Require Import Undecidability.StringRewriting.SR.
Require Import Undecidability.Shared.ListAutomation.
Require Import Setoid Morphisms Lia.
Import ListAutomationNotations.
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Import RuleNotation.
Lemma cons_inj {X} (x1 x2 : X) l1 l2 :
x1 :: l1 = x2 :: l2 -> x1 = x2 /\ l1 = l2.
Proof.
now inversion 1.
Qed.
Lemma list_prefix_inv'' X (a : X) x u y v :
~ a el u -> ~ a el v -> x ++ a :: y = u ++ a :: v -> x = u /\ y = v.
Proof.
induction x in u, v |- *; intros Hu Hv H; cbn in *.
- destruct u. split. reflexivity. now inversion H. inversion H; subst. cbn in Hu. tauto.
- destruct u.
+ inversion H; subst. destruct Hv. eauto.
+ inversion H; subst. eapply IHx in H2 as [-> ->]; eauto.
Qed.
Lemma list_prefix_inv' X (a a' : X) x u y v :
~ In a' x -> ~ In a u ->
x ++ a :: y = u ++ a' :: v -> a = a' /\ x = u /\ y = v.
Proof.
intro. revert u.
induction x; intros; destruct u; inversion H1; subst; try now firstorder.
eapply IHx in H4; try now firstorder. intuition congruence.
Qed.
Lemma list_prefix_inv X (a : X) x u y v :
~ a el x -> ~ a el u -> x ++ a :: y = u ++ a :: v -> x = u /\ y = v.
Proof.
intro. revert u.
induction x; intros; destruct u; inv H1; try now firstorder.
eapply IHx in H4; try now firstorder. intuition congruence.
Qed.
Lemma split_inv X (u z x y : list X) (s : X) :
u ++ z = x ++ s :: y -> ~ s el u -> exists x' : list X, x = u ++ x'.
Proof.
revert u. induction x; cbn; intros.
- destruct u. cbn. eauto. inv H. firstorder.
- destruct u. cbn. eauto.
inv H. edestruct IHx. cbn. rewrite H3. reflexivity. firstorder. subst. cbn. eauto.
Qed.
Lemma in_split X (a : X) (x : list X) :
a el x -> exists y z, x = y ++ [a] ++ z.
Proof.
induction x; cbn; intros.
- firstorder.
- destruct H as [-> | ].
+ now exists [], x.
+ destruct (IHx H) as (y & z & ->).
now exists (a0 :: y), z.
Qed.
Local Definition symbol := nat.
Local Definition string := (string nat).
Local Definition card : Type := (string * string).
Local Definition stack := list card.
Local Definition SRS := SRS nat.
Implicit Types a b : symbol.
Implicit Types x y z : string.
Implicit Types d e : card.
Implicit Types A R P : stack.
Coercion sing (n : nat) := [n].
Lemma rewt_induct :
forall (R : SRS) z (P : string -> Prop),
(P z) ->
(forall x y : string, rew R x y -> rewt R y z -> P y -> P x) -> forall s, rewt R s z -> P s.
Proof.
intros. induction H1; firstorder.
Qed.
Scheme rewt_ind' := Induction for rewt Sort Prop.
Instance PreOrder_rewt R : PreOrder (rewt R).
Proof.
split.
- econstructor.
- hnf. intros. induction H; eauto using rewR, rewS.
Qed.
Lemma rewt_app_L R x x' y : rewt R x x' -> rewt R (y ++ x) (y ++ x').
Proof.
induction 1. reflexivity.
inv H.
replace (y ++ x0 ++ u ++ y1) with ((y ++ x0) ++ u ++ y1).
econstructor. econstructor. eassumption. simpl_list. eassumption.
now simpl_list.
Qed.
Instance Proper_rewt R : Proper (rewt R ==> rewt R ==> rewt R) (@app symbol).
Proof.
hnf. intros. hnf. intros. induction H.
- now eapply rewt_app_L.
- inv H. transitivity (x1 ++ u ++ (y1 ++ x0)). now simpl_list.
econstructor. econstructor. eassumption. rewrite <- IHrewt. now simpl_list.
Qed.
Lemma rewt_subset R P x y :
rewt R x y -> R <<= P -> rewt P x y.
Proof.
induction 1; intros.
- reflexivity.
- inv H. eapply rewS; eauto.
eapply rewB. eauto.
Qed.
Lemma rewt_left R x y z :
rewt R x y -> rew R y z -> rewt R x z.
Proof.
induction 1; eauto.
+ intros. eapply rewS; eauto. eapply rewR.
+ intros. eapply rewS; eauto.
Qed.
Lemma rew_subset (R P : SRS) x y :
rew R x y -> incl R P -> SR.rew P x y.
Proof.
intros H1 H2. inversion H1; subst.
econstructor. eauto.
Qed.
Lemma rew_app_inv (R1 R2 : SR.SRS nat) x y :
SR.rew (R1 ++ R2) x y <-> SR.rew R1 x y \/ SR.rew R2 x y.
Proof.
split.
- inversion 1 as [x0 y0 u v H0]; subst; eapply in_app_iff in H0 as [H0 | H0].
+ left. econstructor. eauto.
+ right. econstructor. eauto.
- intros [H | H]; eapply rew_subset; eauto.
Qed.
Lemma do_rew (R : SRS) x1 x2 x y u v :
In (u, v) R ->
x1 = x ++ u ++ y ->
x2 = x ++ v ++ y ->
rew R x1 x2.
Proof.
intros; subst; now econstructor.
Qed.
Fixpoint sigma (a : symbol) A :=
match A with
nil => [a]
| x/y :: A => x ++ (sigma a A) ++ y
end.
Fixpoint sym (R : list card) :=
match R with
[] => []
| x / y :: R => x ++ y ++ sym R
end.
Lemma sym_app P R :
sym (P ++ R) = sym P ++ sym R.
Proof.
induction P as [ | [] ]; eauto; cbn; rewrite IHP. now simpl_list.
Qed.
Lemma sym_map X (f : X -> card) l Sigma :
(forall x : X, x el l -> sym [f x] <<= Sigma) -> sym (map f l) <<= Sigma.
Proof.
intros. induction l as [ | ]; cbn in *.
- firstorder.
- pose proof (H a). destruct f. repeat eapply incl_app.
+ eapply app_incl_l, H0. eauto.
+ eapply app_incl_l, app_incl_R; eauto.
+ eauto.
Qed.
Lemma sym_word_l R u v :
u / v el R -> u <<= sym R.
Proof.
induction R; cbn; intros.
- eauto.
- destruct a as (u', v'). destruct H; try inv H; eauto.
Qed.
Lemma sym_word_R R u v :
u / v el R -> v <<= sym R.
Proof.
induction R; cbn; intros.
- eauto.
- destruct a as (u', v'). destruct H; try inv H; eauto.
Qed.
Hint Resolve sym_word_l sym_word_R : core.
Lemma sym_mono A P :
A <<= P -> sym A <<= sym P.
Proof.
induction A as [ | (x,y) ]; cbn; intros.
- firstorder.
- repeat eapply incl_app; eauto.
Qed.
Lemma rewt_sym R x y Sigma:
sym R <<= Sigma -> x <<= Sigma -> rewt R x y -> y <<= Sigma.
Proof.
intros. induction H1.
- eauto.
- inv H1. eapply IHrewt. repeat eapply incl_app.
+ eapply app_incl_l. eauto.
+ rewrite <- H. eapply sym_word_R. eauto.
+ eapply app_incl_R, app_incl_R. eauto.
Qed.
Fixpoint fresh (l : list nat) :=
match l with
| [] => 0
| x :: l => S x + fresh l
end.
Lemma fresh_spec' l a : a el l -> a < fresh l.
Proof.
induction l.
- firstorder.
- cbn; intros [ | ]; firstorder lia.
Qed.
Lemma fresh_spec (a : symbol) (l : string) : a el l -> fresh l <> a.
Proof.
intros H % fresh_spec'. intros <-. lia.
Qed.
Require Import Undecidability.Shared.ListAutomation.
Require Import Setoid Morphisms Lia.
Import ListAutomationNotations.
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Import RuleNotation.
Lemma cons_inj {X} (x1 x2 : X) l1 l2 :
x1 :: l1 = x2 :: l2 -> x1 = x2 /\ l1 = l2.
Proof.
now inversion 1.
Qed.
Lemma list_prefix_inv'' X (a : X) x u y v :
~ a el u -> ~ a el v -> x ++ a :: y = u ++ a :: v -> x = u /\ y = v.
Proof.
induction x in u, v |- *; intros Hu Hv H; cbn in *.
- destruct u. split. reflexivity. now inversion H. inversion H; subst. cbn in Hu. tauto.
- destruct u.
+ inversion H; subst. destruct Hv. eauto.
+ inversion H; subst. eapply IHx in H2 as [-> ->]; eauto.
Qed.
Lemma list_prefix_inv' X (a a' : X) x u y v :
~ In a' x -> ~ In a u ->
x ++ a :: y = u ++ a' :: v -> a = a' /\ x = u /\ y = v.
Proof.
intro. revert u.
induction x; intros; destruct u; inversion H1; subst; try now firstorder.
eapply IHx in H4; try now firstorder. intuition congruence.
Qed.
Lemma list_prefix_inv X (a : X) x u y v :
~ a el x -> ~ a el u -> x ++ a :: y = u ++ a :: v -> x = u /\ y = v.
Proof.
intro. revert u.
induction x; intros; destruct u; inv H1; try now firstorder.
eapply IHx in H4; try now firstorder. intuition congruence.
Qed.
Lemma split_inv X (u z x y : list X) (s : X) :
u ++ z = x ++ s :: y -> ~ s el u -> exists x' : list X, x = u ++ x'.
Proof.
revert u. induction x; cbn; intros.
- destruct u. cbn. eauto. inv H. firstorder.
- destruct u. cbn. eauto.
inv H. edestruct IHx. cbn. rewrite H3. reflexivity. firstorder. subst. cbn. eauto.
Qed.
Lemma in_split X (a : X) (x : list X) :
a el x -> exists y z, x = y ++ [a] ++ z.
Proof.
induction x; cbn; intros.
- firstorder.
- destruct H as [-> | ].
+ now exists [], x.
+ destruct (IHx H) as (y & z & ->).
now exists (a0 :: y), z.
Qed.
Local Definition symbol := nat.
Local Definition string := (string nat).
Local Definition card : Type := (string * string).
Local Definition stack := list card.
Local Definition SRS := SRS nat.
Implicit Types a b : symbol.
Implicit Types x y z : string.
Implicit Types d e : card.
Implicit Types A R P : stack.
Coercion sing (n : nat) := [n].
Lemma rewt_induct :
forall (R : SRS) z (P : string -> Prop),
(P z) ->
(forall x y : string, rew R x y -> rewt R y z -> P y -> P x) -> forall s, rewt R s z -> P s.
Proof.
intros. induction H1; firstorder.
Qed.
Scheme rewt_ind' := Induction for rewt Sort Prop.
Instance PreOrder_rewt R : PreOrder (rewt R).
Proof.
split.
- econstructor.
- hnf. intros. induction H; eauto using rewR, rewS.
Qed.
Lemma rewt_app_L R x x' y : rewt R x x' -> rewt R (y ++ x) (y ++ x').
Proof.
induction 1. reflexivity.
inv H.
replace (y ++ x0 ++ u ++ y1) with ((y ++ x0) ++ u ++ y1).
econstructor. econstructor. eassumption. simpl_list. eassumption.
now simpl_list.
Qed.
Instance Proper_rewt R : Proper (rewt R ==> rewt R ==> rewt R) (@app symbol).
Proof.
hnf. intros. hnf. intros. induction H.
- now eapply rewt_app_L.
- inv H. transitivity (x1 ++ u ++ (y1 ++ x0)). now simpl_list.
econstructor. econstructor. eassumption. rewrite <- IHrewt. now simpl_list.
Qed.
Lemma rewt_subset R P x y :
rewt R x y -> R <<= P -> rewt P x y.
Proof.
induction 1; intros.
- reflexivity.
- inv H. eapply rewS; eauto.
eapply rewB. eauto.
Qed.
Lemma rewt_left R x y z :
rewt R x y -> rew R y z -> rewt R x z.
Proof.
induction 1; eauto.
+ intros. eapply rewS; eauto. eapply rewR.
+ intros. eapply rewS; eauto.
Qed.
Lemma rew_subset (R P : SRS) x y :
rew R x y -> incl R P -> SR.rew P x y.
Proof.
intros H1 H2. inversion H1; subst.
econstructor. eauto.
Qed.
Lemma rew_app_inv (R1 R2 : SR.SRS nat) x y :
SR.rew (R1 ++ R2) x y <-> SR.rew R1 x y \/ SR.rew R2 x y.
Proof.
split.
- inversion 1 as [x0 y0 u v H0]; subst; eapply in_app_iff in H0 as [H0 | H0].
+ left. econstructor. eauto.
+ right. econstructor. eauto.
- intros [H | H]; eapply rew_subset; eauto.
Qed.
Lemma do_rew (R : SRS) x1 x2 x y u v :
In (u, v) R ->
x1 = x ++ u ++ y ->
x2 = x ++ v ++ y ->
rew R x1 x2.
Proof.
intros; subst; now econstructor.
Qed.
Fixpoint sigma (a : symbol) A :=
match A with
nil => [a]
| x/y :: A => x ++ (sigma a A) ++ y
end.
Fixpoint sym (R : list card) :=
match R with
[] => []
| x / y :: R => x ++ y ++ sym R
end.
Lemma sym_app P R :
sym (P ++ R) = sym P ++ sym R.
Proof.
induction P as [ | [] ]; eauto; cbn; rewrite IHP. now simpl_list.
Qed.
Lemma sym_map X (f : X -> card) l Sigma :
(forall x : X, x el l -> sym [f x] <<= Sigma) -> sym (map f l) <<= Sigma.
Proof.
intros. induction l as [ | ]; cbn in *.
- firstorder.
- pose proof (H a). destruct f. repeat eapply incl_app.
+ eapply app_incl_l, H0. eauto.
+ eapply app_incl_l, app_incl_R; eauto.
+ eauto.
Qed.
Lemma sym_word_l R u v :
u / v el R -> u <<= sym R.
Proof.
induction R; cbn; intros.
- eauto.
- destruct a as (u', v'). destruct H; try inv H; eauto.
Qed.
Lemma sym_word_R R u v :
u / v el R -> v <<= sym R.
Proof.
induction R; cbn; intros.
- eauto.
- destruct a as (u', v'). destruct H; try inv H; eauto.
Qed.
Hint Resolve sym_word_l sym_word_R : core.
Lemma sym_mono A P :
A <<= P -> sym A <<= sym P.
Proof.
induction A as [ | (x,y) ]; cbn; intros.
- firstorder.
- repeat eapply incl_app; eauto.
Qed.
Lemma rewt_sym R x y Sigma:
sym R <<= Sigma -> x <<= Sigma -> rewt R x y -> y <<= Sigma.
Proof.
intros. induction H1.
- eauto.
- inv H1. eapply IHrewt. repeat eapply incl_app.
+ eapply app_incl_l. eauto.
+ rewrite <- H. eapply sym_word_R. eauto.
+ eapply app_incl_R, app_incl_R. eauto.
Qed.
Fixpoint fresh (l : list nat) :=
match l with
| [] => 0
| x :: l => S x + fresh l
end.
Lemma fresh_spec' l a : a el l -> a < fresh l.
Proof.
induction l.
- firstorder.
- cbn; intros [ | ]; firstorder lia.
Qed.
Lemma fresh_spec (a : symbol) (l : string) : a el l -> fresh l <> a.
Proof.
intros H % fresh_spec'. intros <-. lia.
Qed.