From Undecidability Require Import TM.Util.Prelim.
From Undecidability Require Import TM.Util.TM_facts.
From Undecidability Require Import TM.Basic.Basic.
From Undecidability Require Import TM.Combinators.Combinators.
From Undecidability Require Import TM.Lifting.Lifting.
From Undecidability Require Import TM.Compound.TMTac.
Section Nop.
Variable sig : finType.
Variable n : nat.
Definition Nop : pTM sig unit n := LiftTapes Null (Vector.nil _).
Definition Nop_Rel : pRel sig unit n :=
ignoreParam (fun t t' => t' = t).
Lemma Nop_Sem : Nop ⊨c(0) Nop_Rel.
Proof.
eapply RealiseIn_monotone.
{ unfold Nop. TM_Correct. }
{ reflexivity. }
{
intros tin ((), tout) (_&HInj). cbn in *.
apply Vector.eq_nth_iff; intros i ? <-. apply HInj. vector_not_in.
}
Qed.
End Nop.
Arguments Nop_Rel {sig n} x y/.
Arguments Nop {sig n}.
Arguments Nop : simpl never.
Section Diverge.
Variable sig : finType.
Variable n : nat.
Definition Diverge : pTM sig unit n := While (Return Nop None).
Definition Diverge_Rel : pRel sig unit n :=
ignoreParam (fun t t' => False).
Lemma Diverge_Realise : Diverge ⊨ Diverge_Rel.
Proof.
eapply Realise_monotone.
{ unfold Diverge. TM_Correct. eapply RealiseIn_Realise. apply Nop_Sem. }
{ eapply WhileInduction; intros; cbn in *; TMSimp; auto. }
Qed.
End Diverge.
Arguments Diverge_Rel {sig n} x y/.
Arguments Diverge {sig n}.
Arguments Diverge : simpl never.
Section MovePar.
Variable sig : finType.
Variable (D1 D2 : move).
Definition MovePar_R : pRel sig unit 2 :=
ignoreParam(fun (t t' : tapes sig 2) =>
t'[@Fin0] = tape_move t[@Fin0] D1 /\
t'[@Fin1] = tape_move t[@Fin1] D2).
Definition MovePar : pTM sig unit 2 :=
LiftTapes (Move D1) [|Fin0|];; LiftTapes (Move D2) [|Fin1|].
Lemma MovePar_Sem : MovePar ⊨c(3) MovePar_R.
Proof.
eapply RealiseIn_monotone.
{ unfold MovePar. TM_Correct. }
{ reflexivity. }
{ hnf in *. intros tin (yout&tout) H. now TMSimp. }
Qed.
End MovePar.
Arguments MovePar_R { sig } ( D1 D2 ) x y /.
Arguments MovePar {sig} (D1 D2).
Arguments MovePar : simpl never.
Section Copy.
Variable sig : finType.
Variable f : sig -> sig.
Definition CopyChar : pTM sig unit 2 :=
Switch (LiftTapes ReadChar [|Fin0|])
(fun s : option sig =>
match s with
| None => Nop
| Some s => LiftTapes (Write (f s)) [|Fin1|]
end).
Definition CopyChar_Rel : pRel sig unit 2 :=
ignoreParam (
fun tin tout =>
tout[@Fin0] = tin[@Fin0] /\
tout[@Fin1] = tape_write tin[@Fin1] (map_opt f (current tin[@Fin0]))
).
Lemma CopyChar_Sem : CopyChar ⊨c(3) CopyChar_Rel.
Proof.
eapply RealiseIn_monotone.
{
unfold CopyChar. eapply Switch_RealiseIn; cbn.
- apply LiftTapes_RealiseIn. vector_dupfree. apply ReadChar_Sem.
- instantiate (2 := fun o : option sig => match o with Some s => _ | None => _ end).
intros [ s | ]; cbn.
+ eapply LiftTapes_RealiseIn. vector_dupfree. apply Write_Sem.
+ eapply RealiseIn_monotone'. apply Nop_Sem. lia.
}
{ lia. }
{
intros tin ((), tout) H. cbn in *. TMSimp.
destruct (current _) eqn:E; TMSimp; auto.
}
Qed.
End Copy.
Arguments CopyChar_Rel { sig } ( f ) x y /.
Arguments CopyChar { sig }.
Arguments CopyChar : simpl never.
Section ReadChar.
Variable sig : finType.
Variable (n : nat) (k : Fin.t n).
Definition ReadChar_at : pTM sig (option sig) n :=
LiftTapes ReadChar [|k|].
Definition ReadChar_at_Rel : pRel sig (option sig) n :=
fun tin '(yout, tout) =>
yout = current tin[@k] /\
tout = tin.
Lemma ReadChar_at_Sem :
ReadChar_at ⊨c(1) ReadChar_at_Rel.
Proof.
eapply RealiseIn_monotone.
{ unfold ReadChar_at. TM_Correct. }
{ cbn. reflexivity. }
{
intros tin (yout, tout) H.
hnf. TMSimp; clear_trivial_eqs. split; auto.
eapply VectorSpec.eq_nth_iff; intros p ? <-.
decide (p = k) as [->|HnEq]; TMSimp; auto.
- apply H0. vector_not_in.
}
Qed.
End ReadChar.
Arguments ReadChar_at : simpl never.
Arguments ReadChar_at {sig n} k.
Arguments ReadChar_at_Rel { sig n } ( k ) x y /.
Ltac smpl_TM_Multi :=
once lazymatch goal with
| [ |- Nop ⊨ _ ] => eapply RealiseIn_Realise; apply Nop_Sem
| [ |- Nop ⊨c(_) _ ] => eapply Nop_Sem
| [ |- projT1 (Nop) ↓ _ ] => eapply RealiseIn_TerminatesIn; apply Nop_Sem
| [ |- Diverge ⊨ _ ] => apply Diverge_Realise
| [ |- MovePar _ _ ⊨ _ ] => eapply RealiseIn_Realise; eapply MovePar_Sem
| [ |- MovePar _ _ ⊨c(_) _ ] => eapply MovePar_Sem
| [ |- projT1 (MovePar _ _) ↓ _ ] => eapply RealiseIn_TerminatesIn; eapply MovePar_Sem
| [ |- CopyChar _ ⊨ _ ] => eapply RealiseIn_Realise; eapply CopyChar_Sem
| [ |- CopyChar _ ⊨c(_) _ ] => eapply CopyChar_Sem
| [ |- projT1 (CopyChar _) ↓ _ ] => eapply RealiseIn_TerminatesIn; eapply CopyChar_Sem
| [ |- ReadChar_at _ ⊨ _ ] => eapply RealiseIn_Realise; eapply ReadChar_at_Sem
| [ |- ReadChar_at _ ⊨c(_) _ ] => eapply ReadChar_at_Sem
| [ |- projT1 (ReadChar_at _) ↓ _ ] => eapply RealiseIn_TerminatesIn; eapply ReadChar_at_Sem
end.
Smpl Add smpl_TM_Multi : TM_Correct.
From Undecidability Require Import TM.Util.TM_facts.
From Undecidability Require Import TM.Basic.Basic.
From Undecidability Require Import TM.Combinators.Combinators.
From Undecidability Require Import TM.Lifting.Lifting.
From Undecidability Require Import TM.Compound.TMTac.
Section Nop.
Variable sig : finType.
Variable n : nat.
Definition Nop : pTM sig unit n := LiftTapes Null (Vector.nil _).
Definition Nop_Rel : pRel sig unit n :=
ignoreParam (fun t t' => t' = t).
Lemma Nop_Sem : Nop ⊨c(0) Nop_Rel.
Proof.
eapply RealiseIn_monotone.
{ unfold Nop. TM_Correct. }
{ reflexivity. }
{
intros tin ((), tout) (_&HInj). cbn in *.
apply Vector.eq_nth_iff; intros i ? <-. apply HInj. vector_not_in.
}
Qed.
End Nop.
Arguments Nop_Rel {sig n} x y/.
Arguments Nop {sig n}.
Arguments Nop : simpl never.
Section Diverge.
Variable sig : finType.
Variable n : nat.
Definition Diverge : pTM sig unit n := While (Return Nop None).
Definition Diverge_Rel : pRel sig unit n :=
ignoreParam (fun t t' => False).
Lemma Diverge_Realise : Diverge ⊨ Diverge_Rel.
Proof.
eapply Realise_monotone.
{ unfold Diverge. TM_Correct. eapply RealiseIn_Realise. apply Nop_Sem. }
{ eapply WhileInduction; intros; cbn in *; TMSimp; auto. }
Qed.
End Diverge.
Arguments Diverge_Rel {sig n} x y/.
Arguments Diverge {sig n}.
Arguments Diverge : simpl never.
Section MovePar.
Variable sig : finType.
Variable (D1 D2 : move).
Definition MovePar_R : pRel sig unit 2 :=
ignoreParam(fun (t t' : tapes sig 2) =>
t'[@Fin0] = tape_move t[@Fin0] D1 /\
t'[@Fin1] = tape_move t[@Fin1] D2).
Definition MovePar : pTM sig unit 2 :=
LiftTapes (Move D1) [|Fin0|];; LiftTapes (Move D2) [|Fin1|].
Lemma MovePar_Sem : MovePar ⊨c(3) MovePar_R.
Proof.
eapply RealiseIn_monotone.
{ unfold MovePar. TM_Correct. }
{ reflexivity. }
{ hnf in *. intros tin (yout&tout) H. now TMSimp. }
Qed.
End MovePar.
Arguments MovePar_R { sig } ( D1 D2 ) x y /.
Arguments MovePar {sig} (D1 D2).
Arguments MovePar : simpl never.
Section Copy.
Variable sig : finType.
Variable f : sig -> sig.
Definition CopyChar : pTM sig unit 2 :=
Switch (LiftTapes ReadChar [|Fin0|])
(fun s : option sig =>
match s with
| None => Nop
| Some s => LiftTapes (Write (f s)) [|Fin1|]
end).
Definition CopyChar_Rel : pRel sig unit 2 :=
ignoreParam (
fun tin tout =>
tout[@Fin0] = tin[@Fin0] /\
tout[@Fin1] = tape_write tin[@Fin1] (map_opt f (current tin[@Fin0]))
).
Lemma CopyChar_Sem : CopyChar ⊨c(3) CopyChar_Rel.
Proof.
eapply RealiseIn_monotone.
{
unfold CopyChar. eapply Switch_RealiseIn; cbn.
- apply LiftTapes_RealiseIn. vector_dupfree. apply ReadChar_Sem.
- instantiate (2 := fun o : option sig => match o with Some s => _ | None => _ end).
intros [ s | ]; cbn.
+ eapply LiftTapes_RealiseIn. vector_dupfree. apply Write_Sem.
+ eapply RealiseIn_monotone'. apply Nop_Sem. lia.
}
{ lia. }
{
intros tin ((), tout) H. cbn in *. TMSimp.
destruct (current _) eqn:E; TMSimp; auto.
}
Qed.
End Copy.
Arguments CopyChar_Rel { sig } ( f ) x y /.
Arguments CopyChar { sig }.
Arguments CopyChar : simpl never.
Section ReadChar.
Variable sig : finType.
Variable (n : nat) (k : Fin.t n).
Definition ReadChar_at : pTM sig (option sig) n :=
LiftTapes ReadChar [|k|].
Definition ReadChar_at_Rel : pRel sig (option sig) n :=
fun tin '(yout, tout) =>
yout = current tin[@k] /\
tout = tin.
Lemma ReadChar_at_Sem :
ReadChar_at ⊨c(1) ReadChar_at_Rel.
Proof.
eapply RealiseIn_monotone.
{ unfold ReadChar_at. TM_Correct. }
{ cbn. reflexivity. }
{
intros tin (yout, tout) H.
hnf. TMSimp; clear_trivial_eqs. split; auto.
eapply VectorSpec.eq_nth_iff; intros p ? <-.
decide (p = k) as [->|HnEq]; TMSimp; auto.
- apply H0. vector_not_in.
}
Qed.
End ReadChar.
Arguments ReadChar_at : simpl never.
Arguments ReadChar_at {sig n} k.
Arguments ReadChar_at_Rel { sig n } ( k ) x y /.
Ltac smpl_TM_Multi :=
once lazymatch goal with
| [ |- Nop ⊨ _ ] => eapply RealiseIn_Realise; apply Nop_Sem
| [ |- Nop ⊨c(_) _ ] => eapply Nop_Sem
| [ |- projT1 (Nop) ↓ _ ] => eapply RealiseIn_TerminatesIn; apply Nop_Sem
| [ |- Diverge ⊨ _ ] => apply Diverge_Realise
| [ |- MovePar _ _ ⊨ _ ] => eapply RealiseIn_Realise; eapply MovePar_Sem
| [ |- MovePar _ _ ⊨c(_) _ ] => eapply MovePar_Sem
| [ |- projT1 (MovePar _ _) ↓ _ ] => eapply RealiseIn_TerminatesIn; eapply MovePar_Sem
| [ |- CopyChar _ ⊨ _ ] => eapply RealiseIn_Realise; eapply CopyChar_Sem
| [ |- CopyChar _ ⊨c(_) _ ] => eapply CopyChar_Sem
| [ |- projT1 (CopyChar _) ↓ _ ] => eapply RealiseIn_TerminatesIn; eapply CopyChar_Sem
| [ |- ReadChar_at _ ⊨ _ ] => eapply RealiseIn_Realise; eapply ReadChar_at_Sem
| [ |- ReadChar_at _ ⊨c(_) _ ] => eapply ReadChar_at_Sem
| [ |- projT1 (ReadChar_at _) ↓ _ ] => eapply RealiseIn_TerminatesIn; eapply ReadChar_at_Sem
end.
Smpl Add smpl_TM_Multi : TM_Correct.