Require Import List Permutation.
Set Implicit Arguments.
Local Infix "~p" := (@Permutation _) (at level 70).
Reserved Notation "A ⊸ B" (at level 51, right associativity, format "A ⊸ B").
Reserved Notation "'![' m ']' x" (at level 52, format "![ m ] x").
Reserved Notation "‼ x" (at level 60, format "‼ x").
Section IMSELL.
Variables (var bang : Type)
(bang_le : bang -> bang -> Prop)
(bang_U : bang -> Prop)
.
Inductive imsell_form : Type :=
| imsell_var : var -> imsell_form
| imsell_ban : bang -> imsell_form -> imsell_form
| imsell_imp : imsell_form -> imsell_form -> imsell_form.
Infix "⊸" := imsell_imp.
Notation "![ m ] x" := (imsell_ban m x).
Notation "£" := imsell_var.
Definition imsell_lban := map (fun '(m,A) => ![m]A).
Notation "‼ Γ" := (imsell_lban Γ).
Notation "u ≼ l" := (forall '(v,A), In (v,A) l -> bang_le u v) (at level 70).
Notation U := bang_U.
Reserved Notation "l ⊢ x" (at level 70, no associativity).
Inductive S_imsell : list imsell_form -> imsell_form -> Prop :=
| in_imsell_ax A : A::nil ⊢ A
| in_imsell_perm Γ Δ A : Γ ~p Δ -> Γ ⊢ A
-> Δ ⊢ A
| in_imsell_limp_l Γ Δ A B C : Γ ⊢ A -> B::Δ ⊢ C
-> A⊸B::Γ++Δ ⊢ C
| in_imsell_limp_r Γ A B : A::Γ ⊢ B
-> Γ ⊢ A⊸B
| in_imsell_bang_l Γ m A B : A::Γ ⊢ B
-> ![m]A::Γ ⊢ B
| in_imsell_bang_r Γ m A : m ≼ Γ -> ‼Γ ⊢ A
-> ‼Γ ⊢ ![m]A
| in_imsell_weak Γ u A B : U u -> Γ ⊢ B
-> ![u]A::Γ ⊢ B
| in_imsell_cntr Γ u A B : U u -> ![u]A::![u]A::Γ ⊢ B
-> ![u]A::Γ ⊢ B
where "Γ ⊢ A" := (S_imsell Γ A).
End IMSELL.
Infix "⊸" := imsell_imp.
Notation "![ m ] x" := (imsell_ban m x).
Notation "£" := imsell_var.
Notation "‼ Γ" := (imsell_lban Γ).
Record IMSELL_sig : Type :=
{ IMSELL_Λ :> Type;
IMSELL_le : IMSELL_Λ -> IMSELL_Λ -> Prop;
IMSELL_refl : forall m, IMSELL_le m m;
IMSELL_trans : forall u v w, IMSELL_le u v -> IMSELL_le v w -> IMSELL_le u w;
IMSELL_U : IMSELL_Λ -> Prop;
IMSELL_clos : forall u v, IMSELL_U u -> IMSELL_le u v -> IMSELL_U v
}.
Section imsell3.
Let bang := option bool.
Let bang_le (u v : bang) :=
match v with
| None => True
| Some _ => u = v
end.
Let bang_U := @eq bang None.
Definition imsell3 : IMSELL_sig.
Proof.
exists bang bang_le bang_U; trivial.
all: repeat intros [[]|]; now simpl.
Defined.
End imsell3.
Local Infix "≤" := (@IMSELL_le _) (at level 70).
Local Notation "u ≰ v" := (~ u ≤ v) (at level 70).
Local Notation U := (@IMSELL_U _).
Definition IMSELL_sig3 :=
{ S : IMSELL_sig | exists a b i : S, a ≤ i /\ b ≤ i /\ a ≰ b /\ b ≰ a
/\ ~ U a /\ ~ U b /\ U i }.
Definition IMSELL_problem (S : IMSELL_sig) :=
let F := imsell_form nat (IMSELL_Λ S) in (list F * F)%type.
Definition IMSELL_problem3 (S : IMSELL_sig3) := IMSELL_problem (proj1_sig S).
Definition IMSELL_cf_PROVABILITY S (P : IMSELL_problem S) :=
let (Γ,A) := P in S_imsell (IMSELL_le S) (IMSELL_U S) Γ A.
Definition IMSELL_cf_PROVABILITY3 S (P : IMSELL_problem3 S) := IMSELL_cf_PROVABILITY P.