Require Import List.
Import ListNotations.
Require Import Undecidability.SemiUnification.SemiU.
From Undecidability.SemiUnification.Util Require Import Facts.
Require Import ssreflect ssrfun ssrbool.
Require Import Undecidability.Synthetic.Definitions.
Theorem reduction : RU2SemiU ⪯ SemiU.
Proof.
exists (fun '(s0, s1, t) => [(s0, t); (s1, t)]).
move=> [[s0 s1] t]. constructor.
- move=> [φ] [ψ0] [ψ1] [Hψ0 Hψ1]. exists φ.
rewrite -Forall_forall ?Forall_norm.
constructor; [by exists ψ0 | by exists ψ1].
- move=> [φ]. rewrite -Forall_forall ?Forall_norm.
move=> [[ψ0 Hψ0] [ψ1 Hψ1]]. by exists φ, ψ0, ψ1.
Qed.