Require Import List Arith Lia.
From Undecidability.Shared.Libs.DLW
Require Import Utils.utils Code.subcode.
Set Implicit Arguments.
Reserved Notation "ρ '//' r '-1>' s" (at level 70, no associativity).
Reserved Notation "P '//' r ':1>' s" (at level 70, no associativity).
Reserved Notation "P '//' r '-[' n ']->' s" (at level 70, no associativity, format "P // r -[ n ]-> s").
Reserved Notation "P '//' r '-+>' s" (at level 70, no associativity).
Reserved Notation "P '//' r '->>' s" (at level 70, no associativity).
Reserved Notation "P '//' r '-]]' s" (at level 70, no associativity).
Reserved Notation "P '//' r '~~>' s" (at level 70, no associativity).
Reserved Notation "P '//' r ↓" (at level 70, no associativity).
Section Small_Step_Semantics.
Variable (instr : Set) (data : Type).
Notation state := (nat * data)%type.
Variable one_step : instr -> state -> state -> Prop.
Notation "i // s -1> t" := (one_step i s t) (at level 70, no associativity).
Notation "s ⟬ i ⦒ t" := (one_step i s t) (at level 70, no associativity).
Hypothesis (sss_fun : forall i s t1 t2, i // s -1> t1 -> i // s -1> t2 -> t1 = t2).
Hypothesis (sss_dec : forall i st1 st2, { i // st1 -1> st2 } + { ~ i // st1 -1> st2 }).
Notation code := (nat * list instr)%type.
Definition sss_step P st1 st2 := exists k l i r d, P = (k,l++i::r)
/\ st1 = (k+length l,d)
/\ i // st1 -1> st2.
Notation "P // r :1> s" := (sss_step P r s) (at level 70, no associativity).
Fact sss_step_fun P s t1 t2 : P // s :1> t1 -> P // s :1> t2 -> t1 = t2.
Proof.
intros (k1 & l1 & i1 & r1 & d1 & ? & ? & H1)
(k2 & l2 & i2 & r2 & d2 & ? & ? & H2).
subst.
inversion H3.
inversion H4.
subst k2.
apply list_app_inj in H5; try lia.
destruct H5 as (? & H5); inversion H5.
subst.
revert H1 H2; apply sss_fun.
Qed.
Fact in_sss_step k l i r st1 st2 : fst st1 = k+length l
-> i // st1 -1> st2
-> (k,l++i::r) // st1 :1> st2.
Proof. destruct st1 as (j,d); simpl; intro; subst; exists k,l,i,r,d; auto. Qed.
Fact sss_step_subcode_inv P ii st st' :
(fst st, ii::nil) <sc P -> P // st :1> st' -> ii // st -1> st'.
Proof.
intros H1 (k & l2 & jj & r2 & d1 & H3 & H4 & H5); subst P st.
destruct H1 as (l1 & r1 & H1 & H2).
simpl in H1, H2.
apply list_app_inj in H1; try lia.
destruct H1 as (? & H1); subst l2.
inversion H1; subst jj r2; auto.
Qed.
Fact sss_step_supcode P Q st st' :
P <sc Q -> in_code (fst st) P -> Q // st :1> st' -> P // st :1> st'.
Proof.
intros H1 H2 (k & l & ii & r & d & ? & ? & H3); subst.
destruct P as (iP,cP).
destruct H1 as (ll & rr & H1 & H4).
simpl in H2.
symmetry in H1.
apply list_app_cons_eq_inv in H1.
destruct H1 as [ (m & G1 & G2) | (m & G1 & G2) ].
2: apply f_equal with (f := @length _) in G1;
exfalso; revert G1; rew length; intro; lia.
apply list_app_cons_eq_inv in G2.
destruct G2 as [ (p & G3 & G4) | (p & G3 & G4) ].
subst; exfalso; revert H2; rew length; intro; lia.
subst.
apply in_sss_step; auto.
revert H2; rew length; simpl; intro; lia.
Qed.
Fact sss_step_dec P st1 st2 : { P // st1 :1> st2 } + { ~ P // st1 :1> st2 }.
Proof.
destruct st1 as (j,d).
destruct P as (k,ll).
destruct (le_lt_dec k j) as [ H1 | H1 ].
+ destruct (le_lt_dec (S j) (k+length ll)) as [ H2 | H2 ].
* destruct (@list_pick _ ll (j-k)) as (i & l & r & ? & ?).
- lia.
- assert (j = k+length l) by lia; subst.
destruct (sss_dec i (k+length l,d) st2) as [ | C ].
++ left; apply in_sss_step; auto.
++ right; contradict C.
destruct C as (k1 & l1 & i1 & r1 & d1 & H3 & H4 & H5).
inversion H3; subst.
inversion H4; subst.
apply list_app_inj in H7 as (-> & H7); try lia.
inversion H7; subst; auto.
* right; intros (k1 & l1 & i1 & r1 & d1 & H3 & H4 & H5).
inversion H3; subst.
inversion H4; subst.
rewrite app_length in H2; simpl in H2; lia.
+ right; intros (k1 & l1 & i1 & r1 & d1 & H3 & H4 & H5).
inversion H3; subst.
inversion H4; subst.
lia.
Qed.
Inductive sss_steps (P : code) : nat -> state -> state -> Prop :=
| in_sss_steps_0 : forall st, P // st -[0]-> st
| in_sss_steps_S : forall n st1 st2 st3, P // st1 :1> st2
-> P // st2 -[n]-> st3
-> P // st1 -[S n]-> st3
where "P // r -[ n ]-> s" := (sss_steps P n r s).
Fact sss_steps_0 P st1 st2 : st1 = st2 -> P // st1 -[0]-> st2.
Proof. intros []; constructor. Qed.
Fact sss_steps_1 P st1 st2 : P // st1 :1> st2 -> P // st1 -[1]-> st2.
Proof.
constructor 2 with st2; auto.
constructor 1.
Qed.
Fact sss_steps_trans P n m st1 st2 st3 :
P // st1 -[n]-> st2 -> P // st2 -[m]-> st3 -> P // st1 -[n+m]-> st3 .
Proof.
intros H; revert H st3.
induction 1 as [ | ? ? st2 ]; simpl; intros; auto.
constructor 2 with st2; auto.
Qed.
Fact sss_steps_0_inv P st1 st2 : P // st1 -[0]-> st2 -> st1 = st2.
Proof. inversion 1; auto. Qed.
Fact sss_steps_S_inv P st1 st3 k :
st1 <> st3
-> P // st1 -[k]-> st3
-> exists k' st2, k = S k'
/\ P // st1 :1> st2
/\ P // st2 -[k']-> st3.
Proof.
intros H.
inversion 1; subst.
destruct H; auto.
exists n, st2; auto.
Qed.
Fact sss_steps_inv P k st1 st3 :
P // st1 -[k]-> st3
-> (k = 0 /\ st1 = st3)
+ { k' | exists st2, k = S k'
/\ P // st1 :1> st2
/\ P // st2 -[k']-> st3 }%type.
Proof.
intros H.
destruct k as [ | k ]; [ left | right ].
apply sss_steps_0_inv in H; auto.
exists k.
inversion H; subst.
exists st2; auto.
Qed.
Fact sss_steps_S_inv' P st1 st3 k :
P // st1 -[S k]-> st3
-> exists st2, P // st1 :1> st2
/\ P // st2 -[k]-> st3.
Proof.
intros H.
inversion H; subst.
exists st2; auto.
Qed.
Fact sss_steps_fun P k s t1 t2 :
P // s -[k]-> t1
-> P // s -[k]-> t2
-> t1 = t2.
Proof.
intros H; revert H t2; induction 1 as [ | ? ? st2 ? H1 H2 IH2 ]; simpl; intros t2 Ht2; auto.
inversion Ht2; auto.
inversion Ht2; subst.
generalize (sss_step_fun H1 H0); intro; subst.
apply IH2 in H3; auto.
Qed.
Fact sss_steps_plus_inv P n m st1 st3 :
P // st1 -[n+m]-> st3
-> exists st2, P // st1 -[n]-> st2
/\ P // st2 -[m]-> st3.
Proof.
revert st1 st3; induction n as [ | n IHn ]; intros s t.
exists s; split; auto; constructor.
inversion 1; subst.
apply IHn in H2; destruct H2 as (st & ? & ?).
exists st; split; auto.
constructor 2 with st2; auto.
Qed.
Definition sss_progress P st1 st2 := exists k, 0 < k /\ P // st1 -[k]-> st2.
Definition sss_compute P st1 st2 := exists k, P // st1 -[k]-> st2.
Notation "P // r -+> s" := (sss_progress P r s).
Notation "P // r ->> s" := (sss_compute P r s).
Fact sss_progress_compute P st1 st2 : P // st1 -+> st2 -> P // st1 ->> st2.
Proof. intros (k & _ & ?); exists k; auto. Qed.
Fact sss_compute_trans P st1 st2 st3 : P // st1 ->> st2 -> P // st2 ->> st3 -> P // st1 ->> st3.
Proof. intros (i & H1) (j & H2); exists (i+j); revert H1 H2; apply sss_steps_trans. Qed.
Fact sss_progress_compute_trans P st1 st2 st3 : P // st1 -+> st2 -> P // st2 ->> st3 -> P // st1 -+> st3.
Proof. intros (i & ? & H1) (j & H2); exists (i+j); split; try lia; revert H1 H2; apply sss_steps_trans. Qed.
Fact sss_compute_progress_trans P st1 st2 st3 : P // st1 ->> st2 -> P // st2 -+> st3 -> P // st1 -+> st3.
Proof. intros (i & H1) (j & ? & H2); exists (i+j); split; try lia; revert H1 H2; apply sss_steps_trans. Qed.
Fact sss_progress_trans P st1 st2 st3 : P // st1 -+> st2 -> P // st2 -+> st3 -> P // st1 -+> st3.
Proof. intro; apply sss_compute_progress_trans, sss_progress_compute; trivial. Qed.
Fact sss_step_in_code P st1 st2 : P // st1 :1> st2 -> in_code (fst st1) P.
Proof.
revert P st1 st2; intros (n,c) (i,d) st2 (q & l & ii & r & d1 & H1 & H2 & _).
inversion H1; subst.
inversion H2; subst.
simpl; rew length; lia.
Qed.
Fact sss_steps_compute P n st1 st2 : P // st1 -[n]-> st2 -> P // st1 ->> st2.
Proof. exists n; trivial. Qed.
Fact subcode_sss_step P Q st1 st2: P <sc Q -> P // st1 :1> st2 -> Q // st1 :1> st2.
Proof.
destruct P as (n1,c1).
destruct Q as (n2,c2).
simpl.
intros (l & r & H1 & H2) H3.
destruct H3 as (q & ll & i & rr & d1 & H3 & H4 & H5).
inversion H3; subst.
exists n2, (l++ll), i, (rr++r), d1; repeat split; auto.
f_equal; solve list eq.
f_equal; rew length; lia.
Qed.
Fact subcode_sss_steps P Q k st1 st2: P <sc Q -> P // st1 -[k]-> st2 -> Q // st1 -[k]-> st2.
Proof.
induction 2 as [ | k st1 st2 st3 H3 H4 IH4 ].
constructor.
constructor 2 with st2; auto.
revert H3; apply subcode_sss_step; auto.
Qed.
Fact subcode_sss_progress P Q st1 st2: P <sc Q -> P // st1 -+> st2 -> Q // st1 -+> st2.
Proof.
intros ? (k & ? & Hk); exists k; split; auto; revert Hk; apply subcode_sss_steps; auto.
Qed.
Fact subcode_sss_compute P Q st1 st2: P <sc Q -> P // st1 ->> st2 -> Q // st1 ->> st2.
Proof.
intros ? (k & Hk); exists k; revert Hk; apply subcode_sss_steps; auto.
Qed.
Fact subcode_sss_compute_trans P Q st1 st2 st3 :
P <sc Q -> P // st1 ->> st2 -> Q // st2 ->> st3 -> Q // st1 ->> st3.
Proof.
intros ? H.
apply sss_compute_trans.
revert H; apply subcode_sss_compute; auto.
Qed.
Fact subcode_sss_compute_linstr k li P st1 st2 st :
(fst st1,li) // st1 -[k]-> st2
-> (fst st1,li) <sc P
-> P // st2 ->> st
-> P // st1 ->> st.
Proof.
intros H1 H2.
apply subcode_sss_compute_trans with (1 := H2).
exists k; auto.
Qed.
Fact subcode_sss_compute_instr P i st1 st2 st3 :
i // st1 -1> st2
-> (fst st1,i::nil) <sc P
-> P // st2 ->> st3
-> P // st1 ->> st3.
Proof.
intro H; apply subcode_sss_compute_linstr with (k := 1).
apply sss_steps_1, in_sss_step with (l := nil); auto.
Qed.
Fact subcode_sss_step_inv P Q st1 st2 :
P <sc Q
-> in_code (fst st1) P
-> Q // st1 :1> st2
-> P // st1 :1> st2.
Proof.
revert P Q st1 st2; intros (nP,cP) (nQ,cQ) (i,d) st; simpl.
intros (l & r & H1 & H2) H3 (q & ll & ii & rr & d1 & H4 & H5 & H6).
inversion H4; subst.
inversion H5; subst.
clear H4 H5.
apply list_app_cons_eq_inv in H7.
destruct H7 as [ (m & Hm1 & Hm2) | (m & Hm1 & Hm2) ].
apply list_app_cons_eq_inv in Hm2.
destruct Hm2 as [ (p & Hp1 & Hp2) | (p & Hp1 & Hp2) ].
+ apply f_equal with (f := @length _) in Hm1.
apply f_equal with (f := @length _) in Hp1.
revert Hm1 Hp1; rew length; intros; lia.
+ subst cP; apply in_sss_step; auto.
simpl; subst; rew length; lia.
+ apply f_equal with (f := @length _) in Hm1.
apply f_equal with (f := @length _) in Hm2.
revert Hm1 Hm2; rew length; intros; lia.
Qed.
Definition sss_output P st st' := P // st ->> st' /\ out_code (fst st') P.
Notation "P // x ~~> y" := (sss_output P x y).
Definition sss_terminates P st := exists st', P // st ~~> st'.
Notation "P // x ↓" := (sss_terminates P x).
Fact subcode_sss_terminates_instr P i st1 st2 :
i // st1 -1> st2
-> (fst st1,i::nil) <sc P
-> P // st2 ↓
-> P // st1 ↓.
Proof.
intros H1 H2 (st3 & H3 & H4).
exists st3; split; auto.
revert H1 H2 H3; apply subcode_sss_compute_instr.
Qed.
Definition sss_stall ii st := forall st', ~ ii // st -1> st'.
Definition sss_step_stall P st := forall st', ~ P // st :1> st'.
Fact sss_steps_stall_inv P p s1 s2 : sss_step_stall P s1 -> P // s1 -[p]-> s2 -> p = 0 /\ s1 = s2.
Proof.
intros H; induction 1 as [ | p st1 st2 st3 H1 ]; auto.
apply H in H1; destruct H1.
Qed.
Fact sss_steps_stall_fun P p q s1 s2 :
sss_step_stall P s2
-> P // s1 -[p]-> s2
-> P // s1 -[q]-> s2
-> p = q.
Proof.
intros H1 H2; revert H2 q.
induction 1 as [ s1 | p s1 s2 s3 H2 H3 IH3 ];
intros q H5.
apply sss_steps_stall_inv, proj1 in H5; auto.
destruct q.
apply sss_steps_0_inv in H5; subst.
apply H1 in H2; destruct H2.
specialize (IH3 H1).
apply sss_steps_S_inv' in H5.
destruct H5 as (st2' & H5 & H6).
generalize (sss_step_fun H2 H5).
intros; subst st2'.
apply IH3 in H6; subst; auto.
Qed.
Definition sss_compute_max P s1 s2 := (P // s1 ->> s2 /\ sss_step_stall P s2).
Notation " P // s1 -]] s2 " := (sss_compute_max P s1 s2).
Fact sss_out_step_stall P st : out_code (fst st) P -> sss_step_stall P st.
Proof.
revert P st; intros (n,code) (i,st).
intros H1 st' (k & l & ii & r & d1 & H2 & H3 & H4).
inversion H2; inversion H3; subst.
simpl in H1.
revert H1; rew length; intros []; lia.
Qed.
Fact sss_stall_step_stall ii P st :
(fst st,ii::nil) <sc P
-> sss_stall ii st
-> sss_step_stall P st.
Proof.
intros H1 H2 st' H.
apply sss_step_subcode_inv with (1 := H1) in H.
revert H; apply H2.
Qed.
Fact sss_stall_step_0 ii P q st st' :
(fst st,ii::nil) <sc P
-> sss_stall ii st
-> P // st -[q]-> st' -> q = 0 /\ st = st'.
Proof.
intros H1 H2.
generalize (sss_stall_step_stall H1 H2).
intros H3 H4.
apply sss_steps_inv in H4.
destruct H4 as [ | (k & st2 & _ & H5 & _) ]; auto.
contradict H5; apply H3.
Qed.
Fact sss_step_stall_inv P st :
sss_step_stall P st
-> { ii | (fst st,ii::nil) <sc P /\ sss_stall ii st }
+ { out_code (fst st) P }.
Proof.
intros H.
destruct (in_out_code_dec (fst st) P) as [ H1 | H1 ].
2: tauto.
destruct P as (iP,cP).
destruct st as (j,d).
simpl in H1.
destruct (@list_pick _ cP (j-iP)) as (ii & l & r & H2 & H3).
lia.
left; exists ii; simpl; split.
exists l, r; split; auto; lia.
intros st' H4.
apply (H st').
subst; apply in_sss_step; auto.
simpl; lia.
Qed.
Fact sss_steps_stall k P st st' :
out_code (fst st) P
-> P // st -[k]-> st'
-> k = 0 /\ st = st'.
Proof.
destruct P; simpl.
intros H1 H2.
apply sss_steps_inv in H2.
destruct H2 as [ (? & ?) | (m & st2 & ? & H2 & _) ]; auto.
apply sss_out_step_stall in H2; try red; tauto.
Qed.
Lemma subcode_sss_steps_inv P Q k st1 st3 :
P <sc Q
-> in_code (fst st1) P
-> out_code (fst st3) P
-> Q // st1 -[k]-> st3
-> exists k1 k2 st2,
P // st1 -[k1]-> st2
/\ Q // st2 -[k2]-> st3
/\ k = k1+k2
/\ out_code (fst st2) P.
Proof.
intros H1 H2 H3 H4; revert H4 H2 H3.
induction 1 as [ st1 | k st1 st2 st3 H4 H5 IH5 ]; intros H2 H3.
exists 0, 0, st1; repeat split; auto; constructor.
apply subcode_sss_step_inv with (1 := H1) in H4; auto.
destruct (in_out_code_dec (fst st2) P) as [ H6 | H6 ].
destruct (IH5 H6 H3) as (k1 & k2 & st & ? & ? & ? & ?).
exists (S k1), k2, st; repeat split; auto.
constructor 2 with (1 := H4); auto.
lia.
exists 1, k, st2; repeat split; auto.
apply sss_steps_1; auto.
Qed.
Lemma subcode_sss_compute_inv P Q st1 st3 :
P <sc Q
-> out_code (fst st3) P
-> Q // st1 ->> st3
-> exists st2,
P // st1 ->> st2
/\ Q // st2 ->> st3
/\ out_code (fst st2) P.
Proof.
intros H1 H3 (k & Hk).
destruct (in_out_code_dec (fst st1) P) as [ H2 | H2 ].
+ apply subcode_sss_steps_inv with (1 := H1) in Hk; auto.
destruct Hk as (k1 & k2 & st2 & H4 & H5 & H6 & H7).
exists st2; repeat split; auto; red; firstorder.
+ exists st1; repeat split; auto.
* exists 0; constructor.
* red; firstorder.
Qed.
Fact subcode_sss_step_inv_1 P i st1 st2 : (fst st1,i::nil) <sc P -> P // st1 :1> st2 -> i // st1 -1> st2.
Proof.
revert P st1; intros (j,cj) (n,d) H1 H2.
apply subcode_sss_step_inv with (1 := H1) in H2.
2: simpl; lia.
destruct H2 as (q & l & ii & r & d1 & H2 & H3 & H4).
inversion H3; subst n d1; auto.
eq goal H4; f_equal.
inversion H2.
destruct l as [ | ? [ | ] ]; try discriminate.
inversion H5; subst; auto.
Qed.
Fact subcode_sss_subcode_inv P Q p k st1 st2 st3 :
out_code (fst st3) P
-> P <sc Q
-> P // st1 -[p]-> st2
-> Q // st1 -[k]-> st3
-> exists q, k = p+q /\ Q // st2 -[q]-> st3.
Proof.
revert P Q st3; intros P (j,cj) (n,d) H1 H2 H3.
simpl in H1.
revert k.
induction H3 as [ st | p st1 st2 st3 H4 H5 IH5 ];
intros k Hk.
exists k; auto.
apply sss_steps_inv in Hk.
destruct Hk as [ (? & Hk) | (m & st4 & ? & Hk & H3) ].
1: subst st1; apply sss_step_in_code in H4; simpl in H4; lia.
apply subcode_sss_step with (1 := H2) in H4.
rewrite (sss_step_fun Hk H4) in H3.
apply IH5 in H3; auto.
destruct H3 as (q & ? & H3).
exists q; split; auto; lia.
Qed.
Fact subcode_sss_terminates_inv P Q st st1 :
Q // st ↓
-> P <sc Q
-> P // st ~~> st1
-> Q // st1 ↓.
Proof.
intros (st3 & (k & H1) & H2) H3 ((p & H4) & H5).
destruct subcode_sss_subcode_inv with (2 := H3) (3 := H4) (4 := H1)
as (q & _ & H6).
1: revert H2; apply subcode_out_code; auto.
exists st3; split; auto; exists q; auto.
Qed.
Fact subcode_sss_progress_inv P Q p st1 st2 st3 :
out_code (fst st3) P
-> P <sc Q
-> P // st1 -+> st2
-> Q // st1 -[p]-> st3
-> exists q, q < p /\ Q // st2 -[q]-> st3.
Proof.
intros H1 H2 (k & ? & H3) H4.
apply subcode_sss_subcode_inv with (3 := H3) in H4; auto.
destruct H4 as (q & ? & ?); exists q; split; auto; lia.
Qed.
Section sss_terminates_ind.
Variable (P : code) (R : state -> Prop).
Hypothesis (HR0 : forall st, out_code (fst st) P -> R st)
(HR1 : forall st1, (forall Q st2, Q <sc P -> Q // st1 -+> st2 -> P // st2 ↓ -> R st2) -> R st1).
Theorem sss_terminates_ind st : P // st ↓ -> R st.
Proof.
intros (st2 & (k & H1) & H2); revert st st2 H1 H2.
induction k as [ k IH ] using (well_founded_induction_type lt_wf).
intros st1 st2 H1 H2.
destruct k as [ | k ].
+ apply sss_steps_0_inv in H1.
subst; apply HR0; auto.
+ apply HR1.
intros Q st2' HQ H5 (st3 & H6 & H7).
apply subcode_sss_progress_inv with (3 := H5) in H1; auto.
destruct H1 as (q & G1 & G2).
apply IH with (2 := G2); auto.
revert H2; apply subcode_out_code; auto.
Qed.
End sss_terminates_ind.
Section sss_compute_max_ind.
Variable (P : code) (R : state -> state -> Prop).
Hypothesis (HQ0 : forall st, sss_step_stall P st -> R st st)
(HQ1 : forall st1 st3, (forall Q st2, Q <sc P -> Q // st1 -+> st2 -> P // st2 -]] st3 -> R st2 st3) -> R st1 st3).
Theorem sss_compute_max_ind st1 st3 : P // st1 -]] st3 -> R st1 st3.
Proof.
intros ((k & H1) & H2); revert st1 H1.
induction k as [ k IH ] using (well_founded_induction_type lt_wf).
intros st1 H1.
destruct k as [ | k ].
apply sss_steps_0_inv in H1.
subst; apply HQ0; auto.
apply HQ1.
intros Q st2' HQ H5 ((q & H6) & _).
apply subcode_sss_progress with (1 := HQ) in H5.
destruct H5 as (l & Hl & H5).
generalize (sss_steps_trans H5 H6); intro H7.
generalize (sss_steps_stall_fun H2 H1 H7); intros H8.
apply IH with q; auto; lia.
Qed.
End sss_compute_max_ind.
Hint Resolve subcode_refl : core.
Fact sss_compute_inv P st1 st2 st3 :
out_code (fst st3) P
-> P // st1 ->> st2
-> P // st1 ->> st3
-> P // st2 ->> st3.
Proof.
intros H2 (p & H3) (k & H4).
apply subcode_sss_subcode_inv with (3 := H3) in H4; auto.
destruct H4 as (q & _ & ?); exists q; auto.
Qed.
Fact sss_compute_step_out_inv P k st1 st2 st3 :
st1 <> st2
-> out_code (fst st3) P
-> P // st1 ->> st2
-> P // st1 -[k]-> st3
-> exists q, q < k /\ P // st2 -[q]-> st3.
Proof.
intros H1 H2 (p & H3) H4.
apply subcode_sss_subcode_inv with (3 := H3) in H4; auto.
destruct H4 as (q & H4 & H5).
exists q; split; auto.
destruct p; try lia.
apply sss_steps_0_inv in H3.
destruct H1; auto.
Qed.
Fact subcode_sss_subcode_compute_inv P Q k st1 st2 st3 :
in_code (fst st1) P
-> out_code (fst st2) P
-> out_code (fst st3) P
-> P <sc Q
-> P // st1 ->> st2
-> Q // st1 -[k]-> st3
-> exists q, q < k /\ Q // st2 -[q]-> st3.
Proof.
intros H H0 H1 H2 (p & H3) H4.
apply subcode_sss_subcode_inv with (2 := H2) (3 := H3) in H4; auto.
destruct H4 as (q & Hq & H4).
exists q; split; auto.
destruct p; try lia.
apply sss_steps_0_inv in H3; subst st2.
red in H, H0; lia.
Qed.
Fact subcode_sss_steps_inv_1 P i k st1 st2 st3 :
st1 <> st3
-> i // st1 -1> st2
-> (fst st1,i::nil) <sc P
-> P // st1 -[k]-> st3
-> exists k', k = S k' /\ P // st2 -[k']-> st3.
Proof.
intros H1 H2 H3 H4.
apply sss_steps_inv in H4.
destruct H4 as [ (_ & H4) | (k' & st & ? & H4 & ?) ].
contradict H1; auto.
exists k'; split; auto.
apply subcode_sss_step_inv_1 with (1 := H3) in H4.
rewrite (sss_fun H2 H4); auto.
Qed.
Fact subcode_sss_steps_stop P i k st1 st2 :
(forall st, ~ i // st1 -1> st)
-> (fst st1,i::nil) <sc P
-> P // st1 -[k]-> st2 -> k = 0 /\ st1 = st2.
Proof.
intros H1 H2 H3.
apply sss_steps_inv in H3.
destruct H3 as [ | (k' & st & ? & H3 & H4) ]; auto; exfalso.
apply (H1 st), subcode_sss_step_inv_1 with (1 := H2); auto.
Qed.
Fact sss_steps_stop P k st1 st2 :
out_code (fst st1) P
-> P // st1 -[k]-> st2
-> st1 = st2.
Proof.
intros H1 H2.
apply sss_steps_inv in H2.
destruct H2 as [ [ _ ? ] | (k' & st3 & H2 & H3 & H4) ]; auto.
destruct (sss_out_step_stall H1 H3).
Qed.
Fact sss_compute_stop P st1 st2 :
out_code (fst st1) P
-> P // st1 ->> st2
-> st1 = st2.
Proof.
intros H1 (k & H2); revert H2; apply sss_steps_stop; auto.
Qed.
Fact sss_compute_fun P st1 st2 st3 :
out_code (fst st2) P
-> out_code (fst st3) P
-> P // st1 ->> st2
-> P // st1 ->> st3
-> st2 = st3.
Proof.
intros H1 H2 H3 H4.
destruct (in_out_code_dec (fst st1) P) as [ H5 | H5 ].
destruct H4 as (k & H4).
apply subcode_sss_subcode_compute_inv with (5 := H3) in H4; auto.
destruct H4 as (q & _ & H4).
apply sss_steps_stop in H4; auto.
apply sss_compute_stop in H3; auto.
apply sss_compute_stop in H4; auto.
subst; auto.
Qed.
Fact sss_output_fun P st st1 st2 : P // st ~~> st1 -> P // st ~~> st2 -> st1 = st2.
Proof.
intros (H1 & H2) (H3 & H4); revert H2 H4 H1 H3; apply sss_compute_fun.
Qed.
Fact subcode_sss_terminates P Q st : P <sc Q -> Q // st ↓ -> P // st ↓.
Proof.
intros H (st' & H1 & H2).
apply subcode_sss_compute_inv with (1 := H) in H1; auto.
+ destruct H1 as (st2 & H1 & H3 & H4).
exists st2; split; auto.
+ revert H2; apply subcode_out_code; auto.
Qed.
Section sss_loop.
Variable (P : code) (pre : data -> Prop) (spec : data -> data -> Prop)
(f : data -> data) (Hf : forall x, x <> f x)
(C1 C2 : data -> Prop) (HC : forall x, pre x -> { C1 x } + { C2 x })
(i : nat) (p : nat) (Hp : out_code p P)
(HP1 : forall x, pre x -> C1 x -> P // (i,x) ->> (i,f x) /\ pre (f x))
(HP2 : forall x, pre x -> C2 x -> exists y, P // (i,x) ->> (p,y) /\ spec x y).
Theorem sss_loop_sound x : pre x
-> (exists n, C2 (iter f x n))
-> exists n y, P // (i,x) ->> (p,y) /\ spec (iter f x n) y.
Proof.
intros H (n & Hn); revert x H Hn.
induction n as [ | n IHn ]; intros x Hx Hn.
simpl; exists 0; apply HP2; auto.
destruct (HC Hx) as [ H | H ].
apply IHn in Hn.
destruct Hn as (m & y & H1 & H2).
exists (S m), y; split; auto.
generalize H1; apply sss_compute_trans.
apply HP1; auto.
apply HP1; auto.
destruct (HP2 Hx) as (y & H1 & H2); auto.
exists 0, y; auto.
Qed.
Theorem sss_loop_complete x y q : pre x
-> out_code q P
-> P // (i,x) ->> (q,y)
-> p = q /\ exists n, C2 (iter f x n) /\ spec (iter f x n) y.
Proof.
intros Hx Hq (k & Hk); revert x Hx y q Hq Hk.
induction k as [ k IHk ] using (well_founded_induction lt_wf); intros x Hx y q Hq Hk.
destruct (HC Hx) as [ H | H ].
* apply HP1 in H; auto; destruct H as [ H1 H2 ].
destruct (@sss_compute_step_out_inv P k (i,x) (i,f x) (q,y))
as (k' & H3 & H4); auto.
{ inversion 1 as [ H3 ]; revert H3; apply Hf. }
destruct IHk with (2 := H2) (4 := H4) as (E & n & Hn); auto.
split; auto; exists (S n); auto.
* destruct HP2 with (2 := H) as (z & Hz & Hy); auto.
apply ex_intro with (x := k) in Hk.
generalize (@sss_compute_fun _ _ (p,z) (q,y) Hp Hq Hz Hk).
inversion 1; subst; auto.
split; auto.
exists 0; simpl; auto.
Qed.
End sss_loop.
End Small_Step_Semantics.