Require Import Arith List Wellfounded Extraction.
Set Implicit Arguments.
Definition eqdec X := forall x y : X, { x = y } + { x <> y }.
Definition swap {X Y} (c : X * Y) := let (x,y) := c in (y,x).
Tactic Notation "eq" "goal" hyp(H) :=
match goal with
|- ?b => match type of H with ?t => replace b with t; auto end
end.
Ltac eqgoal := let H := fresh in intro H; eq goal H; clear H.
Tactic Notation "spec" "in" hyp(H) :=
let Q := fresh
in match goal with G: ?h -> _ |- _ =>
match G with
| H => assert (h) as Q; [ | specialize (H Q); clear Q ]
end
end.
Ltac solve_list_eq := simpl; repeat progress (try rewrite app_ass; try rewrite <- app_nil_end; simpl; auto); auto.
Tactic Notation "solve" "list" "eq" := solve_list_eq.
Tactic Notation "solve_list_eq" "in" hyp(H) := generalize H; clear H; solve_list_eq; intro H.
Tactic Notation "solve" "list" "eq" "in" hyp(H) :=
let Q := fresh in
match goal with
|- ?t => set (Q := t); generalize H; clear H; solve_list_eq; intro H; unfold Q; clear Q
end.
Ltac msplit n :=
match n with
| 0 => idtac
| S ?n => split; [ | msplit n ]
end.
Ltac lsplit n :=
match n with
| 0 => idtac
| S ?n => split; [ lsplit n | ]
end.
Fact equal_equiv (P Q : Prop) : P = Q -> P <-> Q.
Proof. intros []; tauto. Qed.
Section forall_equiv.
Variable (X : Type) (A P Q : X -> Prop) (HPQ : forall n, A n -> P n <-> Q n).
Theorem forall_bound_equiv : (forall n, A n -> P n) <-> (forall n, A n -> Q n).
Proof.
split; intros H n Hn; generalize (H _ Hn); apply HPQ; auto.
Qed.
End forall_equiv.
Section exists_equiv.
Variable (X : Type) (P Q : X -> Prop) (HPQ : forall n, P n <-> Q n).
Theorem exists_equiv : (exists n, P n) <-> (exists n, Q n).
Proof.
split; intros (n & Hn); exists n; revert Hn; apply HPQ; auto.
Qed.
End exists_equiv.
Section measure_rect_123.
Section measure_rect.
Variable (X : Type) (m : X -> nat) (P : X -> Type).
Hypothesis F : forall x, (forall y, m y < m x -> P y) -> P x.
Definition measure_rect x : P x.
Proof.
cut (Acc (fun x y => m x < m y) x).
+ revert x.
refine (fix loop x H := @F x (fun x' H' => loop x' _)).
apply (Acc_inv H), H'.
+ apply wf_inverse_image with (f := m), lt_wf.
Defined.
End measure_rect.
Section measure_rect2.
Variable (X Y : Type) (m : X -> Y -> nat) (P : X -> Y -> Type).
Hypothesis F : forall x y, (forall x' y', m x' y' < m x y -> P x' y') -> P x y.
Let m' (c : X * Y) := match c with (x,y) => m x y end.
Let R c d := m' c < m' d.
Definition measure_rect2 x y : P x y.
Proof.
cut (Acc R (x,y)).
+ revert x y.
refine (fix loop x y H := @F x y (fun x' y' H' => loop x' y' _)).
apply (Acc_inv H), H'.
+ apply wf_inverse_image with (f := m'), lt_wf.
Defined.
End measure_rect2.
Section measure_rect3.
Variable (X Y Z : Type) (m : X -> Y -> Z -> nat) (P : X -> Y -> Z -> Type).
Hypothesis F : forall x y z, (forall x' y' z', m x' y' z' < m x y z -> P x' y' z') -> P x y z.
Let m' (c : X * Y * Z) := match c with (x,y,z) => m x y z end.
Let R c d := m' c < m' d.
Definition measure_rect3 x y z : P x y z.
Proof.
cut (Acc R (x,y,z)).
+ revert x y z.
refine (fix loop x y z H := @F x y z (fun x' y' z' H' => loop x' y' z' _)).
apply (Acc_inv H), H'.
+ apply wf_inverse_image with (f := m'), lt_wf.
Defined.
End measure_rect3.
End measure_rect_123.
Extraction Inline measure_rect measure_rect2 measure_rect3.
Tactic Notation "induction" "on" hyp(x) "as" ident(IH) "with" "measure" uconstr(f) :=
pattern x; revert x; apply measure_rect with (m := fun x => f); intros x IH.
Tactic Notation "induction" "on" hyp(x) hyp(y) "as" ident(IH) "with" "measure" uconstr(f) :=
pattern x, y; revert x y; apply measure_rect2 with (m := fun x y => f); intros x y IH.
Tactic Notation "induction" "on" hyp(x) hyp(y) hyp(z) "as" ident(IH) "with" "measure" uconstr(f) :=
pattern x, y, z; revert x y z; apply measure_rect3 with (m := fun x y z => f); intros x y z IH.