2) => (lambda lambda g s1 s2, lambda lambda g t1 t2)
| _, _ => nileq
end.
Notation foldeqs := (fold_right conseqs nileq).
Lemma conseqs_combine sigma s1 s2 t1 t2:
sigma • (lambda lambda s1) ≡ sigma • (lambda lambda t1) /\ sigma • (lambda lambda s2) ≡ sigma • (lambda lambda t2) <-> sigma • (lambda lambda g s1 s2) ≡ sigma • (lambda lambda g t1 t2).
Proof.
cbn; split.
- intros [H1 H2]; do 2 (eapply equiv_lam_elim in H1; eapply equiv_lam_elim in H2). now rewrite H1, H2.
- intros H1; do 2 eapply equiv_lam_elim in H1. Injection H1. Injection H. now rewrite H0, H2.
Qed.
Lemma foldeqs_lambda_lambda E:
exists s t, foldeqs E = (lambda lambda s, lambda lambda t).
Proof.
induction E as [|[s t]]; cbn; (eauto 2).
- do 2 eexists; reflexivity.
- destruct IHE as (s'&t'&IH).
do 2 (destruct s; try solve [do 2 eexists; reflexivity]).
do 2 (destruct t; try solve [do 2 eexists; reflexivity]).
rewrite IH; do 2 eexists; reflexivity.
Qed.
Lemma foldeqs_correct sigma E:
(forall s1 s2, (s1, s2) ∈ E -> (exists t, s1 = lambda lambda t) /\ (exists t, s2 = lambda lambda t)) ->
(sigma •₊ left_side E) ≡₊ (sigma •₊ right_side E) <->
(sigma • fst (foldeqs E) ≡ sigma • snd (foldeqs E)).
Proof.
induction E as [| [s t]]; simplify.
- cbn; firstorder.
- intros H. apply id in H as H'. specialize (H' s t) as ([t1 H1]&[t2 H2]); lauto; subst.
cbn. specialize (foldeqs_lambda_lambda E) as (u&v&H'); rewrite H' in *.
mp IHE; (eauto 2). intros; eapply H; firstorder. cbn in IHE.
cbn; unfold left_side, right_side in *.
split; [intros [H1 H2] % equiv_lstep_cons_inv| intros H1]; do 2 eapply equiv_lam_elim in H1.
+ destruct IHE as [IHE _]; rewrite H1; mp IHE; (eauto 1);
do 2 eapply equiv_lam_elim in IHE; now rewrite IHE.
+ Injection H1. Injection H0. rewrite H3.
destruct IHE as [_ ->]; (eauto 2). now rewrite H2.
Qed.
Lemma foldeqs_typing Gamma E:
Gamma ⊢₊₊(2) E : repeat (alpha → alpha → alpha) (length E) -> Gamma ⊢₂(2) (foldeqs E) : alpha → alpha → alpha.
Proof.
remember (repeat (alpha → alpha → alpha) (| E |)) as L. induction 1 in HeqL |- *; cbn.
- repeat econstructor.
- do 2 (destruct s; try solve [repeat econstructor]).
do 2 (destruct t; try solve [repeat econstructor]).
specialize (foldeqs_lambda_lambda E) as (u&v&H'); rewrite H' in *.
cbn in HeqL. injection HeqL as -> ->. mp IHeqs_ordertyping; (eauto 2).
inv H0. inv H4. inv H. inv H4. destruct IHeqs_ordertyping as [T1 T2]. inv T1. inv H4.
inv T2. inv H4. repeat econstructor; (eauto 2).
Qed.
Lemma Goldfarb : H10 ⪯ OU 2 ag.
Proof.
unshelve eexists.
- intros E. unshelve econstructor.
exact (Gamma__deq E). 1: eapply fst. 2: eapply snd.
1 - 2: eapply foldeqs, (H10_to_SOU E).
exact (alpha → alpha → alpha).
all: eapply foldeqs_typing; cbn -[Gamma__deq].
all: eapply H10_to_SOU.
- intros E. split.
+ intros H % H10_SU. destruct H as (Delta & sigma & H1 & H2).
exists Delta. exists sigma. intuition. eapply foldeqs_correct, equiv_pointwise_eqs; (eauto 2).
cbn. intros s1 s2 (d&H3&H4) % in_flat_map.
destruct d; cbn in H4; intuition.
all: change s1 with (fst (s1, s2)); rewrite <-?H, <-?H0.
all: change s2 with (snd (s1, s2)); rewrite <-?H, <-?H0.
all: cbn; (eauto 2).
+ intros (Delta & sigma & T & EQ). eapply SU_H10. exists Delta, sigma.
intuition. eapply equiv_eqs_pointwise; (eauto 1); eapply foldeqs_correct; (eauto 2).
cbn. intros s1 s2 (d&H3&H4) % in_flat_map.
destruct d; cbn in H4; intuition.
all: change s1 with (fst (s1, s2)); rewrite <-?H1, <-?H0.
all: change s2 with (snd (s1, s2)); rewrite <-?H1, <-?H0.
all: cbn; (eauto 2).
Qed.
Require Import RelationClasses Morphisms Wf List Lia Init.Nat Setoid.
From Undecidability.HOU Require Import calculus.calculus unification.unification.
From Undecidability.HOU.second_order Require Export diophantine_equations goldfarb.encoding goldfarb.multiplication.
Import ListNotations.
Set Default Proof Using "Type".
Section EquationEquivalences.
Variable (sigma: fin -> exp ag).
Hypothesis (N: forall x, normal (sigma x)).
Section Variables.
Lemma forward_vars x n: encodes (sigma (F x)) n -> sigma • fst (varEQ x) ≡ sigma • snd (varEQ x).
Proof.
intros H. unfold varEQ; cbn; unfold funcomp.
change shift with (add 1); rewrite ren_plus_combine, !H; cbn; unfold var_zero.
change (g a (var 1)) with (enc 1 (var 1)); now simplify.
Qed.
Lemma backward_vars x: sigma • fst (varEQ x) ≡ sigma • snd (varEQ x) -> exists n, encodes (sigma (F x)) n.
Proof using N.
cbn; simplify.
unfold funcomp; change shift with (add 1); rewrite ren_plus_combine; unfold var_zero; cbn.
intros H; eapply normal_forms_encodes in H; (eauto 2).
Qed.
End Variables.
Section Constants.
Variable (n: nat) (x: nat).
Hypothesis (Ex: encodes (sigma (F x)) n).
Lemma forward_consts: n = 1 -> sigma • fst (constEQ x) ≡ sigma • snd (constEQ x).
Proof using Ex.
cbn; unfold funcomp; change shift with (add 1); rewrite ren_plus_combine; unfold var_zero; cbn.
rewrite Ex; asimpl; now intros ->.
Qed.
Lemma backward_consts: sigma • fst (constEQ x) ≡ sigma • snd (constEQ x) -> n = 1.
Proof using Ex.
cbn.
unfold funcomp; change shift with (add 1); rewrite ren_plus_combine; unfold var_zero; cbn.
rewrite Ex. asimpl. intros ? % equiv_lam_elim % equiv_lam_elim.
eapply enc_injective;[| |eauto]; (eauto 2).
Qed.
End Constants.
Section Addition.
Variable (m n p: nat) (x y z: nat).
Hypothesis (Ex: encodes (sigma (F x)) m) (Ey: encodes (sigma (F y)) n) (Ez: encodes (sigma (F z)) p).
Lemma forward_add: m + n = p -> sigma • fst (addEQ x y z) ≡ sigma • snd (addEQ x y z).
Proof using Ex Ey Ez.
intros <-; cbn.
unfold funcomp; change shift with (add 1); rewrite !ren_plus_combine; unfold var_zero; cbn.
erewrite Ex, Ey, Ez; now simplify.
Qed.
Lemma backward_add:
sigma • fst (addEQ x y z) ≡ sigma • snd (addEQ x y z) -> m + n = p.
Proof using Ex Ey Ez.
cbn.
unfold funcomp; change shift with (add 1); rewrite !ren_plus_combine; unfold var_zero; cbn.
rewrite Ex, Ey, Ez; simplify; intros H % equiv_lam_elim % equiv_lam_elim.
rewrite <-enc_app in H.
eapply enc_injective;[| |eauto]; (eauto 2).
Qed.
End Addition.
Section Multiplication.
Variable (m n p: nat) (x y z: nat).
Hypothesis
(Ex: encodes (sigma (F x)) m) (Ey: encodes (sigma (F y)) n) (Ez: encodes (sigma (F z)) p).
Lemma forward_mul:
m * n = p -> sigma (G x y z) = T n m -> sigma • fst (mulEQ x y z) ≡ sigma • snd (mulEQ x y z).
Proof using Ex Ey Ez.
intros H1 H2. unfold mulEQ; cbn. unfold funcomp.
rewrite H2. change shift with (add 1); rewrite !ren_plus_combine; cbn [plus].
rewrite Ex, Ey, Ez. subst p. eapply G_forward.
Qed.
Lemma backward_mult:
sigma • fst (mulEQ x y z) ≡ sigma • snd (mulEQ x y z) -> m * n = p /\ sigma (G x y z) = T n m.
Proof using N Ex Ey Ez.
unfold mulEQ; cbn. unfold funcomp.
change shift with (add 1); rewrite !ren_plus_combine; cbn [plus].
rewrite Ex, Ey, Ez. intros H. apply G_iff in H; (eauto 2).
Qed.
End Multiplication.
End EquationEquivalences.
Section Forward.
Variables (E: list deq).
Definition gf n := lambda enc n (var 0).
Lemma tab_typing {X} n (f: nat -> exp X) g k Gamma:
(forall i, Gamma ⊢(n) f i : g i) -> Gamma ⊢₊(n) tab f k : tab g k.
Proof.
intros; induction k; cbn; (eauto 2).
eapply orderlisttyping_app; (eauto 2).
Qed.
Lemma gf_typing Gamma n: Gamma ⊢(2) gf n : alpha → alpha.
Proof.
econstructor. eapply enc_typing. eauto.
Qed.
Lemma GT_typing Gamma m n: Gamma ⊢(2) T n m : alpha → alpha → alpha → alpha.
Proof.
do 3 econstructor. eapply lin_typing; [|eauto].
rewrite repeated_tab. simplify.
eapply tab_typing.
intros; econstructor; cbn. econstructor.
all: eauto using enc_typing.
Qed.
Definition enc_sol (sigma: nat -> nat) (x: fin) :=
match partition_F_G x with
| inl (exist _ x _) => gf (sigma x)
| inr (exist _ (x,y,z) _) => T (sigma y) (sigma x)
end.
Lemma enc_sol_encodes theta h: encodes (enc_sol theta (F h)) (theta h).
Proof.
unfold enc_sol.
destruct partition_F_G as [[x ?]|[((x,y),z) ?]].
- eapply F_injective in e as ->.
intros t delta. unfold gf. cbn; rewrite stepBeta; asimpl; (eauto 2).
- exfalso; eapply disjoint_F_G; (eauto 2).
Qed.
Lemma enc_sol_T theta x y z: (enc_sol theta (G x y z)) = T (theta y) (theta x).
Proof.
unfold enc_sol.
destruct partition_F_G as [[x' ?]|[((x',y'),z') ?]].
- exfalso; eapply disjoint_F_G; (eauto 2).
- now eapply G_injective in y0 as (-> & -> & ->).
Qed.
Lemma typing_forward sigma:
(sigma ⊢⁺ₑ E) -> [] ⊩(2) enc_sol sigma : Gamma__deq E.
Proof.
eauto; intros ????; unfold enc_sol.
destruct partition_F_G as [[]|[((x & y) & z) ?]]; subst.
+ eapply nth_Gamma__deq_F in H0 as ->. eapply gf_typing.
+ eapply nth_Gamma__deq_G in H0 as ->. eapply GT_typing.
Qed.
Lemma H10_SU: H10 E -> SOU ag 2 (H10_to_SOU E).
Proof.
intros [sigma H].
exists []. exists (enc_sol sigma).
split. now eapply typing_forward.
intros s t; change s with (fst (s,t)) at 2; change t with (snd (s,t)) at 3.
remember (s,t) as e. clear Heqe s t.
intros H'; cbn in *. eapply in_Equations in H' as (d & ? & ?).
destruct d; cbn in *; intuition idtac; subst.
all: try eapply forward_add. all: try eapply forward_consts.
all: try eapply forward_mul.
all: try eapply forward_vars.
all: try eapply enc_sol_encodes.
all: eapply H in H0; inv H0; (eauto 2).
apply enc_sol_T.
Qed.
End Forward.
Section Backward.
Definition decode_subst (sigma: fin -> exp ag) (N: forall x, normal (sigma x)) (x: fin) :=
match dec_enc (N (F x)) with
| inl (exist _ n _) => n
| inr _ => 0
end.
Lemma decode_subst_encodes (sigma: fin -> exp ag) N x n:
encodes (sigma (F x)) n -> decode_subst sigma N x = n.
Proof.
intros H; unfold decode_subst.
destruct dec_enc as [[m H1]|H1].
- specialize (H a id); asimpl in H. rewrite H in H1. eapply enc_injective in H1 as []; (eauto 2).
- exfalso. eapply H1. exists n. specialize (H a id); asimpl in H. now rewrite H.
Qed.
Lemma SU_H10 E: SOU ag 2 (H10_to_SOU E) -> H10 E.
Proof.
rewrite SOU_NSOU; (eauto 2). intros (Delta & sigma & T & EQ & N).
exists (decode_subst sigma N). intros e H; pose (Q := eqs e).
assert (forall p, p ∈ Q -> sigma • fst p ≡ sigma • snd p) as EQs; [|clear EQ].
- intros [s t] G. eapply EQ.
eapply in_Equations. eauto.
- destruct e; econstructor; cbn in Q, EQs.
all: specialize (EQs (varEQ x)) as EQx; mp EQx; intuition idtac; eapply backward_vars in EQx as [n EQx]; (eauto 2).
2 - 3: specialize (EQs (varEQ y)) as EQy; mp EQy; intuition idtac; eapply backward_vars in EQy as [m EQy]; (eauto 2).
2 - 3: specialize (EQs (varEQ z)) as EQz; mp EQz; intuition idtac; eapply backward_vars in EQz as [p EQz]; (eauto 2).
all: repeat (erewrite decode_subst_encodes;[|eauto]).
+ eapply backward_consts; (eauto 4).
+ eapply backward_add; (eauto 1); eapply EQs; (eauto 5).
+ eapply backward_mult; (eauto 1); eapply EQs; intuition.
Qed.
End Backward.
Lemma Goldfarb': H10 ⪯ SOU ag 2.
Proof.
exists H10_to_SOU; intros x; split.
- eapply H10_SU.
- eapply SU_H10.
Qed.
Definition nileq: eq ag := (lambda lambda a, lambda lambda a).
Definition conseqs e1 e2 :=
match e1, e2 with
| (lambda lambda s1, lambda lambda t1), (lambda lambda s2, lambda lambda t2) => (lambda lambda g s1 s2, lambda lambda g t1 t2)
| _, _ => nileq
end.
Notation foldeqs := (fold_right conseqs nileq).
Lemma conseqs_combine sigma s1 s2 t1 t2:
sigma • (lambda lambda s1) ≡ sigma • (lambda lambda t1) /\ sigma • (lambda lambda s2) ≡ sigma • (lambda lambda t2) <-> sigma • (lambda lambda g s1 s2) ≡ sigma • (lambda lambda g t1 t2).
Proof.
cbn; split.
- intros [H1 H2]; do 2 (eapply equiv_lam_elim in H1; eapply equiv_lam_elim in H2). now rewrite H1, H2.
- intros H1; do 2 eapply equiv_lam_elim in H1. Injection H1. Injection H. now rewrite H0, H2.
Qed.
Lemma foldeqs_lambda_lambda E:
exists s t, foldeqs E = (lambda lambda s, lambda lambda t).
Proof.
induction E as [|[s t]]; cbn; (eauto 2).
- do 2 eexists; reflexivity.
- destruct IHE as (s'&t'&IH).
do 2 (destruct s; try solve [do 2 eexists; reflexivity]).
do 2 (destruct t; try solve [do 2 eexists; reflexivity]).
rewrite IH; do 2 eexists; reflexivity.
Qed.
Lemma foldeqs_correct sigma E:
(forall s1 s2, (s1, s2) ∈ E -> (exists t, s1 = lambda lambda t) /\ (exists t, s2 = lambda lambda t)) ->
(sigma •₊ left_side E) ≡₊ (sigma •₊ right_side E) <->
(sigma • fst (foldeqs E) ≡ sigma • snd (foldeqs E)).
Proof.
induction E as [| [s t]]; simplify.
- cbn; firstorder.
- intros H. apply id in H as H'. specialize (H' s t) as ([t1 H1]&[t2 H2]); lauto; subst.
cbn. specialize (foldeqs_lambda_lambda E) as (u&v&H'); rewrite H' in *.
mp IHE; (eauto 2). intros; eapply H; firstorder. cbn in IHE.
cbn; unfold left_side, right_side in *.
split; [intros [H1 H2] % equiv_lstep_cons_inv| intros H1]; do 2 eapply equiv_lam_elim in H1.
+ destruct IHE as [IHE _]; rewrite H1; mp IHE; (eauto 1);
do 2 eapply equiv_lam_elim in IHE; now rewrite IHE.
+ Injection H1. Injection H0. rewrite H3.
destruct IHE as [_ ->]; (eauto 2). now rewrite H2.
Qed.
Lemma foldeqs_typing Gamma E:
Gamma ⊢₊₊(2) E : repeat (alpha → alpha → alpha) (length E) -> Gamma ⊢₂(2) (foldeqs E) : alpha → alpha → alpha.
Proof.
remember (repeat (alpha → alpha → alpha) (| E |)) as L. induction 1 in HeqL |- *; cbn.
- repeat econstructor.
- do 2 (destruct s; try solve [repeat econstructor]).
do 2 (destruct t; try solve [repeat econstructor]).
specialize (foldeqs_lambda_lambda E) as (u&v&H'); rewrite H' in *.
cbn in HeqL. injection HeqL as -> ->. mp IHeqs_ordertyping; (eauto 2).
inv H0. inv H4. inv H. inv H4. destruct IHeqs_ordertyping as [T1 T2]. inv T1. inv H4.
inv T2. inv H4. repeat econstructor; (eauto 2).
Qed.
Lemma Goldfarb : H10 ⪯ OU 2 ag.
Proof.
unshelve eexists.
- intros E. unshelve econstructor.
exact (Gamma__deq E). 1: eapply fst. 2: eapply snd.
1 - 2: eapply foldeqs, (H10_to_SOU E).
exact (alpha → alpha → alpha).
all: eapply foldeqs_typing; cbn -[Gamma__deq].
all: eapply H10_to_SOU.
- intros E. split.
+ intros H % H10_SU. destruct H as (Delta & sigma & H1 & H2).
exists Delta. exists sigma. intuition. eapply foldeqs_correct, equiv_pointwise_eqs; (eauto 2).
cbn. intros s1 s2 (d&H3&H4) % in_flat_map.
destruct d; cbn in H4; intuition.
all: change s1 with (fst (s1, s2)); rewrite <-?H, <-?H0.
all: change s2 with (snd (s1, s2)); rewrite <-?H, <-?H0.
all: cbn; (eauto 2).
+ intros (Delta & sigma & T & EQ). eapply SU_H10. exists Delta, sigma.
intuition. eapply equiv_eqs_pointwise; (eauto 1); eapply foldeqs_correct; (eauto 2).
cbn. intros s1 s2 (d&H3&H4) % in_flat_map.
destruct d; cbn in H4; intuition.
all: change s1 with (fst (s1, s2)); rewrite <-?H1, <-?H0.
all: change s2 with (snd (s1, s2)); rewrite <-?H1, <-?H0.
all: cbn; (eauto 2).
Qed.