From Undecidability.Shared.Libs.PSL Require Import Prelim.
Definition dec (X: Prop) : Type := {X} + {~ X}.
Coercion dec2bool P (d: dec P) := if d then true else false.
Existing Class dec.
Definition Dec (X: Prop) (d: dec X) : dec X := d.
Arguments Dec X {d}.
Lemma Dec_reflect (X: Prop) (d: dec X) :
Dec X <-> X.
Proof.
destruct d as [A|A]; cbv; firstorder congruence.
Qed.
Notation Decb X := (dec2bool (Dec X)).
Lemma Dec_reflect_eq (X Y: Prop) (d: dec X) (e: dec Y) :
Decb X = Decb Y <-> (X <-> Y).
Proof.
destruct d as [D|D], e as [E|E]; cbn; intuition congruence.
Qed.
Lemma Dec_auto (X: Prop) (d: dec X) :
X -> Dec X.
Proof.
destruct d as [A|A]; cbn; intuition congruence.
Qed.
Lemma Dec_auto_not (X: Prop) (d: dec X) :
~ X -> ~ Dec X.
Proof.
destruct d as [A|A]; cbn; intuition congruence.
Qed.
Hint Resolve Dec_auto Dec_auto_not : core.
Hint Extern 4 =>
match goal with
| [ |- dec ((fun _ => _) _) ] => cbn
end : typeclass_instances.
Tactic Notation "decide" constr(p) :=
destruct (Dec p).
Tactic Notation "decide" constr(p) "as" simple_intropattern(i) :=
destruct (Dec p) as i.
Tactic Notation "decide" "_" :=
destruct (Dec _).
Tactic Notation "have" constr(E) := let X := fresh "E" in decide E as [X|X]; subst; try congruence; try lia; clear X.
Lemma Dec_true P {H : dec P} : dec2bool (Dec P) = true -> P.
Proof.
decide P; cbv in *; firstorder.
Qed.
Lemma Dec_false P {H : dec P} : dec2bool (Dec P) = false -> ~P.
Proof.
decide P; cbv in *; firstorder.
Qed.
Lemma Dec_true' (P : Prop) (d : dec P) : P -> Decb P = true.
Proof. intros H. decide P; cbn; tauto. Qed.
Lemma Dec_false' (P : Prop) (d : dec P) : (~ P) -> Decb P = false.
Proof. intros H. decide P; cbn; tauto. Qed.
Hint Extern 4 =>
match goal with
[ H : dec2bool (Dec ?P) = true |- _ ] => apply Dec_true in H
| [ H : dec2bool (Dec ?P) = false |- _ ] => apply Dec_false in H
| [ |- dec2bool (Dec ?P) = true] => apply Dec_true'
| [ |- dec2bool (Dec ?P) = false] => apply Dec_false'
end : core.
Lemma dec_DN X :
dec X -> ~~ X -> X.
Proof.
unfold dec; tauto.
Qed.
Lemma dec_DM_and X Y :
dec X -> dec Y -> ~ (X /\ Y) -> ~ X \/ ~ Y.
Proof.
unfold dec; tauto.
Qed.
Lemma dec_DM_impl X Y :
dec X -> dec Y -> ~ (X -> Y) -> X /\ ~ Y.
Proof.
unfold dec; tauto.
Qed.
Fact dec_transfer P Q :
P <-> Q -> dec P -> dec Q.
Proof.
unfold dec. tauto.
Defined.
Instance bool_dec (b: bool) :
dec b.
Proof.
unfold dec. destruct b; cbn; auto.
Defined.
Instance True_dec :
dec True.
Proof.
unfold dec; tauto.
Defined.
Instance False_dec :
dec False.
Proof.
unfold dec; tauto.
Defined.
Instance impl_dec (X Y : Prop) :
dec X -> dec Y -> dec (X -> Y).
Proof.
unfold dec; tauto.
Defined.
Instance and_dec (X Y : Prop) :
dec X -> dec Y -> dec (X /\ Y).
Proof.
unfold dec; tauto.
Defined.
Instance or_dec (X Y : Prop) :
dec X -> dec Y -> dec (X \/ Y).
Proof.
unfold dec; tauto.
Defined.
Instance not_dec (X : Prop) :
dec X -> dec (~ X).
Proof.
unfold not. auto.
Defined.
Instance iff_dec (X Y : Prop) :
dec X -> dec Y -> dec (X <-> Y).
Proof.
unfold iff. auto.
Defined.
Notation "'eq_dec' X" := (forall x y : X, dec (x=y)) (at level 70).
Structure eqType :=
EqType {
eqType_X :> Type;
eqType_dec : eq_dec eqType_X
}.
Arguments EqType X {_} : rename.
Canonical Structure eqType_CS X (A: eq_dec X) := EqType X.
Existing Instance eqType_dec.
Arguments eqType_CS (X) {_}.
Instance unit_eq_dec :
eq_dec unit.
Proof.
unfold dec. decide equality.
Defined.
Instance bool_eq_dec :
eq_dec bool.
Proof.
unfold dec. decide equality.
Defined.
Instance nat_eq_dec :
eq_dec nat.
Proof.
unfold dec. decide equality.
Defined.
Instance prod_eq_dec X Y :
eq_dec X -> eq_dec Y -> eq_dec (X * Y).
Proof.
unfold dec. decide equality.
Defined.
Instance list_eq_dec X :
eq_dec X -> eq_dec (list X).
Proof.
unfold dec. decide equality.
Defined.
Instance sum_eq_dec X Y :
eq_dec X -> eq_dec Y -> eq_dec (X + Y).
Proof.
unfold dec. decide equality.
Defined.
Instance option_eq_dec X :
eq_dec X -> eq_dec (option X).
Proof.
unfold dec. decide equality.
Defined.
Instance Empty_set_eq_dec:
eq_dec Empty_set.
Proof.
unfold dec. decide equality.
Defined.
Instance True_eq_dec:
eq_dec True.
Proof.
intros x y. destruct x,y. now left.
Defined.
Instance False_eq_dec:
eq_dec False.
Proof.
intros [].
Defined.
Definition dec (X: Prop) : Type := {X} + {~ X}.
Coercion dec2bool P (d: dec P) := if d then true else false.
Existing Class dec.
Definition Dec (X: Prop) (d: dec X) : dec X := d.
Arguments Dec X {d}.
Lemma Dec_reflect (X: Prop) (d: dec X) :
Dec X <-> X.
Proof.
destruct d as [A|A]; cbv; firstorder congruence.
Qed.
Notation Decb X := (dec2bool (Dec X)).
Lemma Dec_reflect_eq (X Y: Prop) (d: dec X) (e: dec Y) :
Decb X = Decb Y <-> (X <-> Y).
Proof.
destruct d as [D|D], e as [E|E]; cbn; intuition congruence.
Qed.
Lemma Dec_auto (X: Prop) (d: dec X) :
X -> Dec X.
Proof.
destruct d as [A|A]; cbn; intuition congruence.
Qed.
Lemma Dec_auto_not (X: Prop) (d: dec X) :
~ X -> ~ Dec X.
Proof.
destruct d as [A|A]; cbn; intuition congruence.
Qed.
Hint Resolve Dec_auto Dec_auto_not : core.
Hint Extern 4 =>
match goal with
| [ |- dec ((fun _ => _) _) ] => cbn
end : typeclass_instances.
Tactic Notation "decide" constr(p) :=
destruct (Dec p).
Tactic Notation "decide" constr(p) "as" simple_intropattern(i) :=
destruct (Dec p) as i.
Tactic Notation "decide" "_" :=
destruct (Dec _).
Tactic Notation "have" constr(E) := let X := fresh "E" in decide E as [X|X]; subst; try congruence; try lia; clear X.
Lemma Dec_true P {H : dec P} : dec2bool (Dec P) = true -> P.
Proof.
decide P; cbv in *; firstorder.
Qed.
Lemma Dec_false P {H : dec P} : dec2bool (Dec P) = false -> ~P.
Proof.
decide P; cbv in *; firstorder.
Qed.
Lemma Dec_true' (P : Prop) (d : dec P) : P -> Decb P = true.
Proof. intros H. decide P; cbn; tauto. Qed.
Lemma Dec_false' (P : Prop) (d : dec P) : (~ P) -> Decb P = false.
Proof. intros H. decide P; cbn; tauto. Qed.
Hint Extern 4 =>
match goal with
[ H : dec2bool (Dec ?P) = true |- _ ] => apply Dec_true in H
| [ H : dec2bool (Dec ?P) = false |- _ ] => apply Dec_false in H
| [ |- dec2bool (Dec ?P) = true] => apply Dec_true'
| [ |- dec2bool (Dec ?P) = false] => apply Dec_false'
end : core.
Lemma dec_DN X :
dec X -> ~~ X -> X.
Proof.
unfold dec; tauto.
Qed.
Lemma dec_DM_and X Y :
dec X -> dec Y -> ~ (X /\ Y) -> ~ X \/ ~ Y.
Proof.
unfold dec; tauto.
Qed.
Lemma dec_DM_impl X Y :
dec X -> dec Y -> ~ (X -> Y) -> X /\ ~ Y.
Proof.
unfold dec; tauto.
Qed.
Fact dec_transfer P Q :
P <-> Q -> dec P -> dec Q.
Proof.
unfold dec. tauto.
Defined.
Instance bool_dec (b: bool) :
dec b.
Proof.
unfold dec. destruct b; cbn; auto.
Defined.
Instance True_dec :
dec True.
Proof.
unfold dec; tauto.
Defined.
Instance False_dec :
dec False.
Proof.
unfold dec; tauto.
Defined.
Instance impl_dec (X Y : Prop) :
dec X -> dec Y -> dec (X -> Y).
Proof.
unfold dec; tauto.
Defined.
Instance and_dec (X Y : Prop) :
dec X -> dec Y -> dec (X /\ Y).
Proof.
unfold dec; tauto.
Defined.
Instance or_dec (X Y : Prop) :
dec X -> dec Y -> dec (X \/ Y).
Proof.
unfold dec; tauto.
Defined.
Instance not_dec (X : Prop) :
dec X -> dec (~ X).
Proof.
unfold not. auto.
Defined.
Instance iff_dec (X Y : Prop) :
dec X -> dec Y -> dec (X <-> Y).
Proof.
unfold iff. auto.
Defined.
Notation "'eq_dec' X" := (forall x y : X, dec (x=y)) (at level 70).
Structure eqType :=
EqType {
eqType_X :> Type;
eqType_dec : eq_dec eqType_X
}.
Arguments EqType X {_} : rename.
Canonical Structure eqType_CS X (A: eq_dec X) := EqType X.
Existing Instance eqType_dec.
Arguments eqType_CS (X) {_}.
Instance unit_eq_dec :
eq_dec unit.
Proof.
unfold dec. decide equality.
Defined.
Instance bool_eq_dec :
eq_dec bool.
Proof.
unfold dec. decide equality.
Defined.
Instance nat_eq_dec :
eq_dec nat.
Proof.
unfold dec. decide equality.
Defined.
Instance prod_eq_dec X Y :
eq_dec X -> eq_dec Y -> eq_dec (X * Y).
Proof.
unfold dec. decide equality.
Defined.
Instance list_eq_dec X :
eq_dec X -> eq_dec (list X).
Proof.
unfold dec. decide equality.
Defined.
Instance sum_eq_dec X Y :
eq_dec X -> eq_dec Y -> eq_dec (X + Y).
Proof.
unfold dec. decide equality.
Defined.
Instance option_eq_dec X :
eq_dec X -> eq_dec (option X).
Proof.
unfold dec. decide equality.
Defined.
Instance Empty_set_eq_dec:
eq_dec Empty_set.
Proof.
unfold dec. decide equality.
Defined.
Instance True_eq_dec:
eq_dec True.
Proof.
intros x y. destruct x,y. now left.
Defined.
Instance False_eq_dec:
eq_dec False.
Proof.
intros [].
Defined.