Require Export Undecidability.Shared.Libs.PSL.Base Lia.

Module ARSNotations.
  Notation "p '<=1' q" := (forall x, p x -> q x) (at level 70).
  Notation "p '=1' q" := (forall x, p x <-> q x) (at level 70).
  Notation "R '<=2' S" := (forall x y, R x y -> S x y) (at level 70).
  Notation "R '=2' S" := (forall x y, R x y <-> S x y) (at level 70).
End ARSNotations.

Import ARSNotations.


Definition rcomp X Y Z (R : X -> Y -> Prop) (S : Y -> Z -> Prop)
: X -> Z -> Prop :=
  fun x z => exists y, R x y /\ S y z.


Require Import Arith.
Definition pow X R n : X -> X -> Prop := it (rcomp R) n eq.

Definition functional {X Y} (R: X -> Y -> Prop) := forall x y1 y2, R x y1 -> R x y2 -> y1 = y2.
Definition terminal {X Y} (R: X -> Y -> Prop) x:= forall y, ~ R x y.

Section FixX.
  Variable X : Type.
  Implicit Types R S : X -> X -> Prop.
  Implicit Types x y z : X.

  Definition reflexive R := forall x, R x x.
  Definition symmetric R := forall x y, R x y -> R y x.
  Definition transitive R := forall x y z, R x y -> R y z -> R x z.


  Inductive star R : X -> X -> Prop :=
  | starR x : star R x x
  | starC x y z : R x y -> star R y z -> star R x z.

  Definition evaluates R x y := star R x y /\ terminal R y.


  Lemma star_simpl_ind R (p : X -> Prop) y :
    p y ->
    (forall x x', R x x' -> star R x' y -> p x' -> p x) ->
    forall x, star R x y -> p x.
  Proof.
    intros A B. induction 1; eauto.
  Qed.

  Lemma star_trans R:
    transitive (star R).
  Proof.
    induction 1; eauto using star.
  Qed.

  Lemma R_star R: R <=2 star R.
  Proof.
    eauto using star.
  Qed.

  Instance star_PO R: PreOrder (star R).
  Proof.
    constructor;repeat intro;try eapply star_trans; now eauto using star.
  Qed.


  Lemma star_pow R x y :
    star R x y <-> exists n, pow R n x y.
  Proof.
    split; intros A.
    - induction A as [|x x' y B _ [n IH]].
      + exists 0. reflexivity.
               + exists (S n), x'. auto.
               - destruct A as [n A].
                 revert x A. induction n; intros x A.
                 + destruct A. constructor.
                 + destruct A as [x' [A B]]. econstructor; eauto.
  Qed.

  Lemma pow_star R x y n:
    pow R n x y -> star R x y.
  Proof.
    intros A. erewrite star_pow. eauto.
  Qed.


  Inductive ecl R : X -> X -> Prop :=
  | eclR x : ecl R x x
  | eclC x y z : R x y -> ecl R y z -> ecl R x z
  | eclS x y z : R y x -> ecl R y z -> ecl R x z.

  Lemma ecl_trans R :
    transitive (ecl R).
  Proof.
    induction 1; eauto using ecl.
  Qed.

  Lemma ecl_sym R :
    symmetric (ecl R).
  Proof.
    induction 1; eauto using ecl, (@ecl_trans R).
  Qed.

  Lemma star_ecl R :
    star R <=2 ecl R.
  Proof.
    induction 1; eauto using ecl.
  Qed.


  Definition joinable R x y :=
    exists z, R x z /\ R y z.

  Definition diamond R :=
    forall x y z, R x y -> R x z -> joinable R y z.

  Definition confluent R := diamond (star R).

  Definition semi_confluent R :=
    forall x y z, R x y -> star R x z -> joinable (star R) y z.

  Definition church_rosser R :=
    ecl R <=2 joinable (star R).

  Goal forall R, diamond R -> semi_confluent R.
  Proof.
    intros R A x y z B C.
    revert x C y B.
    refine (star_simpl_ind _ _).
    - intros y C. exists y. eauto using star.
    - intros x x' C D IH y E.
      destruct (A _ _ _ C E) as [v [F G]].
      destruct (IH _ F) as [u [H I]].
      assert (J:= starC G H).
      exists u. eauto using star.
  Qed.

  Lemma diamond_to_semi_confluent R :
    diamond R -> semi_confluent R.
  Proof.
    intros A x y z B C. revert y B.
    induction C as [|x x' z D _ IH]; intros y B.
    - exists y. eauto using star.
             - destruct (A _ _ _ B D) as [v [E F]].
               destruct (IH _ F) as [u [G H]].
               exists u. eauto using star.
  Qed.

  Lemma semi_confluent_confluent R :
    semi_confluent R <-> confluent R.
  Proof.
    split; intros A x y z B C.
    - revert y B.
      induction C as [|x x' z D _ IH]; intros y B.
      + exists y. eauto using star.
               + destruct (A _ _ _ D B) as [v [E F]].
                 destruct (IH _ E) as [u [G H]].
                 exists u. eauto using (@star_trans R).
               - apply (A x y z); eauto using star.
  Qed.

  Lemma diamond_to_confluent R :
    diamond R -> confluent R.
  Proof.
    intros A. apply semi_confluent_confluent, diamond_to_semi_confluent, A.
  Qed.

  Lemma confluent_CR R :
    church_rosser R <-> confluent R.
  Proof.
    split; intros A.
    - intros x y z B C. apply A.
      eauto using (@ecl_trans R), star_ecl, (@ecl_sym R).
    - intros x y B. apply semi_confluent_confluent in A.
      induction B as [x|x x' y C B IH|x x' y C B IH].
      + exists x. eauto using star.
               + destruct IH as [z [D E]]. exists z. eauto using star.
               + destruct IH as [u [D E]].
                 destruct (A _ _ _ C D) as [z [F G]].
                 exists z. eauto using (@star_trans R).
  Qed.




  Definition uniform_confluent (R : X -> X -> Prop ) := forall s t1 t2, R s t1 -> R s t2 -> t1 = t2 \/ exists u, R t1 u /\ R t2 u.

  Lemma functional_uc R :
    functional R -> uniform_confluent R.
  Proof.
    intros F ? ? ? H1 H2. left. eapply F. all:eauto.
  Qed.

  Lemma pow_add R n m (s t : X) : pow R (n + m) s t <-> rcomp (pow R n) (pow R m) s t.
  Proof.
    revert m s t; induction n; intros m s t.
    - simpl. split; intros. econstructor. split. unfold pow. simpl. reflexivity. eassumption.
      destruct H as [u [H1 H2]]. unfold pow in H1. simpl in *. subst s. eassumption.
    - simpl in *; split; intros.
      + destruct H as [u [H1 H2]].
        change (it (rcomp R) (n + m) eq) with (pow R (n+m)) in H2.
        rewrite IHn in H2.
        destruct H2 as [u' [A B]]. unfold pow in A.
        econstructor.
        split. econstructor. repeat split; repeat eassumption. eassumption.
      + destruct H as [u [H1 H2]].
        destruct H1 as [u' [A B]].
        econstructor. split. eassumption. change (it (rcomp R) (n + m) eq) with (pow R (n + m)).
        rewrite IHn. econstructor. split; eassumption.
  Qed.

  Lemma rcomp_eq (R S R' S' : X -> X -> Prop) (s t : X) : (R =2 R') -> (S =2 S') -> (rcomp R S s t <-> rcomp R' S' s t).
  Proof.
    intros A B.
    split; intros H; destruct H as [u [H1 H2]];
    eapply A in H1; eapply B in H2;
    econstructor; split; eassumption.
  Qed.

  Lemma eq_ref : forall (R : X -> X -> Prop), R =2 R.
  Proof.
    split; tauto.
  Qed.

  Lemma rcomp_1 (R : X -> X -> Prop): R =2 pow R 1.
  Proof.
    intros s t; split;unfold pow in *; simpl in *; intros H.
    - econstructor. split; eauto.
    - destruct H as [u [H1 H2]]; subst u; eassumption.
  Qed.

  Lemma parametrized_semi_confluence (R : X -> X -> Prop) (m : nat) (s t1 t2 : X) :
    uniform_confluent R ->
    pow R m s t1 ->
    R s t2 ->
    exists k l u,
      k <= 1 /\ l <= m /\ pow R k t1 u /\ pow R l t2 u /\ m + k = S l.
  Proof.
    intros unifConfR; revert s t1 t2; induction m; intros s t1 t2 s_to_t1 s_to_t2.
    - unfold pow in s_to_t1. simpl in *. subst s.
      exists 1, 0, t2.
      repeat split; try lia.
      econstructor. split; try eassumption; econstructor.
    - destruct s_to_t1 as [v [s_to_v v_to_t1]].
      destruct (unifConfR _ _ _ s_to_v s_to_t2) as [H | [u [v_to_u t2_to_u]]].
      + subst v. eexists 0, m, t1; repeat split; try lia; eassumption.
      + destruct (IHm _ _ _ v_to_t1 v_to_u) as [k [l [u' H]]].
        eexists k, (S l), u'; repeat split; try lia; try tauto.
        econstructor. split. eassumption. tauto.
  Qed.

  Lemma rcomp_comm R m (s t : X) : rcomp R (it (rcomp R) m eq) s t <-> rcomp (it (rcomp R) m eq) R s t.
  Proof.
    split; intros H;
    [rewrite (rcomp_eq s t (rcomp_1 R) (eq_ref _)) in H;
      rewrite (rcomp_eq s t (eq_ref _) (rcomp_1 R)) |
     rewrite (rcomp_eq s t (eq_ref _) (rcomp_1 R)) in H;
       rewrite (rcomp_eq s t (rcomp_1 R) (eq_ref _))];
    change ((it (rcomp R) m eq)) with (pow R m) in *;
    try rewrite <- pow_add in *;
    rewrite plus_comm; eassumption.
  Qed.

  Lemma parametrized_confluence (R : X -> X -> Prop) (m n : nat) (s t1 t2 : X) :
    uniform_confluent R ->
    pow R m s t1 ->
    pow R n s t2 ->
    exists k l u,
      k <= n /\ l <= m /\ pow R k t1 u /\ pow R l t2 u /\ m + k = n + l.
  Proof.
    revert n s t1 t2; induction m; intros n s t1 t2 unifConR s_to_t1 s_to_t2.
    - unfold pow in s_to_t1. simpl in s_to_t1. subst s.
      exists n, 0, t2. repeat split; try now lia. eassumption.
    - unfold pow in s_to_t1. simpl in *.
      destruct s_to_t1 as [v [s_to_v v_to_t1]].
      destruct (parametrized_semi_confluence unifConR s_to_t2 s_to_v) as
          [k [l [u [k_lt_1 [l_lt_n [t2_to_u [v_to_u H]]]]]]].
      destruct (IHm _ _ _ _ unifConR v_to_t1 v_to_u) as
          [l'[k'[u'[l'_lt_l [k'_lt_m [t1_to_u' [u_to_u' H2]]]]]]].
      exists l', (k + k'), u'.
      repeat split; try lia. eassumption.
      rewrite pow_add.
      econstructor; split; eassumption.
  Qed.

  Lemma uniform_confluent_noloop R x y:
    uniform_confluent R ->
    star R x y -> (forall y', ~ R y y') ->
    ~exists z k, star R x z /\ pow R (S k) z z.
  Proof.
    intros UC (k0&R0)%star_pow Term (z&k1&R1&RL).
    induction R1 in k0,RL,R0|-*.
    -edestruct parametrized_confluence with (m:=k0) (n:=S k1 + k0) as (i0&i1&?&?&?&?&?&?).
     1,2:eassumption.
     now eapply pow_add;eexists;split;eassumption.
     destruct i0. destruct i1.
     +now lia.
     +destruct H2 as (?&?&_). edestruct Term. eauto.
     +destruct H1 as (?&?&_). edestruct Term. eauto.
    -edestruct parametrized_semi_confluence with (R:=R) (2:= R0) as (i0&?&?&?&?&?&?&?). 1,2:eassumption.
     destruct i0. 2:{ destruct H2 as (?&?&_). edestruct Term. eauto. }
     cbn in H2;inv H2.
     eapply IHR1. all:eauto.
  Qed.

 Lemma uc_terminal R x y z n:
    uniform_confluent R ->
    R x y ->
    pow R n x z ->
    terminal R z ->
    exists n' , n = S n' /\ pow R n' y z.
  Proof.
    intros ? ? ? ter. edestruct parametrized_semi_confluence as (k&?&?&?&?&R'&?&?). 1-3:now eauto.
    destruct k as [|].
    -inv R'. rewrite <- plus_n_O in *. eauto.
    -edestruct R' as (?&?&?). edestruct ter. eauto.
  Qed.

  Definition classical R x := terminal R x \/ exists y, R x y.


  Inductive SN R : X -> Prop :=
  | SNC x : (forall y, R x y -> SN R y) -> SN R x.

  Fact SN_unfold R x :
    SN R x <-> forall y, R x y -> SN R y.
  Proof.
    split.
    - destruct 1 as [x H]. exact H.
    - intros H. constructor. exact H.
  Qed.

End FixX.

Existing Instance star_PO.


Inductive redWithMaxSize {X} (size:X -> nat) (step : X -> X -> Prop): nat -> X -> X -> Prop:=
  redWithMaxSizeR m s: m = size s -> redWithMaxSize size step m s s
| redWithMaxSizeC s s' t m m': step s s' -> redWithMaxSize size step m' s' t -> m = max (size s) m' -> redWithMaxSize size step m s t.

Lemma redWithMaxSize_ge X size step (s t:X) m:
  redWithMaxSize size step m s t -> size s<= m /\ size t <= m.
Proof.
  induction 1;subst;firstorder (repeat eapply Nat.max_case_strong; try lia).
Qed.

Lemma redWithMaxSize_trans X size step (s t u:X) m1 m2 m3:
 redWithMaxSize size step m1 s t -> redWithMaxSize size step m2 t u -> max m1 m2 = m3 -> redWithMaxSize size step m3 s u.
Proof.
  induction 1 in m2,u,m3|-*;intros.
  -specialize (redWithMaxSize_ge H0) as [].
   revert H1;
     repeat eapply Nat.max_case_strong; subst m;intros. all:replace m3 with m2 by lia. all:eauto.
  - specialize (redWithMaxSize_ge H0) as [].
    specialize (redWithMaxSize_ge H2) as [].
    eassert (H1':=Max.le_max_l _ _);rewrite H3 in H1'.
    eassert (H2':=Max.le_max_r _ _);rewrite H3 in H2'.
    econstructor. eassumption.

    eapply IHredWithMaxSize. eassumption. reflexivity.
    subst m;revert H3;repeat eapply Nat.max_case_strong;intros;try lia.
Qed.

Lemma redWithMaxSize_star {X} f (step : X -> X -> Prop) n x y:
  redWithMaxSize f step n x y -> star step x y.
Proof.
  induction 1;eauto using star.
Qed.

Lemma terminal_noRed {X} (R:X->X->Prop) x y :
  terminal R x -> star R x y -> x = y.
Proof.
  intros ? R'. inv R'. easy. edestruct H. eassumption.
Qed.

Lemma unique_normal_forms {X} (R:X->X->Prop) x y:
  confluent R -> ecl R x y -> terminal R x -> terminal R y -> x = y.
Proof.
  intros CR%confluent_CR E T1 T2.
  specialize (CR _ _ E) as (z&R1&R2).
  apply terminal_noRed in R1. apply terminal_noRed in R2. 2-3:eassumption. congruence.
Qed.

Instance ecl_Equivalence {X} (R:X->X->Prop) : Equivalence (ecl R).
Proof.
  split.
  -constructor.
  -apply ecl_sym.
  -apply ecl_trans.
Qed.

Instance star_ecl_subrel {X} (R:X->X->Prop) : subrelation (star R) (ecl R).
Proof.
  intro. eapply star_ecl.
Qed.

Instance pow_ecl_subrel {X} (R:X->X->Prop) n : subrelation (pow R n) (ecl R).
Proof.
  intros ? ? H%pow_star. now rewrite H.
Qed.

Lemma uniform_confluence_parameterized_terminal (X : Type) (R : X -> X -> Prop) (m n : nat) (s t1 t2 : X):
  uniform_confluent R -> terminal R t1 ->
  pow R m s t1 -> pow R n s t2 -> exists n', pow R n' t2 t1 /\ m = n + n'.
Proof.
  intros H1 H2 H3 H4.
  specialize (parametrized_confluence H1 H3 H4) as (n0&n'&?&?&?&R'&?&?).
  destruct n0.
  -inv R'. exists n'. intuition.
  -exfalso. destruct R' as (?&?&?). eapply H2. eauto.
Qed.

Lemma uniform_confluence_parameterized_both_terminal (X : Type) (R : X -> X -> Prop) (n1 n2 : nat) (s t1 t2 : X):
  uniform_confluent R -> terminal R t1 -> terminal R t2 ->
  pow R n1 s t1 -> pow R n2 s t2 -> n1=n2 /\ t1 = t2.
Proof.
  intros H1 H2 H2' H3 H4.
  specialize (parametrized_confluence H1 H3 H4) as (n0&n'&?&?&?&R'&R''&?).
  destruct n0. destruct n'.
  -inv R'. inv H5. split;first [lia | easy].
  -exfalso. destruct R'' as (?&?&?). eapply H2'. eauto.
  -exfalso. destruct R' as (?&?&?). eapply H2. eauto.
Qed.

Lemma uniform_confluent_confluent (X : Type) (R : X -> X -> Prop):
  uniform_confluent R -> confluent R.
Proof.
  intros H x y y' Hy Hy'. apply ARS.star_pow in Hy as (?&Hy). apply ARS.star_pow in Hy' as (?&Hy').
  edestruct parametrized_confluence as (?&?&z&?&?&?&?&?).
  eassumption. exact Hy. exact Hy'. exists z. split;eapply pow_star. all:eauto.
Qed.

Definition computesRel {X Y} (f : X -> option Y) (R:X -> Y -> Prop) :=
  forall x, match f x with
         Some y => R x y
       | None => terminal R x
       end.

Definition evaluatesIn (X : Type) (R : X -> X -> Prop) n (x y : X) := pow R n x y /\ terminal R y.

Lemma evalevaluates_evaluatesIn X (step:X->X->Prop) s t:
  evaluates step s t -> exists k, evaluatesIn step k s t.
Proof.
  intros [(R&?)%star_pow ?]. unfold evaluatesIn. eauto.
Qed.