Require Import Relation_Operators List.
Import ListNotations.
Definition State := nat.
Definition Symbol := bool.
Definition Stack : Set := list Symbol.
Definition Config : Set := Stack * Stack * State.
Definition Instruction : Set := Config * Config.
Definition SMN : Set := list Instruction.
Inductive step (M : SMN) : Config -> Config -> Prop :=
| transition (v w r s r' s': Stack) (x y: State) :
In ((r, s, x), (r', s', y)) M ->
step M (r ++ v, s ++ w, x) (r' ++ v, s' ++ w, y).
Definition deterministic (M: SMN) := forall (X Y Z: Config), step M X Y -> step M X Z -> Y = Z.
Definition reachable (M: SMN) : Config -> Config -> Prop := clos_refl_trans Config (step M).
Definition confluent (M: SMN) := forall (X Y1 Y2: Config), reachable M X Y1 -> reachable M X Y2 ->
exists (Z: Config), reachable M Y1 Z /\ reachable M Y2 Z.
Definition bounded (M: SMN) (n: nat) : Prop :=
forall (X: Config), exists (L: list Config), (forall (Y: Config), reachable M X Y -> In Y L) /\ length L <= n.
Definition length_preserving (M: SMN) : Prop :=
forall s t X s' t' Y, In ((s, t, X), (s', t', Y)) M -> length (s ++ t) = length (s' ++ t') /\ 1 <= length (s ++ t).
Definition SMNdl_UB : { M : SMN | deterministic M /\ length_preserving M } -> Prop :=
fun '(exist _ M _) => exists (n: nat), bounded M n.