Require Import List Relation_Operators Operators_Properties Lia.
Import ListNotations.
Require Import Undecidability.StringRewriting.Reductions.CM2_HALT_to_SSTS01.SR2ab.
Require Import Undecidability.CounterMachines.CM2.
Require Import Undecidability.StringRewriting.Util.List_facts.
Require Import Undecidability.StringRewriting.Reductions.CM2_HALT_to_SSTS01.SR2ab_facts.
Require Import Undecidability.CounterMachines.Util.CM2_facts.
Require Import ssreflect ssrbool ssrfun.
Set Default Proof Using "Type".
Set Default Goal Selector "!".
Local Arguments rt_trans {A R x y z}.
Local Arguments in_combine_l {A B l l' x y}.
Module Facts.
Lemma copy {A : Prop} : A -> A * A.
Proof. done. Qed.
Lemma iter_plus {X: Type} {f: X -> X} {x: X} {n m: nat} :
Nat.iter (n + m) f x = Nat.iter n f (Nat.iter m f x).
Proof. by rewrite /Nat.iter nat_rect_plus. Qed.
Lemma nth_error_Some_in_combine {X: Type} {l: list X} {i x}:
nth_error l i = Some x ->
In (i, x) (combine (seq 0 (length l)) l).
Proof.
move Hk: (0) => k Hi. have ->: (i = i + k) by lia.
elim: l i k {Hk} Hi; first by case.
move=> y l IH [|i] k.
- move=> /= [<-]. by left.
- move=> /IH {}IH /=. right. by have ->: (S (i + k) = i + S k) by lia.
Qed.
Lemma inv_nth_error_Some_in_combine {X: Type} {l: list X} {i x}:
In (i, x) (combine (seq 0 (length l)) l) -> nth_error l i = Some x.
Proof.
move Hk: (0) => k. rewrite [in (_, _)](ltac:(lia) : (i = i + k)).
elim: l i k {Hk}; first by case.
move=> y l IH i k /= [].
- move=> [? ->]. by have ->: i = 0 by lia.
- move: i => [|i].
+ move=> /in_combine_l /in_seq. by lia.
+ have ->: S i + k = i + S k by lia.
by move=> /IH.
Qed.
End Facts.
Module Argument.
Import Facts.
Local Arguments List.app : simpl never.
Local Arguments Nat.sub : simpl never.
Local Arguments repeat : simpl never.
Local Arguments app_inj_tail {A x y a b}.
Section Reduction.
Context (cm : Cm2).
Local Notation sb := ((0, @None nat)). Local Notation sl := ((1, @None nat)). Local Notation sr := ((2, @None nat)). Local Notation sm := ((3, @None nat)).
Local Notation sz := ((4, @None nat)). Local Notation so := ((5, @Some nat 0)). Local Notation st := ((6, @None nat)).
Local Notation sb' p := ((0, @Some nat p)). Local Notation sl' p := ((1, @Some nat p)). Local Notation sr' p := ((2, @Some nat p)). Local Notation sm' p := ((3, @Some nat p)).
Definition states := map (fun i => if i is dec _ q then q else 0) cm.
Definition sum : list nat -> nat := fold_right Nat.add 0.
Definition state_bound := 1 + length cm + sum states.
Lemma state_boundP {p i} : nth_error cm p = Some i ->
(if i is dec _ q then q else 0) + 1 + p < state_bound.
Proof.
rewrite /state_bound /states.
elim: (cm) p; first by case.
move=> ? l IH [|p] /= => [[->] | /IH]; last by lia.
by case: (i); lia.
Qed.
Definition enc_Instruction (ni: (nat * Instruction)) : Srs :=
match ni with
| (p, inc b) => if b then [((sr' p, sz), (sb, sr' (S p)))] else [((sz, sl' p), (sl' (S p), sb))]
| (p, dec b q) =>
if b then [((sm, sr' p), (sm, sr' (S p))); ((sb, sr' p), (sr' q, sz))]
else [((sl' p, sm), (sl' (S p), sm)); ((sl' p, sb), (sz, sl' q))]
end.
Definition srs : Srs :=
[((sz, sz), (st, sr));
((sz, st), (sl' 0, sm)) ] ++
flat_map enc_Instruction (combine (seq 0 (length cm)) cm) ++
flat_map (fun p => [
((sl' p, sb), (sl, sb' p)); ((sl' p, sm), (sl, sm' p));
((sb' p, sb), (sb, sb' p)); ((sb' p, sm), (sb, sm' p)); ((sb' p, sr), (sb, sr' p));
((sm' p, sb), (sm, sb' p)); ((sm' p, sr), (sm, sr' p))]) (seq 0 state_bound) ++
flat_map (fun p => [
((sb, sr' p), (sb' p, sr)); ((sm, sr' p), (sm' p, sr));
((sb, sb' p), (sb' p, sb)); ((sm, sb' p), (sm' p, sb)); ((sl, sb' p), (sl' p, sb));
((sb, sm' p), (sb' p, sm)); ((sl, sm' p), (sl' p, sm))]) (seq 0 state_bound) ++
map (fun p => ((sz, sl' p), (so, so))) (seq (length cm) (state_bound - length cm)) ++
[((sz, so), (so, so)); ((so, sb), (so, so)); ((so, sm), (so, so));
((so, sr), (so, so)); ((so, sz), (so, so))].
Inductive srs_spec (a b c d: Symbol) : Prop :=
| srs_i0 : ((sz, sz), (st, sr)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_i1 : ((sz, st), (sl' 0, sm)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_sim0 {p} : ((sr' p, sz), (sb, sr' (S p))) = ((a, b), (c, d)) -> nth_error cm p = Some (inc true) -> srs_spec a b c d
| srs_sim1 {p} : ((sz, sl' p), (sl' (S p), sb)) = ((a, b), (c, d)) -> nth_error cm p = Some (inc false) -> srs_spec a b c d
| srs_sim2 {p q} : ((sm, sr' p), (sm, sr' (S p))) = ((a, b), (c, d)) -> nth_error cm p = Some (dec true q) -> srs_spec a b c d
| srs_sim3 {p q} : ((sb, sr' p), (sr' q, sz))= ((a, b), (c, d)) -> nth_error cm p = Some (dec true q) -> srs_spec a b c d
| srs_sim4 {p q} : ((sl' p, sm), (sl' (S p), sm)) = ((a, b), (c, d)) -> nth_error cm p = Some (dec false q) -> srs_spec a b c d
| srs_sim5 {p q} : ((sl' p, sb), (sz, sl' q)) = ((a, b), (c, d)) -> nth_error cm p = Some (dec false q) -> srs_spec a b c d
| srs_fin0 {p} : ((sz, sl' p), (so, so)) = ((a, b), (c, d)) -> length cm <= p < state_bound -> srs_spec a b c d
| srs_fin1 : ((sz, so), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_fin2 : ((so, sb), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_fin3 : ((so, sm), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_fin4 : ((so, sr), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_fin5 : ((so, sz), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d.
Inductive srs_mlr_spec (a b c d: Symbol) : Prop :=
| srs_mr0 {p} : ((sl' p, sb), (sl, sb' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr1 {p} : ((sl' p, sm), (sl, sm' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr2 {p} : ((sb' p, sb), (sb, sb' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr3 {p} : ((sb' p, sm), (sb, sm' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr4 {p} : ((sb' p, sr), (sb, sr' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr5 {p} : ((sm' p, sb), (sm, sb' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr6 {p} : ((sm' p, sr), (sm, sr' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml0 {p} : ((sb, sr' p), (sb' p, sr)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml1 {p} : ((sm, sr' p), (sm' p, sr)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml2 {p} : ((sb, sb' p), (sb' p, sb)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml3 {p} : ((sm, sb' p), (sm' p, sb)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml4 {p} : ((sl, sb' p), (sl' p, sb)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml5 {p} : ((sb, sm' p), (sb' p, sm)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml6 {p} : ((sl, sm' p), (sl' p, sm)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d.
Lemma srs_specI a b c d : In ((a, b), (c, d)) srs -> srs_spec a b c d \/ srs_mlr_spec a b c d.
Proof.
rewrite /srs. case /in_app_iff.
{ firstorder (by eauto using srs_spec with nocore). }
case /in_app_iff.
{ move=> /in_flat_map [[? i]] [/inv_nth_error_Some_in_combine].
move: i => [] [] > /=; firstorder (by eauto using srs_spec with nocore). }
case /in_app_iff.
{ move=> /in_flat_map [?] [/in_seq] [_ ?].
firstorder (by eauto using srs_mlr_spec with nocore). }
case /in_app_iff.
{ move=> /in_flat_map [?] [/in_seq] [_ ?].
firstorder (by eauto using srs_mlr_spec with nocore). }
case /in_app_iff.
{ move=> /in_map_iff [?] [?] /in_seq H. left.
apply: srs_fin0; first by eassumption.
move: H. rewrite /state_bound. by lia. }
by firstorder (by eauto using srs_spec with nocore).
Qed.
Lemma In_srsI {a b c d} : srs_spec a b c d \/ srs_mlr_spec a b c d -> In ((a, b), (c, d)) srs.
Proof.
case.
- move=> [] > <- *.
1-2: apply /In_appl; rewrite /=; by tauto.
1-6: apply /In_appr /In_appl /in_flat_map; eexists;
(constructor; [apply: nth_error_Some_in_combine; by eassumption | by move=> /=; tauto ]).
1: apply /In_appr /In_appr /In_appr /In_appr /In_appl /in_map_iff; eexists;
(constructor; [by reflexivity | apply /in_seq; by lia ]).
1-5: do 5 (apply /In_appr); move=> /=; by tauto.
- move=> [] p <- *.
1-7: apply /In_appr /In_appr /In_appl /in_flat_map; exists p;
(constructor; [apply /in_seq; by lia | by move=> /=; tauto ]).
1-7: apply /In_appr /In_appr /In_appr /In_appl /in_flat_map; exists p;
(constructor; [apply /in_seq; by lia | by move=> /=; tauto ]).
Qed.
Lemma srs_mlr_specE {a b c d} : srs_mlr_spec a b c d ->
exists x y p,
((a, b), (c, d)) = (((x, Some p), (y, None)), ((x, None), (y, Some p))) \/
((a, b), (c, d)) = (((x, None), (y, Some p)), ((x, Some p), (y, None))).
Proof. move=> [] > [] ? ? ? ? _; subst; do 3 eexists; by tauto. Qed.
Local Create HintDb in_srs_db.
Local Hint Resolve or_introl or_intror conj In_srsI : in_srs_db.
Local Hint Immediate erefl : in_srs_db.
Local Hint Constructors srs_spec srs_mlr_spec : in_srs_db.
Definition stepI_nil := (@step_intro srs []).
Lemma move_sb_right {p n} : p < state_bound ->
multi_step srs ((sb' p) :: repeat sb n) ((repeat sb n) ++ [sb' p]).
Proof.
move=> Hp. elim: n; first by apply: rt_refl.
move=> n IH /=. apply: rt_trans;
[apply: rt_step | apply: (multi_step_applI (u := [sb])); exact: IH].
apply: stepI_nil. by eauto with in_srs_db nocore.
Qed.
Lemma move_sb_left {p n} : p < state_bound -> multi_step srs ((repeat sb n) ++ [sb' p]) ((sb' p) :: repeat sb n).
Proof.
move=> Hp. elim: n; first by apply: rt_refl.
move=> n IH /=. apply: rt_trans;
[apply: (multi_step_applI (u := [sb])); exact: IH | apply: rt_step].
apply: stepI_nil. by eauto with in_srs_db nocore.
Qed.
Section Transport.
Context (n_cm: nat).
Definition c0 := {| state := 0; value1 := 0; value2 := 0 |}.
Context (H_n_cm: halting cm (Nat.iter n_cm (CM2.step cm) c0)).
Lemma cm_values_ub n :
value1 (Nat.iter n (CM2.step cm) c0) + value2 (Nat.iter n (CM2.step cm) c0) <= n_cm.
Proof using H_n_cm.
have [|->] : n <= n_cm \/ n = ((n - n_cm) + n_cm) by lia.
- move=> ?. have := values_ub cm c0 n.
rewrite /c0 /=. by lia.
- rewrite iter_plus halting_eq; first done.
have := values_ub cm c0 n_cm.
rewrite /c0 /=. by lia.
Qed.
Lemma cm_state_ub n : state (Nat.iter n (CM2.step cm) c0) < state_bound.
Proof.
elim: n; first by (rewrite /= /state_bound; lia).
move=> n /=. move: (Nat.iter _ _ c0) => [p a b] /=.
move Hoi: (nth_error cm p) => oi. case: oi Hoi; last done.
case.
- by move=> > /state_boundP.
- move: a b => [|?] [|?] [] > /state_boundP /=; by lia.
Qed.
Definition d := 5 + n_cm + n_cm.
Definition enc_Config : Config -> list Symbol :=
fun '{| state := p; value1 := a; value2 := b |} =>
(repeat sz (1 + n_cm-a)) ++ [sl' p] ++ (repeat sb a) ++ [sm] ++
(repeat sb b) ++ [sr] ++ (repeat sz (1 + n_cm-b)).
Definition enc_Config' : Config -> list Symbol :=
fun '{| state := p; value1 := a; value2 := b |} =>
(repeat sz (1 + n_cm-a)) ++ [sl] ++ (repeat sb a) ++ [sm] ++
(repeat sb b) ++ [sr' p] ++ (repeat sz (1 + n_cm-b)).
Lemma multi_step_enc_c0 : multi_step srs (repeat sz d) (enc_Config c0).
Proof using.
apply: (rt_trans (y := (repeat sz (1 + n_cm)) ++ [sz] ++ [st] ++ [sr] ++ (repeat sz (1 + n_cm)))).
- have ->: d = 1 + n_cm + 1 + 1 + 1 + 1 + n_cm by (rewrite /d; lia).
rewrite -?repeat_appP -?app_assoc. do ? apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
- apply /multi_step_applI /rt_step /stepI_nil. by eauto with in_srs_db nocore.
Qed.
Lemma move_sb_right' {p n x y} : p < state_bound -> ((x, y) = (1, 3) \/ (x, y) = (3, 2)) ->
multi_step srs ([(x, Some p)] ++ repeat sb n ++ [(y, None)]) ([(x, None)] ++ repeat sb n ++ [(y, Some p)]).
Proof.
move=> ? /= Hxy. case: n.
- apply /rt_step /stepI_nil.
move: Hxy => [] [-> ->]; by eauto with in_srs_db nocore.
- move=> n. apply: (rt_trans (y := [(x, None)] ++ [sb' p] ++ (repeat sb n) ++ [(y, None)])).
+ have ->: repeat sb (S n) = [sb] ++ repeat sb n by done.
rewrite /= -?app_assoc. apply /rt_step /stepI_nil.
move: Hxy => [] [-> _]; by eauto with in_srs_db nocore.
+ rewrite -?app_assoc. apply: multi_step_applI.
apply: (rt_trans (y := (repeat sb n) ++ [sb' p] ++ [(y, None)])).
* rewrite ?app_assoc. apply: multi_step_apprI. by apply: move_sb_right.
* have ->: S n = n + 1 by lia. rewrite -repeat_appP -?app_assoc.
apply /multi_step_applI /rt_step /stepI_nil.
move: Hxy => [] [_ ->]; by eauto with in_srs_db nocore.
Qed.
Lemma move_sb_left' {p n x y} : p < state_bound -> ((x, y) = (1, 3) \/ (x, y) = (3, 2)) ->
multi_step srs ([(x, None)] ++ repeat sb n ++ [(y, Some p)]) ([(x, Some p)] ++ repeat sb n ++ [(y, None)]).
Proof.
move=> ? /= Hxy. case: n.
- apply /rt_step /stepI_nil.
move: Hxy => [] [-> ->]; by eauto with in_srs_db nocore.
- move=> n. apply: (rt_trans (y := [(x, None)] ++ (repeat sb n) ++ [sb' p] ++ [(y, None)])).
+ rewrite (ltac:(lia) : S n = n + 1) -repeat_appP -?app_assoc. do ? apply: multi_step_applI.
apply /rt_step /stepI_nil.
move: Hxy => [] [_ ->]; by eauto with in_srs_db nocore.
+ rewrite ?app_assoc. apply: multi_step_apprI.
apply: (rt_trans (y := [(x, None)] ++ [sb' p] ++ (repeat sb n))).
* rewrite -?app_assoc. apply: multi_step_applI. by apply: move_sb_left.
* apply /rt_step /stepI_nil.
move: Hxy => [] [-> _]; by eauto with in_srs_db nocore.
Qed.
Lemma move_right n : let c := (Nat.iter n (CM2.step cm) c0) in
multi_step srs (enc_Config c) (enc_Config' c).
Proof.
move=> c. subst c. have := cm_state_ub n.
move: (Nat.iter n _ c0) => [p a b] /= ?.
apply: multi_step_applI. rewrite ?app_assoc. apply: multi_step_apprI.
apply: (rt_trans (y := [sl] ++ (repeat sb a) ++ [sm' p] ++ (repeat sb b) ++ [sr])).
- rewrite ?app_assoc. do 2 apply: multi_step_apprI.
apply: move_sb_right'; by tauto.
- rewrite -?app_assoc. do 2 apply: multi_step_applI.
apply: move_sb_right'; by tauto.
Qed.
Lemma move_left n : let c := (Nat.iter n (CM2.step cm) c0) in
multi_step srs (enc_Config' c) (enc_Config c).
Proof.
move=> c. subst c. have := cm_state_ub n.
move: (Nat.iter n _ c0) => [p a b] /= ?.
apply: multi_step_applI. rewrite ?app_assoc. apply: multi_step_apprI.
apply: (rt_trans (y := [sl] ++ (repeat sb a) ++ [sm' p] ++ (repeat sb b) ++ [sr])).
- rewrite -?app_assoc. do 2 apply: multi_step_applI.
apply: move_sb_left'; by tauto.
- rewrite ?app_assoc. do 2 apply: multi_step_apprI.
apply: move_sb_left'; by tauto.
Qed.
Lemma simulate_cm_step {n} : let c := (Nat.iter n (CM2.step cm) c0) in
multi_step srs (enc_Config c) (enc_Config (CM2.step cm c)).
Proof using H_n_cm.
move=> c. subst c.
have := cm_values_ub n.
have := move_right n. have := move_left (1+n). move=> /=.
case: (Nat.iter n _ _) => p a b /=.
move Hoi: (nth_error cm p) => oi.
case: oi Hoi; last by (move=> *; apply: rt_refl). case; case.
- move=> ? /= Hr Hl ?.
apply: rt_trans; first by eassumption.
apply: rt_trans; last by eassumption.
have [-> ->]: S b = b + 1 /\ S n_cm - b = 1 + (S n_cm - (b + 1)) by lia.
rewrite -?repeat_appP -?app_assoc. do 5 apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
- move=> ? _ _ ? /=.
have [-> ->]: S n_cm - a = (n_cm - a) + 1 /\ S a = 1 + a by lia.
rewrite -?repeat_appP -?app_assoc. apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
- move=> q ? /= Hr Hl Hb.
apply: rt_trans; first by eassumption.
apply: rt_trans; last by eassumption.
case: (b) Hb => [_ | b' Hb'] /=.
+ do 3 apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
+ have [-> ->] : S b' = b' + 1 /\ S n_cm - b' = 1 + (S n_cm - (b' + 1)) by lia.
rewrite -?repeat_appP -?app_assoc. do 5 apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
- move=> q ? _ _ Ha.
case: (a) Ha => [_ | a' Ha'] /=.
+ apply /multi_step_applI /rt_step /stepI_nil.
by eauto with in_srs_db nocore.
+ rewrite (ltac:(lia) : (S n_cm - a' = (n_cm - a') + 1)) -repeat_appP -?app_assoc.
apply /multi_step_applI /rt_step /stepI_nil.
by eauto with in_srs_db nocore.
Qed.
Lemma multi_step_repeat_solI n : multi_step srs (repeat sz n ++ [so]) (repeat so (n+1)).
Proof.
elim: n; first by apply: rt_refl.
move=> n IH. rewrite -repeat_appP.
have ->: S n = n + 1 by lia.
apply: (rt_trans (y := repeat sz n ++ [so] ++ [so]));
last by (rewrite ?app_assoc; apply: multi_step_apprI).
rewrite -repeat_appP -?app_assoc.
apply /multi_step_applI /rt_step /stepI_nil.
by eauto with in_srs_db nocore.
Qed.
Lemma multi_step_repeat_sorI {n x} : x = sb \/ x = sz ->
multi_step srs ([so] ++ repeat x n) ([so] ++ repeat so n).
Proof.
move=> Hx. elim: n; first by apply: rt_refl.
move=> n IH.
apply: (rt_trans (y := ([so] ++ [so] ++ repeat x n))); last by apply: multi_step_applI.
apply /rt_step /stepI_nil.
move: Hx => [] ->; by eauto with in_srs_db nocore.
Qed.
Lemma multi_step_repeat_sorI' {s t n x} : x = sb \/ x = sz ->
multi_step srs ([so] ++ s) ([so] ++ t) ->
multi_step srs ([so] ++ repeat x n ++ s) ([so] ++ repeat so n ++ t).
Proof.
move=> /multi_step_repeat_sorI H1 H2.
apply: (rt_trans (y := ([so] ++ repeat so n ++ s))).
- rewrite ?app_assoc. by apply: multi_step_apprI.
- have ->: [so] = repeat so 1 by done. rewrite ?app_assoc repeat_appP.
have ->: 1 + n = n + 1 by lia. rewrite -repeat_appP -?app_assoc.
by apply: multi_step_applI.
Qed.
Lemma simulate_cm_halting {n} : let c := (Nat.iter n (CM2.step cm) c0) in
halting cm c -> multi_step srs (enc_Config c) (repeat so d).
Proof using H_n_cm.
move=> c /haltingP. subst c.
have := cm_values_ub n. have := cm_state_ub n.
move: (Nat.iter _ _ c0) => [p a b] /= *.
apply: (rt_trans (y := (repeat sz (n_cm - a)) ++ [so] ++ [so] ++ _)).
- rewrite (ltac:(lia) : S n_cm - a = (n_cm - a) + 1) -repeat_appP -?app_assoc.
apply /multi_step_applI /rt_step /stepI_nil.
by eauto with in_srs_db nocore.
- apply: (rt_trans (y := (repeat so (n_cm - a + 1) ++ [so] ++
repeat sb a ++ [sm] ++ repeat sb b ++ [sr] ++ repeat sz (S n_cm - b)))).
+ rewrite ?app_assoc. do 6 apply: multi_step_apprI. by apply: multi_step_repeat_solI.
+ have ->: d = (n_cm - a + 1) + 1 + a + 1 + b + 1 + (S n_cm - b) by (rewrite /d; lia).
rewrite -?repeat_appP -?app_assoc. do 2 apply: multi_step_applI.
apply: multi_step_repeat_sorI'; first by left.
apply: (rt_trans (y := ([so] ++ [so] ++ repeat sb b ++ [sr] ++ repeat sz (S n_cm - b)))).
* apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
* apply: multi_step_applI. apply: multi_step_repeat_sorI'; first by left.
apply: (rt_trans (y := ([so] ++ [so] ++ repeat sz (S n_cm - b)))).
** apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
** apply: multi_step_applI. apply: multi_step_repeat_sorI. by right.
Qed.
End Transport.
Lemma transport : CM2_HALT cm -> SR2ab (srs, sz, so).
Proof.
move=> [n /copy [Hn] /(simulate_cm_halting n Hn) H]. exists (@d n - 1).
apply: rt_trans; last by eassumption.
apply: rt_trans; first by apply: (multi_step_enc_c0).
elim: (n in Nat.iter n); first by apply: rt_refl.
move=> m IH {H}. apply: rt_trans; [by exact: IH | by apply: simulate_cm_step].
Qed.
Section InverseTransport.
Context (N: nat). Context (HN: multi_step srs (repeat sz (1+N)) (repeat so (1+N))).
Local Definition rt_rt1n {A R x y} := @clos_rt_rt1n_iff A R x y.
Definition encodes : Config -> list Symbol -> Prop :=
fun c s =>
exists u v t, let '{| state := p; value1 := a; value2 := b |} := c in
s = u ++ t ++ v /\
map fst t = map fst ([sl] ++ repeat sb a ++ [sm] ++ repeat sb b ++ [sr]) /\
filter (fun x => if x is None then false else true) (map snd t) = [Some p].
Lemma In_srs_stE {a b c d} : In ((a, b), (c, d)) srs ->
((sz, sz), (st, sr)) = ((a, b), (c, d)) \/
((sz, st), (sl' 0, sm)) = ((a, b), (c, d)) \/
if a is (_, None) then (if b is (_, None) then False else True) else True.
Proof. move=> /srs_specI [] [] > [] ? ? ? ? *; subst; by tauto. Qed.
Lemma init_encodes : exists s, encodes c0 s /\ multi_step srs s (repeat so (1+N)).
Proof using HN.
have [s] : exists s,
multi_step srs s (repeat so (1+N)) /\
Forall (fun x => snd x = None) s /\
forall n, nth n s sz = st -> nth (1+n) s sz = sr.
{ eexists. constructor; [|constructor]; [by eassumption | apply /Forall_repeatI; by tauto |].
move: (1+N) => m n H. exfalso. elim: n m H; first by case.
move=> n IH [|m]; [done | by apply: IH]. }
move Ht: (repeat so (1+N)) => t [/rt_rt1n Hst] [].
elim: Hst Ht; first by move=> ? <- /ForallE [].
move=> {}s {}t > Hst Ht IH /IH {IH}.
case: Hst Ht => u v a b c d /In_srs_stE [|[]].
- move=> [] <- <- <- <- _ IH.
move=> /Forall_app [Hu] /ForallE [_] /ForallE [_ Ht] Huv.
apply: IH.
+ apply /Forall_app. by do ? constructor.
+ move=> n. have := Huv n. elim: (u) n; first by move=> [|[|n]].
clear. move=> x {}u IH [|n]; last by move/IH.
move: (u) => [|? ?]; [by move=> H /H | done].
- move=> [] <- <- <- <- /rt_rt1n Ht _ _ /(_ (1 + length u)).
do 2 (rewrite app_nth2; first by lia).
rewrite (ltac:(lia) : 1 + length u - length u = 1).
rewrite (ltac:(lia) : 1 + (1 + length u) - length u = 2).
move=> /(_ ltac:(done)) Hv. eexists. constructor; last by eassumption.
move: (v) Hv => [|? v']; first done.
move=> /= ->. exists u, v', [sl' 0; sm; sr].
constructor; [done | by constructor].
- move=> H _ _ /Forall_app [_] /ForallE [+] /ForallE [+] _.
by move: a b H => [? [?|]] [? [?|]].
Qed.
Lemma eq2_app {u v a b} {s t: list Symbol} : u ++ a :: b :: v = s ++ t ->
(exists v1, v = v1 ++ t /\ s = u ++ a :: b :: v1) \/
(s = u ++ [a] /\ t = b :: v) \/
(exists u2, u = s ++ u2 /\ t = u2 ++ a :: b :: v).
Proof.
elim: u s.
- move=> [|y1 [|y2 s]].
+ rewrite ?app_nil_l. move=> <-. right. right. by exists [].
+ move=> [] <- <- /=. right. by left.
+ move=> [] <- <- ->. left. by exists s.
- move=> x1 u IH [|y1 s].
+ rewrite ?app_nil_l. move=> <-. right. right. by exists (x1 :: u).
+ move=> [] <- /IH [|[|]].
* move=> [?] [-> ->]. left. by eexists.
* move=> [-> ->]. right. by left.
* move=> [?] [-> ->]. right. right. by eexists.
Qed.
Lemma eq2_app_app {u a b v u' v'} {s: list Symbol} : length s > 1 ->
u ++ a :: b :: v = u' ++ s ++ v' ->
(exists u'2, v = u'2 ++ s ++ v') \/
(exists s2, u' = u ++ [a] /\ s = b :: s2 /\ v = s2 ++ v') \/
(exists s1 s2, s = s1 ++ [a] ++ [b] ++ s2 /\ u = u' ++ s1 /\ v = s2 ++ v') \/
(exists s1, u = u' ++ s1 /\ s = s1 ++ [a] /\ v' = b :: v) \/
(exists v'1, u = u' ++ s ++ v'1).
Proof.
move=> Hs /eq2_app [|[|]].
- move=> [?] [-> ->]. left. by eexists.
- move=> [->]. move: s Hs => [|? s] /=; first by lia.
move=> _ [] <- <-. right. left. by eexists.
- move=> [?] [->] /esym /eq2_app [|[|]].
+ move=> [?] [-> ->]. right. right. left. by do 2 eexists.
+ move=> [-> ->]. do 3 right. left. by eexists.
+ move=> [?] [-> ->]. do 4 right. by eexists.
Qed.
Inductive srs_step_spec (u v: list Symbol) (a b: Symbol) (n m: nat) : Prop :=
| srs_step0 : a.1 = sl.1 -> b.1 = sm.1 -> u = [] -> n = 0 -> srs_step_spec u v a b n m
| srs_step1 : a.1 = sl.1 -> b.1 = sb.1 -> u = [] -> n = 1 + (n - 1) -> srs_step_spec u v a b n m
| srs_step2 : a.1 = sm.1 -> b.1 = sr.1 -> v = [] -> m = 0 -> srs_step_spec u v a b n m
| srs_step3 : a.1 = sb.1 -> b.1 = sr.1 -> v = [] -> m = 1 + (m - 1) -> srs_step_spec u v a b n m.
Lemma srs_step_specI {u v a b n m} :
map fst (u ++ [a] ++ [b] ++ v) = map fst ([sl] ++ repeat sb n ++ [sm] ++ repeat sb m ++ [sr]) ->
srs_step_spec u v a b n m \/
(a.1 = sb.1 /\ b.1 = sb.1) \/ (a.1 = sb.1 /\ b.1 = sm.1) \/ (a.1 = sm.1 /\ b.1 = sb.1).
Proof.
move: u => [|? u].
{ move: n => [|n].
- move=> [] *. left. by apply: srs_step0.
- move=> [] *. left. apply: srs_step1; by [|lia]. }
move=> [] _. rewrite -/(_ ++ _).
elim /rev_ind: v.
{ rewrite app_nil_r ?map_app /=.
rewrite ?app_assoc. move=> /app_inj_tail [].
have [->|->] : m = 0 \/ m = (m - 1) + 1 by lia.
- rewrite app_nil_r. move=> /app_inj_tail [] *. left. by apply: srs_step2.
- rewrite -repeat_appP map_app ?app_assoc.
move=> /app_inj_tail [] *. left. apply: srs_step3; by [|lia]. }
move=> ? v _. rewrite ?map_app ?app_assoc.
move=> /app_inj_tail [+] _. move=> + /ltac:(right).
elim: u n.
{ move=> [|[|n]].
- move: m => [|m [] *]; [done | by tauto ].
- move=> [] *. by tauto.
- move=> [] *. by tauto. }
move=> ? u IH [|n]; last by move=> [_] /IH.
move=> [_] {IH}. rewrite -?/(_ ++ _). elim: m u; first by case.
move=> m IH [|? u]; last by move=> [_] /IH.
move: m {IH} => [|m] []; [done | by tauto].
Qed.
Lemma simulate_srs_step {c s t} : SR2ab.step srs s t -> encodes c s ->
halting cm c \/ encodes c t \/ encodes (CM2.step cm c) t.
Proof.
move: c => [p a b] [] u v a' b' c' d' H [u'] [v'] [{}t].
rewrite -?/([_] ++ [_] ++ v). move=> [+] [H1t H2t] => /eq2_app_app.
have : length t > 1.
{ move: H1t => /(congr1 (@length _)).
rewrite ?map_app ?app_length ?map_length /=. move=> ->. by lia. }
move=> Ht /(_ Ht) {Ht}.
case; [|case; [|case; [|case]]].
- move=> [u'2 ->]. right. left.
exists (u ++ c' :: d' :: u'2), v', t.
constructor; [by rewrite -?app_assoc | done].
- move=> [s2] [?] [? ?]. subst. move: H1t H2t => [].
move: H => /srs_specI [|] [] > [] ? ? ? ?; subst; try done; [|].
+ move=> Hi _ H1s2 [<- H2s2]. right. right.
rewrite /= Hi. eexists u, v', (_ :: _ :: s2).
constructor; [done | constructor; by rewrite /= ?H1s2 ?H2s2].
+ move=> ? _ _ [<-] _ *. left.
apply /haltingP => /=. by lia.
- move=> [s1] [s2] [?] [? ?]. subst.
move: H H1t H2t => /srs_specI [].
+ move=> H + + /ltac:(right; right). move=> /copy [/srs_step_specI] [].
* move=> H'. move: H' H => [] ? ? ? ? [] > [] ? ? ? ?; subst; try done; [ | | | ].
** rewrite app_nil_r /=. move=> + [H1] [<-] => -> H2.
eexists u', v', (_ :: _ :: _). constructor; [done | by rewrite /= H1 H2].
** rewrite app_nil_r /= ?map_app. move: (a) => [|?]; first done.
move=> + [] H1 [<-] H2 => ->.
eexists (u' ++ [sz]), v', (_ :: _).
rewrite -?app_assoc. constructor; [done | by rewrite /= ?map_app H1 H2].
** rewrite ?map_app filter_app /= app_nil_r.
move=> + + /(app_inj_tail (y := [])) [H2] [<-].
move=> ->. rewrite ?app_assoc app_nil_r.
move=> /app_inj_tail [/app_inj_tail] [H1] _ _.
eexists u', v', (_ ++ [_; _]).
rewrite -?app_assoc. constructor; first done.
by rewrite ?map_app filter_app /= H1 H2.
** rewrite [in repeat sb b](ltac:(lia) : b = (b - 1) + 1) -repeat_appP.
rewrite ?map_app ?filter_app ?app_assoc ?app_nil_r /=.
move=> + + /(app_inj_tail (y := [])) [H2] [<-].
move=> ->. move=> /app_inj_tail [/app_inj_tail] [H1] _ _.
eexists u', ([sz] ++ v'), (_ ++ [_]).
rewrite (ltac:(lia) : b = 1 + (b - 1)) -?app_assoc /=.
constructor; first done.
by rewrite ?map_app filter_app /= H1 H2 -?app_assoc.
* move: H => + + _ /ltac:(exfalso).
move=> [] > [] *; subst; by firstorder done.
+ move=> + + + /ltac:(right; left; exists u', v', (s1 ++ c' :: d' :: s2)).
move=> /srs_mlr_specE [x] [y] [q] [] [] ? ? ? ? H1t H2t;
subst; rewrite -?app_assoc.
* constructor; first done.
constructor; first by rewrite -H1t ?map_app.
move: H2t. by rewrite ?map_app ?filter_app /=.
* constructor; first done.
constructor; first by rewrite -H1t ?map_app.
move: H2t. by rewrite ?map_app ?filter_app /=.
- move=> [s1] [?] [? ?]. subst.
move: (H1t). rewrite ?map_app ?app_assoc. move=> /app_inj_tail [_].
move: H H1t H2t => /srs_specI [|] [] > [] ? ? ? ?; subst; try done; [].
move=> Hi H1s1. rewrite map_app filter_app.
move=> /(app_inj_tail (y := [])) [H2s2] [<-] _.
right. right. rewrite /= Hi. eexists u', v, (s1 ++ [_; _]).
rewrite -?app_assoc. constructor; [done | constructor].
* move: H1s1. rewrite ?map_app ?app_assoc. move=> /app_inj_tail [-> _].
by rewrite (ltac:(lia) : 1 + b = b + 1) -[repeat _ (b + 1)]repeat_appP map_app -?app_assoc.
* by rewrite map_app filter_app /= H2s2.
- move=> [v'1 ->]. right. left.
exists u', (v'1 ++ c' :: d' :: v), t.
constructor; [by rewrite -?app_assoc | done].
Qed.
Lemma halting_cmI : exists n, halting cm (Nat.iter n (CM2.step cm) c0).
Proof using HN.
have [s [H1s H2s]] := init_encodes.
move Ht: (repeat so (1+N)) (c0) H2s H1s => t c Hst.
have {}Ht : Forall (fun x => fst so = x) (map fst t).
{ subst t. elim: (N); by constructor. }
move: Hst Ht c. move=> /rt_rt1n. elim.
- move=> {}s Hs [? ? ?] /= [?] [?] [{}t] [?] [H]. subst s.
move: Hs. rewrite ?map_app ?Forall_app H.
by move=> [_] [/ForallE] [].
- move=> > /simulate_srs_step H _ IH /IH {}IH c /H {H} [|[]].
+ move=> ?. by exists 0.
+ by move=> /IH.
+ move=> /IH [n Hn]. exists (n + 1). by rewrite iter_plus.
Qed.
End InverseTransport.
Lemma inverse_transport : SR2ab (srs, sz, so) -> CM2_HALT cm.
Proof. move=> [n Hn]. apply: halting_cmI. by eassumption. Qed.
End Reduction.
End Argument.
Require Import Undecidability.Synthetic.Definitions.
Theorem reduction : CM2_HALT ⪯ SR2ab.
Proof.
exists (fun cm => (Argument.srs cm, (4, None), (5, Some 0))).
intro cm. constructor.
- exact (Argument.transport cm).
- exact (Argument.inverse_transport cm).
Qed.
Import ListNotations.
Require Import Undecidability.StringRewriting.Reductions.CM2_HALT_to_SSTS01.SR2ab.
Require Import Undecidability.CounterMachines.CM2.
Require Import Undecidability.StringRewriting.Util.List_facts.
Require Import Undecidability.StringRewriting.Reductions.CM2_HALT_to_SSTS01.SR2ab_facts.
Require Import Undecidability.CounterMachines.Util.CM2_facts.
Require Import ssreflect ssrbool ssrfun.
Set Default Proof Using "Type".
Set Default Goal Selector "!".
Local Arguments rt_trans {A R x y z}.
Local Arguments in_combine_l {A B l l' x y}.
Module Facts.
Lemma copy {A : Prop} : A -> A * A.
Proof. done. Qed.
Lemma iter_plus {X: Type} {f: X -> X} {x: X} {n m: nat} :
Nat.iter (n + m) f x = Nat.iter n f (Nat.iter m f x).
Proof. by rewrite /Nat.iter nat_rect_plus. Qed.
Lemma nth_error_Some_in_combine {X: Type} {l: list X} {i x}:
nth_error l i = Some x ->
In (i, x) (combine (seq 0 (length l)) l).
Proof.
move Hk: (0) => k Hi. have ->: (i = i + k) by lia.
elim: l i k {Hk} Hi; first by case.
move=> y l IH [|i] k.
- move=> /= [<-]. by left.
- move=> /IH {}IH /=. right. by have ->: (S (i + k) = i + S k) by lia.
Qed.
Lemma inv_nth_error_Some_in_combine {X: Type} {l: list X} {i x}:
In (i, x) (combine (seq 0 (length l)) l) -> nth_error l i = Some x.
Proof.
move Hk: (0) => k. rewrite [in (_, _)](ltac:(lia) : (i = i + k)).
elim: l i k {Hk}; first by case.
move=> y l IH i k /= [].
- move=> [? ->]. by have ->: i = 0 by lia.
- move: i => [|i].
+ move=> /in_combine_l /in_seq. by lia.
+ have ->: S i + k = i + S k by lia.
by move=> /IH.
Qed.
End Facts.
Module Argument.
Import Facts.
Local Arguments List.app : simpl never.
Local Arguments Nat.sub : simpl never.
Local Arguments repeat : simpl never.
Local Arguments app_inj_tail {A x y a b}.
Section Reduction.
Context (cm : Cm2).
Local Notation sb := ((0, @None nat)). Local Notation sl := ((1, @None nat)). Local Notation sr := ((2, @None nat)). Local Notation sm := ((3, @None nat)).
Local Notation sz := ((4, @None nat)). Local Notation so := ((5, @Some nat 0)). Local Notation st := ((6, @None nat)).
Local Notation sb' p := ((0, @Some nat p)). Local Notation sl' p := ((1, @Some nat p)). Local Notation sr' p := ((2, @Some nat p)). Local Notation sm' p := ((3, @Some nat p)).
Definition states := map (fun i => if i is dec _ q then q else 0) cm.
Definition sum : list nat -> nat := fold_right Nat.add 0.
Definition state_bound := 1 + length cm + sum states.
Lemma state_boundP {p i} : nth_error cm p = Some i ->
(if i is dec _ q then q else 0) + 1 + p < state_bound.
Proof.
rewrite /state_bound /states.
elim: (cm) p; first by case.
move=> ? l IH [|p] /= => [[->] | /IH]; last by lia.
by case: (i); lia.
Qed.
Definition enc_Instruction (ni: (nat * Instruction)) : Srs :=
match ni with
| (p, inc b) => if b then [((sr' p, sz), (sb, sr' (S p)))] else [((sz, sl' p), (sl' (S p), sb))]
| (p, dec b q) =>
if b then [((sm, sr' p), (sm, sr' (S p))); ((sb, sr' p), (sr' q, sz))]
else [((sl' p, sm), (sl' (S p), sm)); ((sl' p, sb), (sz, sl' q))]
end.
Definition srs : Srs :=
[((sz, sz), (st, sr));
((sz, st), (sl' 0, sm)) ] ++
flat_map enc_Instruction (combine (seq 0 (length cm)) cm) ++
flat_map (fun p => [
((sl' p, sb), (sl, sb' p)); ((sl' p, sm), (sl, sm' p));
((sb' p, sb), (sb, sb' p)); ((sb' p, sm), (sb, sm' p)); ((sb' p, sr), (sb, sr' p));
((sm' p, sb), (sm, sb' p)); ((sm' p, sr), (sm, sr' p))]) (seq 0 state_bound) ++
flat_map (fun p => [
((sb, sr' p), (sb' p, sr)); ((sm, sr' p), (sm' p, sr));
((sb, sb' p), (sb' p, sb)); ((sm, sb' p), (sm' p, sb)); ((sl, sb' p), (sl' p, sb));
((sb, sm' p), (sb' p, sm)); ((sl, sm' p), (sl' p, sm))]) (seq 0 state_bound) ++
map (fun p => ((sz, sl' p), (so, so))) (seq (length cm) (state_bound - length cm)) ++
[((sz, so), (so, so)); ((so, sb), (so, so)); ((so, sm), (so, so));
((so, sr), (so, so)); ((so, sz), (so, so))].
Inductive srs_spec (a b c d: Symbol) : Prop :=
| srs_i0 : ((sz, sz), (st, sr)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_i1 : ((sz, st), (sl' 0, sm)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_sim0 {p} : ((sr' p, sz), (sb, sr' (S p))) = ((a, b), (c, d)) -> nth_error cm p = Some (inc true) -> srs_spec a b c d
| srs_sim1 {p} : ((sz, sl' p), (sl' (S p), sb)) = ((a, b), (c, d)) -> nth_error cm p = Some (inc false) -> srs_spec a b c d
| srs_sim2 {p q} : ((sm, sr' p), (sm, sr' (S p))) = ((a, b), (c, d)) -> nth_error cm p = Some (dec true q) -> srs_spec a b c d
| srs_sim3 {p q} : ((sb, sr' p), (sr' q, sz))= ((a, b), (c, d)) -> nth_error cm p = Some (dec true q) -> srs_spec a b c d
| srs_sim4 {p q} : ((sl' p, sm), (sl' (S p), sm)) = ((a, b), (c, d)) -> nth_error cm p = Some (dec false q) -> srs_spec a b c d
| srs_sim5 {p q} : ((sl' p, sb), (sz, sl' q)) = ((a, b), (c, d)) -> nth_error cm p = Some (dec false q) -> srs_spec a b c d
| srs_fin0 {p} : ((sz, sl' p), (so, so)) = ((a, b), (c, d)) -> length cm <= p < state_bound -> srs_spec a b c d
| srs_fin1 : ((sz, so), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_fin2 : ((so, sb), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_fin3 : ((so, sm), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_fin4 : ((so, sr), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d
| srs_fin5 : ((so, sz), (so, so)) = ((a, b), (c, d)) -> srs_spec a b c d.
Inductive srs_mlr_spec (a b c d: Symbol) : Prop :=
| srs_mr0 {p} : ((sl' p, sb), (sl, sb' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr1 {p} : ((sl' p, sm), (sl, sm' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr2 {p} : ((sb' p, sb), (sb, sb' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr3 {p} : ((sb' p, sm), (sb, sm' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr4 {p} : ((sb' p, sr), (sb, sr' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr5 {p} : ((sm' p, sb), (sm, sb' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_mr6 {p} : ((sm' p, sr), (sm, sr' p)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml0 {p} : ((sb, sr' p), (sb' p, sr)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml1 {p} : ((sm, sr' p), (sm' p, sr)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml2 {p} : ((sb, sb' p), (sb' p, sb)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml3 {p} : ((sm, sb' p), (sm' p, sb)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml4 {p} : ((sl, sb' p), (sl' p, sb)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml5 {p} : ((sb, sm' p), (sb' p, sm)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d
| srs_ml6 {p} : ((sl, sm' p), (sl' p, sm)) = ((a, b), (c, d)) -> p < state_bound -> srs_mlr_spec a b c d.
Lemma srs_specI a b c d : In ((a, b), (c, d)) srs -> srs_spec a b c d \/ srs_mlr_spec a b c d.
Proof.
rewrite /srs. case /in_app_iff.
{ firstorder (by eauto using srs_spec with nocore). }
case /in_app_iff.
{ move=> /in_flat_map [[? i]] [/inv_nth_error_Some_in_combine].
move: i => [] [] > /=; firstorder (by eauto using srs_spec with nocore). }
case /in_app_iff.
{ move=> /in_flat_map [?] [/in_seq] [_ ?].
firstorder (by eauto using srs_mlr_spec with nocore). }
case /in_app_iff.
{ move=> /in_flat_map [?] [/in_seq] [_ ?].
firstorder (by eauto using srs_mlr_spec with nocore). }
case /in_app_iff.
{ move=> /in_map_iff [?] [?] /in_seq H. left.
apply: srs_fin0; first by eassumption.
move: H. rewrite /state_bound. by lia. }
by firstorder (by eauto using srs_spec with nocore).
Qed.
Lemma In_srsI {a b c d} : srs_spec a b c d \/ srs_mlr_spec a b c d -> In ((a, b), (c, d)) srs.
Proof.
case.
- move=> [] > <- *.
1-2: apply /In_appl; rewrite /=; by tauto.
1-6: apply /In_appr /In_appl /in_flat_map; eexists;
(constructor; [apply: nth_error_Some_in_combine; by eassumption | by move=> /=; tauto ]).
1: apply /In_appr /In_appr /In_appr /In_appr /In_appl /in_map_iff; eexists;
(constructor; [by reflexivity | apply /in_seq; by lia ]).
1-5: do 5 (apply /In_appr); move=> /=; by tauto.
- move=> [] p <- *.
1-7: apply /In_appr /In_appr /In_appl /in_flat_map; exists p;
(constructor; [apply /in_seq; by lia | by move=> /=; tauto ]).
1-7: apply /In_appr /In_appr /In_appr /In_appl /in_flat_map; exists p;
(constructor; [apply /in_seq; by lia | by move=> /=; tauto ]).
Qed.
Lemma srs_mlr_specE {a b c d} : srs_mlr_spec a b c d ->
exists x y p,
((a, b), (c, d)) = (((x, Some p), (y, None)), ((x, None), (y, Some p))) \/
((a, b), (c, d)) = (((x, None), (y, Some p)), ((x, Some p), (y, None))).
Proof. move=> [] > [] ? ? ? ? _; subst; do 3 eexists; by tauto. Qed.
Local Create HintDb in_srs_db.
Local Hint Resolve or_introl or_intror conj In_srsI : in_srs_db.
Local Hint Immediate erefl : in_srs_db.
Local Hint Constructors srs_spec srs_mlr_spec : in_srs_db.
Definition stepI_nil := (@step_intro srs []).
Lemma move_sb_right {p n} : p < state_bound ->
multi_step srs ((sb' p) :: repeat sb n) ((repeat sb n) ++ [sb' p]).
Proof.
move=> Hp. elim: n; first by apply: rt_refl.
move=> n IH /=. apply: rt_trans;
[apply: rt_step | apply: (multi_step_applI (u := [sb])); exact: IH].
apply: stepI_nil. by eauto with in_srs_db nocore.
Qed.
Lemma move_sb_left {p n} : p < state_bound -> multi_step srs ((repeat sb n) ++ [sb' p]) ((sb' p) :: repeat sb n).
Proof.
move=> Hp. elim: n; first by apply: rt_refl.
move=> n IH /=. apply: rt_trans;
[apply: (multi_step_applI (u := [sb])); exact: IH | apply: rt_step].
apply: stepI_nil. by eauto with in_srs_db nocore.
Qed.
Section Transport.
Context (n_cm: nat).
Definition c0 := {| state := 0; value1 := 0; value2 := 0 |}.
Context (H_n_cm: halting cm (Nat.iter n_cm (CM2.step cm) c0)).
Lemma cm_values_ub n :
value1 (Nat.iter n (CM2.step cm) c0) + value2 (Nat.iter n (CM2.step cm) c0) <= n_cm.
Proof using H_n_cm.
have [|->] : n <= n_cm \/ n = ((n - n_cm) + n_cm) by lia.
- move=> ?. have := values_ub cm c0 n.
rewrite /c0 /=. by lia.
- rewrite iter_plus halting_eq; first done.
have := values_ub cm c0 n_cm.
rewrite /c0 /=. by lia.
Qed.
Lemma cm_state_ub n : state (Nat.iter n (CM2.step cm) c0) < state_bound.
Proof.
elim: n; first by (rewrite /= /state_bound; lia).
move=> n /=. move: (Nat.iter _ _ c0) => [p a b] /=.
move Hoi: (nth_error cm p) => oi. case: oi Hoi; last done.
case.
- by move=> > /state_boundP.
- move: a b => [|?] [|?] [] > /state_boundP /=; by lia.
Qed.
Definition d := 5 + n_cm + n_cm.
Definition enc_Config : Config -> list Symbol :=
fun '{| state := p; value1 := a; value2 := b |} =>
(repeat sz (1 + n_cm-a)) ++ [sl' p] ++ (repeat sb a) ++ [sm] ++
(repeat sb b) ++ [sr] ++ (repeat sz (1 + n_cm-b)).
Definition enc_Config' : Config -> list Symbol :=
fun '{| state := p; value1 := a; value2 := b |} =>
(repeat sz (1 + n_cm-a)) ++ [sl] ++ (repeat sb a) ++ [sm] ++
(repeat sb b) ++ [sr' p] ++ (repeat sz (1 + n_cm-b)).
Lemma multi_step_enc_c0 : multi_step srs (repeat sz d) (enc_Config c0).
Proof using.
apply: (rt_trans (y := (repeat sz (1 + n_cm)) ++ [sz] ++ [st] ++ [sr] ++ (repeat sz (1 + n_cm)))).
- have ->: d = 1 + n_cm + 1 + 1 + 1 + 1 + n_cm by (rewrite /d; lia).
rewrite -?repeat_appP -?app_assoc. do ? apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
- apply /multi_step_applI /rt_step /stepI_nil. by eauto with in_srs_db nocore.
Qed.
Lemma move_sb_right' {p n x y} : p < state_bound -> ((x, y) = (1, 3) \/ (x, y) = (3, 2)) ->
multi_step srs ([(x, Some p)] ++ repeat sb n ++ [(y, None)]) ([(x, None)] ++ repeat sb n ++ [(y, Some p)]).
Proof.
move=> ? /= Hxy. case: n.
- apply /rt_step /stepI_nil.
move: Hxy => [] [-> ->]; by eauto with in_srs_db nocore.
- move=> n. apply: (rt_trans (y := [(x, None)] ++ [sb' p] ++ (repeat sb n) ++ [(y, None)])).
+ have ->: repeat sb (S n) = [sb] ++ repeat sb n by done.
rewrite /= -?app_assoc. apply /rt_step /stepI_nil.
move: Hxy => [] [-> _]; by eauto with in_srs_db nocore.
+ rewrite -?app_assoc. apply: multi_step_applI.
apply: (rt_trans (y := (repeat sb n) ++ [sb' p] ++ [(y, None)])).
* rewrite ?app_assoc. apply: multi_step_apprI. by apply: move_sb_right.
* have ->: S n = n + 1 by lia. rewrite -repeat_appP -?app_assoc.
apply /multi_step_applI /rt_step /stepI_nil.
move: Hxy => [] [_ ->]; by eauto with in_srs_db nocore.
Qed.
Lemma move_sb_left' {p n x y} : p < state_bound -> ((x, y) = (1, 3) \/ (x, y) = (3, 2)) ->
multi_step srs ([(x, None)] ++ repeat sb n ++ [(y, Some p)]) ([(x, Some p)] ++ repeat sb n ++ [(y, None)]).
Proof.
move=> ? /= Hxy. case: n.
- apply /rt_step /stepI_nil.
move: Hxy => [] [-> ->]; by eauto with in_srs_db nocore.
- move=> n. apply: (rt_trans (y := [(x, None)] ++ (repeat sb n) ++ [sb' p] ++ [(y, None)])).
+ rewrite (ltac:(lia) : S n = n + 1) -repeat_appP -?app_assoc. do ? apply: multi_step_applI.
apply /rt_step /stepI_nil.
move: Hxy => [] [_ ->]; by eauto with in_srs_db nocore.
+ rewrite ?app_assoc. apply: multi_step_apprI.
apply: (rt_trans (y := [(x, None)] ++ [sb' p] ++ (repeat sb n))).
* rewrite -?app_assoc. apply: multi_step_applI. by apply: move_sb_left.
* apply /rt_step /stepI_nil.
move: Hxy => [] [-> _]; by eauto with in_srs_db nocore.
Qed.
Lemma move_right n : let c := (Nat.iter n (CM2.step cm) c0) in
multi_step srs (enc_Config c) (enc_Config' c).
Proof.
move=> c. subst c. have := cm_state_ub n.
move: (Nat.iter n _ c0) => [p a b] /= ?.
apply: multi_step_applI. rewrite ?app_assoc. apply: multi_step_apprI.
apply: (rt_trans (y := [sl] ++ (repeat sb a) ++ [sm' p] ++ (repeat sb b) ++ [sr])).
- rewrite ?app_assoc. do 2 apply: multi_step_apprI.
apply: move_sb_right'; by tauto.
- rewrite -?app_assoc. do 2 apply: multi_step_applI.
apply: move_sb_right'; by tauto.
Qed.
Lemma move_left n : let c := (Nat.iter n (CM2.step cm) c0) in
multi_step srs (enc_Config' c) (enc_Config c).
Proof.
move=> c. subst c. have := cm_state_ub n.
move: (Nat.iter n _ c0) => [p a b] /= ?.
apply: multi_step_applI. rewrite ?app_assoc. apply: multi_step_apprI.
apply: (rt_trans (y := [sl] ++ (repeat sb a) ++ [sm' p] ++ (repeat sb b) ++ [sr])).
- rewrite -?app_assoc. do 2 apply: multi_step_applI.
apply: move_sb_left'; by tauto.
- rewrite ?app_assoc. do 2 apply: multi_step_apprI.
apply: move_sb_left'; by tauto.
Qed.
Lemma simulate_cm_step {n} : let c := (Nat.iter n (CM2.step cm) c0) in
multi_step srs (enc_Config c) (enc_Config (CM2.step cm c)).
Proof using H_n_cm.
move=> c. subst c.
have := cm_values_ub n.
have := move_right n. have := move_left (1+n). move=> /=.
case: (Nat.iter n _ _) => p a b /=.
move Hoi: (nth_error cm p) => oi.
case: oi Hoi; last by (move=> *; apply: rt_refl). case; case.
- move=> ? /= Hr Hl ?.
apply: rt_trans; first by eassumption.
apply: rt_trans; last by eassumption.
have [-> ->]: S b = b + 1 /\ S n_cm - b = 1 + (S n_cm - (b + 1)) by lia.
rewrite -?repeat_appP -?app_assoc. do 5 apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
- move=> ? _ _ ? /=.
have [-> ->]: S n_cm - a = (n_cm - a) + 1 /\ S a = 1 + a by lia.
rewrite -?repeat_appP -?app_assoc. apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
- move=> q ? /= Hr Hl Hb.
apply: rt_trans; first by eassumption.
apply: rt_trans; last by eassumption.
case: (b) Hb => [_ | b' Hb'] /=.
+ do 3 apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
+ have [-> ->] : S b' = b' + 1 /\ S n_cm - b' = 1 + (S n_cm - (b' + 1)) by lia.
rewrite -?repeat_appP -?app_assoc. do 5 apply: multi_step_applI.
apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
- move=> q ? _ _ Ha.
case: (a) Ha => [_ | a' Ha'] /=.
+ apply /multi_step_applI /rt_step /stepI_nil.
by eauto with in_srs_db nocore.
+ rewrite (ltac:(lia) : (S n_cm - a' = (n_cm - a') + 1)) -repeat_appP -?app_assoc.
apply /multi_step_applI /rt_step /stepI_nil.
by eauto with in_srs_db nocore.
Qed.
Lemma multi_step_repeat_solI n : multi_step srs (repeat sz n ++ [so]) (repeat so (n+1)).
Proof.
elim: n; first by apply: rt_refl.
move=> n IH. rewrite -repeat_appP.
have ->: S n = n + 1 by lia.
apply: (rt_trans (y := repeat sz n ++ [so] ++ [so]));
last by (rewrite ?app_assoc; apply: multi_step_apprI).
rewrite -repeat_appP -?app_assoc.
apply /multi_step_applI /rt_step /stepI_nil.
by eauto with in_srs_db nocore.
Qed.
Lemma multi_step_repeat_sorI {n x} : x = sb \/ x = sz ->
multi_step srs ([so] ++ repeat x n) ([so] ++ repeat so n).
Proof.
move=> Hx. elim: n; first by apply: rt_refl.
move=> n IH.
apply: (rt_trans (y := ([so] ++ [so] ++ repeat x n))); last by apply: multi_step_applI.
apply /rt_step /stepI_nil.
move: Hx => [] ->; by eauto with in_srs_db nocore.
Qed.
Lemma multi_step_repeat_sorI' {s t n x} : x = sb \/ x = sz ->
multi_step srs ([so] ++ s) ([so] ++ t) ->
multi_step srs ([so] ++ repeat x n ++ s) ([so] ++ repeat so n ++ t).
Proof.
move=> /multi_step_repeat_sorI H1 H2.
apply: (rt_trans (y := ([so] ++ repeat so n ++ s))).
- rewrite ?app_assoc. by apply: multi_step_apprI.
- have ->: [so] = repeat so 1 by done. rewrite ?app_assoc repeat_appP.
have ->: 1 + n = n + 1 by lia. rewrite -repeat_appP -?app_assoc.
by apply: multi_step_applI.
Qed.
Lemma simulate_cm_halting {n} : let c := (Nat.iter n (CM2.step cm) c0) in
halting cm c -> multi_step srs (enc_Config c) (repeat so d).
Proof using H_n_cm.
move=> c /haltingP. subst c.
have := cm_values_ub n. have := cm_state_ub n.
move: (Nat.iter _ _ c0) => [p a b] /= *.
apply: (rt_trans (y := (repeat sz (n_cm - a)) ++ [so] ++ [so] ++ _)).
- rewrite (ltac:(lia) : S n_cm - a = (n_cm - a) + 1) -repeat_appP -?app_assoc.
apply /multi_step_applI /rt_step /stepI_nil.
by eauto with in_srs_db nocore.
- apply: (rt_trans (y := (repeat so (n_cm - a + 1) ++ [so] ++
repeat sb a ++ [sm] ++ repeat sb b ++ [sr] ++ repeat sz (S n_cm - b)))).
+ rewrite ?app_assoc. do 6 apply: multi_step_apprI. by apply: multi_step_repeat_solI.
+ have ->: d = (n_cm - a + 1) + 1 + a + 1 + b + 1 + (S n_cm - b) by (rewrite /d; lia).
rewrite -?repeat_appP -?app_assoc. do 2 apply: multi_step_applI.
apply: multi_step_repeat_sorI'; first by left.
apply: (rt_trans (y := ([so] ++ [so] ++ repeat sb b ++ [sr] ++ repeat sz (S n_cm - b)))).
* apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
* apply: multi_step_applI. apply: multi_step_repeat_sorI'; first by left.
apply: (rt_trans (y := ([so] ++ [so] ++ repeat sz (S n_cm - b)))).
** apply /rt_step /stepI_nil. by eauto with in_srs_db nocore.
** apply: multi_step_applI. apply: multi_step_repeat_sorI. by right.
Qed.
End Transport.
Lemma transport : CM2_HALT cm -> SR2ab (srs, sz, so).
Proof.
move=> [n /copy [Hn] /(simulate_cm_halting n Hn) H]. exists (@d n - 1).
apply: rt_trans; last by eassumption.
apply: rt_trans; first by apply: (multi_step_enc_c0).
elim: (n in Nat.iter n); first by apply: rt_refl.
move=> m IH {H}. apply: rt_trans; [by exact: IH | by apply: simulate_cm_step].
Qed.
Section InverseTransport.
Context (N: nat). Context (HN: multi_step srs (repeat sz (1+N)) (repeat so (1+N))).
Local Definition rt_rt1n {A R x y} := @clos_rt_rt1n_iff A R x y.
Definition encodes : Config -> list Symbol -> Prop :=
fun c s =>
exists u v t, let '{| state := p; value1 := a; value2 := b |} := c in
s = u ++ t ++ v /\
map fst t = map fst ([sl] ++ repeat sb a ++ [sm] ++ repeat sb b ++ [sr]) /\
filter (fun x => if x is None then false else true) (map snd t) = [Some p].
Lemma In_srs_stE {a b c d} : In ((a, b), (c, d)) srs ->
((sz, sz), (st, sr)) = ((a, b), (c, d)) \/
((sz, st), (sl' 0, sm)) = ((a, b), (c, d)) \/
if a is (_, None) then (if b is (_, None) then False else True) else True.
Proof. move=> /srs_specI [] [] > [] ? ? ? ? *; subst; by tauto. Qed.
Lemma init_encodes : exists s, encodes c0 s /\ multi_step srs s (repeat so (1+N)).
Proof using HN.
have [s] : exists s,
multi_step srs s (repeat so (1+N)) /\
Forall (fun x => snd x = None) s /\
forall n, nth n s sz = st -> nth (1+n) s sz = sr.
{ eexists. constructor; [|constructor]; [by eassumption | apply /Forall_repeatI; by tauto |].
move: (1+N) => m n H. exfalso. elim: n m H; first by case.
move=> n IH [|m]; [done | by apply: IH]. }
move Ht: (repeat so (1+N)) => t [/rt_rt1n Hst] [].
elim: Hst Ht; first by move=> ? <- /ForallE [].
move=> {}s {}t > Hst Ht IH /IH {IH}.
case: Hst Ht => u v a b c d /In_srs_stE [|[]].
- move=> [] <- <- <- <- _ IH.
move=> /Forall_app [Hu] /ForallE [_] /ForallE [_ Ht] Huv.
apply: IH.
+ apply /Forall_app. by do ? constructor.
+ move=> n. have := Huv n. elim: (u) n; first by move=> [|[|n]].
clear. move=> x {}u IH [|n]; last by move/IH.
move: (u) => [|? ?]; [by move=> H /H | done].
- move=> [] <- <- <- <- /rt_rt1n Ht _ _ /(_ (1 + length u)).
do 2 (rewrite app_nth2; first by lia).
rewrite (ltac:(lia) : 1 + length u - length u = 1).
rewrite (ltac:(lia) : 1 + (1 + length u) - length u = 2).
move=> /(_ ltac:(done)) Hv. eexists. constructor; last by eassumption.
move: (v) Hv => [|? v']; first done.
move=> /= ->. exists u, v', [sl' 0; sm; sr].
constructor; [done | by constructor].
- move=> H _ _ /Forall_app [_] /ForallE [+] /ForallE [+] _.
by move: a b H => [? [?|]] [? [?|]].
Qed.
Lemma eq2_app {u v a b} {s t: list Symbol} : u ++ a :: b :: v = s ++ t ->
(exists v1, v = v1 ++ t /\ s = u ++ a :: b :: v1) \/
(s = u ++ [a] /\ t = b :: v) \/
(exists u2, u = s ++ u2 /\ t = u2 ++ a :: b :: v).
Proof.
elim: u s.
- move=> [|y1 [|y2 s]].
+ rewrite ?app_nil_l. move=> <-. right. right. by exists [].
+ move=> [] <- <- /=. right. by left.
+ move=> [] <- <- ->. left. by exists s.
- move=> x1 u IH [|y1 s].
+ rewrite ?app_nil_l. move=> <-. right. right. by exists (x1 :: u).
+ move=> [] <- /IH [|[|]].
* move=> [?] [-> ->]. left. by eexists.
* move=> [-> ->]. right. by left.
* move=> [?] [-> ->]. right. right. by eexists.
Qed.
Lemma eq2_app_app {u a b v u' v'} {s: list Symbol} : length s > 1 ->
u ++ a :: b :: v = u' ++ s ++ v' ->
(exists u'2, v = u'2 ++ s ++ v') \/
(exists s2, u' = u ++ [a] /\ s = b :: s2 /\ v = s2 ++ v') \/
(exists s1 s2, s = s1 ++ [a] ++ [b] ++ s2 /\ u = u' ++ s1 /\ v = s2 ++ v') \/
(exists s1, u = u' ++ s1 /\ s = s1 ++ [a] /\ v' = b :: v) \/
(exists v'1, u = u' ++ s ++ v'1).
Proof.
move=> Hs /eq2_app [|[|]].
- move=> [?] [-> ->]. left. by eexists.
- move=> [->]. move: s Hs => [|? s] /=; first by lia.
move=> _ [] <- <-. right. left. by eexists.
- move=> [?] [->] /esym /eq2_app [|[|]].
+ move=> [?] [-> ->]. right. right. left. by do 2 eexists.
+ move=> [-> ->]. do 3 right. left. by eexists.
+ move=> [?] [-> ->]. do 4 right. by eexists.
Qed.
Inductive srs_step_spec (u v: list Symbol) (a b: Symbol) (n m: nat) : Prop :=
| srs_step0 : a.1 = sl.1 -> b.1 = sm.1 -> u = [] -> n = 0 -> srs_step_spec u v a b n m
| srs_step1 : a.1 = sl.1 -> b.1 = sb.1 -> u = [] -> n = 1 + (n - 1) -> srs_step_spec u v a b n m
| srs_step2 : a.1 = sm.1 -> b.1 = sr.1 -> v = [] -> m = 0 -> srs_step_spec u v a b n m
| srs_step3 : a.1 = sb.1 -> b.1 = sr.1 -> v = [] -> m = 1 + (m - 1) -> srs_step_spec u v a b n m.
Lemma srs_step_specI {u v a b n m} :
map fst (u ++ [a] ++ [b] ++ v) = map fst ([sl] ++ repeat sb n ++ [sm] ++ repeat sb m ++ [sr]) ->
srs_step_spec u v a b n m \/
(a.1 = sb.1 /\ b.1 = sb.1) \/ (a.1 = sb.1 /\ b.1 = sm.1) \/ (a.1 = sm.1 /\ b.1 = sb.1).
Proof.
move: u => [|? u].
{ move: n => [|n].
- move=> [] *. left. by apply: srs_step0.
- move=> [] *. left. apply: srs_step1; by [|lia]. }
move=> [] _. rewrite -/(_ ++ _).
elim /rev_ind: v.
{ rewrite app_nil_r ?map_app /=.
rewrite ?app_assoc. move=> /app_inj_tail [].
have [->|->] : m = 0 \/ m = (m - 1) + 1 by lia.
- rewrite app_nil_r. move=> /app_inj_tail [] *. left. by apply: srs_step2.
- rewrite -repeat_appP map_app ?app_assoc.
move=> /app_inj_tail [] *. left. apply: srs_step3; by [|lia]. }
move=> ? v _. rewrite ?map_app ?app_assoc.
move=> /app_inj_tail [+] _. move=> + /ltac:(right).
elim: u n.
{ move=> [|[|n]].
- move: m => [|m [] *]; [done | by tauto ].
- move=> [] *. by tauto.
- move=> [] *. by tauto. }
move=> ? u IH [|n]; last by move=> [_] /IH.
move=> [_] {IH}. rewrite -?/(_ ++ _). elim: m u; first by case.
move=> m IH [|? u]; last by move=> [_] /IH.
move: m {IH} => [|m] []; [done | by tauto].
Qed.
Lemma simulate_srs_step {c s t} : SR2ab.step srs s t -> encodes c s ->
halting cm c \/ encodes c t \/ encodes (CM2.step cm c) t.
Proof.
move: c => [p a b] [] u v a' b' c' d' H [u'] [v'] [{}t].
rewrite -?/([_] ++ [_] ++ v). move=> [+] [H1t H2t] => /eq2_app_app.
have : length t > 1.
{ move: H1t => /(congr1 (@length _)).
rewrite ?map_app ?app_length ?map_length /=. move=> ->. by lia. }
move=> Ht /(_ Ht) {Ht}.
case; [|case; [|case; [|case]]].
- move=> [u'2 ->]. right. left.
exists (u ++ c' :: d' :: u'2), v', t.
constructor; [by rewrite -?app_assoc | done].
- move=> [s2] [?] [? ?]. subst. move: H1t H2t => [].
move: H => /srs_specI [|] [] > [] ? ? ? ?; subst; try done; [|].
+ move=> Hi _ H1s2 [<- H2s2]. right. right.
rewrite /= Hi. eexists u, v', (_ :: _ :: s2).
constructor; [done | constructor; by rewrite /= ?H1s2 ?H2s2].
+ move=> ? _ _ [<-] _ *. left.
apply /haltingP => /=. by lia.
- move=> [s1] [s2] [?] [? ?]. subst.
move: H H1t H2t => /srs_specI [].
+ move=> H + + /ltac:(right; right). move=> /copy [/srs_step_specI] [].
* move=> H'. move: H' H => [] ? ? ? ? [] > [] ? ? ? ?; subst; try done; [ | | | ].
** rewrite app_nil_r /=. move=> + [H1] [<-] => -> H2.
eexists u', v', (_ :: _ :: _). constructor; [done | by rewrite /= H1 H2].
** rewrite app_nil_r /= ?map_app. move: (a) => [|?]; first done.
move=> + [] H1 [<-] H2 => ->.
eexists (u' ++ [sz]), v', (_ :: _).
rewrite -?app_assoc. constructor; [done | by rewrite /= ?map_app H1 H2].
** rewrite ?map_app filter_app /= app_nil_r.
move=> + + /(app_inj_tail (y := [])) [H2] [<-].
move=> ->. rewrite ?app_assoc app_nil_r.
move=> /app_inj_tail [/app_inj_tail] [H1] _ _.
eexists u', v', (_ ++ [_; _]).
rewrite -?app_assoc. constructor; first done.
by rewrite ?map_app filter_app /= H1 H2.
** rewrite [in repeat sb b](ltac:(lia) : b = (b - 1) + 1) -repeat_appP.
rewrite ?map_app ?filter_app ?app_assoc ?app_nil_r /=.
move=> + + /(app_inj_tail (y := [])) [H2] [<-].
move=> ->. move=> /app_inj_tail [/app_inj_tail] [H1] _ _.
eexists u', ([sz] ++ v'), (_ ++ [_]).
rewrite (ltac:(lia) : b = 1 + (b - 1)) -?app_assoc /=.
constructor; first done.
by rewrite ?map_app filter_app /= H1 H2 -?app_assoc.
* move: H => + + _ /ltac:(exfalso).
move=> [] > [] *; subst; by firstorder done.
+ move=> + + + /ltac:(right; left; exists u', v', (s1 ++ c' :: d' :: s2)).
move=> /srs_mlr_specE [x] [y] [q] [] [] ? ? ? ? H1t H2t;
subst; rewrite -?app_assoc.
* constructor; first done.
constructor; first by rewrite -H1t ?map_app.
move: H2t. by rewrite ?map_app ?filter_app /=.
* constructor; first done.
constructor; first by rewrite -H1t ?map_app.
move: H2t. by rewrite ?map_app ?filter_app /=.
- move=> [s1] [?] [? ?]. subst.
move: (H1t). rewrite ?map_app ?app_assoc. move=> /app_inj_tail [_].
move: H H1t H2t => /srs_specI [|] [] > [] ? ? ? ?; subst; try done; [].
move=> Hi H1s1. rewrite map_app filter_app.
move=> /(app_inj_tail (y := [])) [H2s2] [<-] _.
right. right. rewrite /= Hi. eexists u', v, (s1 ++ [_; _]).
rewrite -?app_assoc. constructor; [done | constructor].
* move: H1s1. rewrite ?map_app ?app_assoc. move=> /app_inj_tail [-> _].
by rewrite (ltac:(lia) : 1 + b = b + 1) -[repeat _ (b + 1)]repeat_appP map_app -?app_assoc.
* by rewrite map_app filter_app /= H2s2.
- move=> [v'1 ->]. right. left.
exists u', (v'1 ++ c' :: d' :: v), t.
constructor; [by rewrite -?app_assoc | done].
Qed.
Lemma halting_cmI : exists n, halting cm (Nat.iter n (CM2.step cm) c0).
Proof using HN.
have [s [H1s H2s]] := init_encodes.
move Ht: (repeat so (1+N)) (c0) H2s H1s => t c Hst.
have {}Ht : Forall (fun x => fst so = x) (map fst t).
{ subst t. elim: (N); by constructor. }
move: Hst Ht c. move=> /rt_rt1n. elim.
- move=> {}s Hs [? ? ?] /= [?] [?] [{}t] [?] [H]. subst s.
move: Hs. rewrite ?map_app ?Forall_app H.
by move=> [_] [/ForallE] [].
- move=> > /simulate_srs_step H _ IH /IH {}IH c /H {H} [|[]].
+ move=> ?. by exists 0.
+ by move=> /IH.
+ move=> /IH [n Hn]. exists (n + 1). by rewrite iter_plus.
Qed.
End InverseTransport.
Lemma inverse_transport : SR2ab (srs, sz, so) -> CM2_HALT cm.
Proof. move=> [n Hn]. apply: halting_cmI. by eassumption. Qed.
End Reduction.
End Argument.
Require Import Undecidability.Synthetic.Definitions.
Theorem reduction : CM2_HALT ⪯ SR2ab.
Proof.
exists (fun cm => (Argument.srs cm, (4, None), (5, Some 0))).
intro cm. constructor.
- exact (Argument.transport cm).
- exact (Argument.inverse_transport cm).
Qed.